209
Views
18
CrossRef citations to date
0
Altmetric
Review

Recombinant adeno-associated virus vectors in the treatment of rare diseases

(Postdoctoral Researcher) & (Director)

Bibliography

  • Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 2013;14(10):681-91
  • Berns KI PC. Parvoviridae. In: Howley P, editor. In Fields Virology. Lippincott Williams & Wilkins; New York: 2007. p. 2437-77
  • Calcedo R, Morizono H, Wang L, et al. Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin Vaccine Immunol 2011;18(9):1586-8
  • Calcedo R, Vandenberghe LH, Gao G, et al. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 2009;199(3):381-90
  • Hastie E, Samulski RJ. AAV at 50: a golden anniversary of discovery, research, and gene therapy success, a personal perspective. Hum Gene Ther 2015. [Epub ahead of print]
  • Clement N, Knop DR, Byrne BJ. Large-scale adeno-associated viral vector production using a herpesvirus-based system enables manufacturing for clinical studies. Hum Gene Ther 2009;20(8):796-806
  • Kotin RM. Large-scale recombinant adeno-associated virus production. Hum Mol Genet 2011;20(R1):R2-6
  • Thomas DL, Wang L, Niamke J, et al. Scalable recombinant adeno-associated virus production using recombinant herpes simplex virus type 1 coinfection of suspension-adapted mammalian cells. Hum Gene Ther 2009;20(8):861-70
  • Louis Jeune V, Joergensen JA, Hajjar RJ, Weber T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum Gene Ther Methods 2013;24(2):59-67
  • Selot RS, Hareendran S, Jayandharan GR. Developing immunologically inert adeno-associated virus (AAV) vectors for gene therapy: possibilities and limitations. Curr Pharm Biotechnol 2014;14(12):1072-82
  • Calcedo R, Wilson JM. Humoral immune response to AAV. Front Immunol 2013;4:341
  • Basner-Tschakarjan E, Mingozzi F. Cell-mediated immunity to AAV vectors, evolving concepts and potential solutions. Front Immunol 2014;5:350
  • Jiang H, Couto LB, Patarroyo-White S, et al. Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood 2006;108(10):3321-8
  • Erles K, Sebokova P, Schlehofer JR. Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J Med Virol 1999;59(3):406-11
  • Mingozzi F, Meulenberg JJ, Hui DJ, et al. AAV-1-mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells. Blood 2009;114(10):2077-86
  • Wang L, Calcedo R, Bell P, et al. Impact of pre-existing immunity on gene transfer to nonhuman primate liver with adeno-associated virus 8 vectors. Hum Gene Ther 2011;22(11):1389-401
  • Thwaite R, Pages G, Chillon M, Bosch A. AAVrh.10 immunogenicity in mice and humans. Relevance of antibody cross-reactivity in human gene therapy. Gene Ther 2015;22(2):196-201
  • Li C, Narkbunnam N, Samulski RJ, et al. Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia. Gene Ther 2012;19(3):288-94
  • Damdindorj L, Karnan S, Ota A, et al. A comparative analysis of constitutive promoters located in adeno-associated viral vectors. PLoS ONE 2014;9(8):e106472
  • Bartel M, Schaffer D, Buning H. Enhancing the clinical potential of AAV vectors by capsid engineering to evade pre-existing immunity. Front Microbiol 2011;2:204
  • Gurda BL, Raupp C, Popa-Wagner R, et al. Mapping a neutralizing epitope onto the capsid of adeno-associated virus serotype 8. J Virol 2012;86(15):7739-51
  • Moskalenko M, Chen L, van Roey M, et al. Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: implications for gene therapy and virus structure. J Virol 2000;74(4):1761-6
  • Tseng YS, Agbandje-McKenna M. Mapping the AAV capsid host antibody Response toward the development of second generation gene delivery vectors. Front Immunol 2014;5:9
  • Adachi K, Enoki T, Kawano Y, et al. Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing. Nat Commun 2014;5:3075
  • Carlisle RC, Benjamin R, Briggs SS, et al. Coating of adeno-associated virus with reactive polymers can ablate virus tropism, enable retargeting and provide resistance to neutralising antisera. J Gene Med 2008;10(4):400-11
  • Le HT, Yu QC, Wilson JM, Croyle MA. Utility of PEGylated recombinant adeno-associated viruses for gene transfer. J Control Release 2005;108(1):161-77
  • Gyorgy B, Fitzpatrick Z, Crommentuijn MH, et al. Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery in vivo. Biomaterials 2014;35(26):7598-609
  • Labib M, Zamay AS, Muharemagic D, et al. Electrochemical sensing of aptamer-facilitated virus immunoshielding. Anal Chem 2012;84(3):1677-86
  • Manno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006;12(3):342-7
  • Stieger K, Le Meur G, Lasne F, et al. Long-term doxycycline-regulated transgene expression in the retina of nonhuman primates following subretinal injection of recombinant AAV vectors. Mol Ther 2006;13(5):967-75
  • Zhong L, Li B, Mah CS, et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA 2008;105(22):7827-32
  • Mingozzi F, Maus MV, Hui DJ, et al. CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med 2007;13(4):419-22
  • Zhu J, Huang X, Yang Y. The TLR9-MyD88 pathway is critical for adaptive immune responses to adeno-associated virus gene therapy vectors in mice. J Clin Invest 2009;119(8):2388-98
  • Zaiss AK, Liu Q, Bowen GP, et al. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol 2002;76(9):4580-90
  • Faust SM, Bell P, Cutler BJ, et al. CpG-depleted adeno-associated virus vectors evade immune detection. J Clin Invest 2013;123(7):2994-3001
  • Zhang P, Luo X, Bird A, et al. Deficiency in MyD88 signaling results in decreased antibody responses to an adeno-associated virus vector in murine Pompe disease. Biores Open Access 2012;1(3):109-14
  • Mitchell AM, Hirsch ML, Li C, Samulski RJ. Promyelocytic leukemia protein is a cell-intrinsic factor inhibiting parvovirus DNA replication. J Virol 2014;88(2):925-36
  • Cervelli T, Palacios JA, Zentilin L, et al. Processing of recombinant AAV genomes occurs in specific nuclear structures that overlap with foci of DNA-damage-response proteins. J Cell Sci 2008;121(Pt 3):349-57
  • Lentz TB, Samulski RJ. Insight into the mechanism of inhibition of recombinant adeno-associated virus by the Mre11/Rad50/Nbs1 complex. J Virol 2015;89(1):181-94
  • Summerford C, Samulski RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998;72(2):1438-45
  • Kaludov N, Brown KE, Walters RW, et al. Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J Virol 2001;75(15):6884-93
  • Walters RW, Yi SM, Keshavjee S, et al. Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J Biol Chem 2001;276(23):20610-16
  • Akache B, Grimm D, Pandey K, et al. The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol 2006;80(19):9831-6
  • Schmidt M, Chiorini JA. Gangliosides are essential for bovine adeno-associated virus entry. J Virol 2006;80(11):5516-22
  • Geoghegan JC, Keiser NW, Okulist A, et al. Condhroitin Sulfate is the primary receptor for a peptide-modified AAV that targets brain vascular endothelium in vivo. Mol Ther Nucleic Acids 2014;3:e202
  • Sallach J, Di Pasquale G, Larcher F, et al. Tropism-modified AAV vectors overcome barriers to successful cutaneous therapy. Mol Ther 2014;22(5):929-39
  • Dayton RD, Wang DB, Klein RL. The advent of AAV9 expands applications for brain and spinal cord gene delivery. Expert Opin Biol Ther 2012;12(6):757-66
  • Murlidharan G, Samulski RJ, Asokan A. Biology of adeno-associated viral vectors in the central nervous system. Front Mol Neurosci 2014;7:76
  • Bourdenx M, Dutheil N, Bezard E, Dehay B. Systemic gene delivery to the central nervous system using Adeno-associated virus. Front Mol Neurosci 2014;7:50
  • Lentz TB, Gray SJ, Samulski RJ. Viral vectors for gene delivery to the central nervous system. Neurobiol Dis 2012;48(2):179-88
  • Willett K, Bennett J. Immunology of AAV-mediated gene transfer in the eye. Front Immunol 2013;4:261
  • Day TP, Byrne LC, Schaffer DV, Flannery JG. Advances in AAV vector development for gene therapy in the retina. Adv Exp Med Biol 2014;801:687-93
  • Zacchigna S, Zentilin L, Giacca M. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ Res 2014;114(11):1827-46
  • Asokan A, Samulski RJ. An emerging adeno-associated viral vector pipeline for cardiac gene therapy. Hum Gene Ther 2013;24(11):906-13
  • Gruntman AM, Mueller C, Flotte TR, Gao G. Gene transfer in the lung using recombinant adeno-associated virus. Curr Protoc Microbio 2012;Chapter 14):Unit14D.2
  • Keeler AM, Flotte TR. Cell and gene therapy for genetic diseases: inherited disorders affecting the lung and those mimicking sudden infant death syndrome. Hum Gene Ther 2012;23(6):548-56
  • Luebke AE, Rova C, Von Doersten PG, Poulsen DJ. Adenoviral and AAV-mediated gene transfer to the inner ear: role of serotype, promoter, and viral load on in vivo and in vitro infection efficiencies. Adv Otorhinolaryngol 2009;66:87-98
  • van der Laan LJ, Wang Y, Tilanus HW, et al. AAV-mediated gene therapy for liver diseases: the prime candidate for clinical application? Expert Opin Biol Ther 2011;11(3):315-27
  • Evans CH, Ghivizzani SC, Robbins PD. Progress and Prospects: genetic treatments for disorders of bones and joints. Gene Ther 2009;16(8):944-52
  • Miyagoe-Suzuki Y, Takeda S. Gene therapy for muscle disease. Exp Cell Res 2010;316(18):3087-92
  • Wang D, Zhong L, Nahid MA, Gao G. The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv 2014;11(3):345-64
  • Liu X, Magee D, Wang C, et al. Adipose tissue insulin receptor knockdown via a new primate-derived hybrid recombinant AAV serotype. Mol Ther Methods Clin Dev 2014;1
  • O’Neill SM, Hinkle C, Chen SJ, et al. Targeting adipose tissue via systemic gene therapy. Gene Ther 2014;21(7):653-61
  • White SJ, Nicklin SA, Buning H, et al. Targeted gene delivery to vascular tissue in vivo by tropism-modified adeno-associated virus vectors. Circulation 2004;109(4):513-19
  • Stachler MD, Bartlett JS. Mosaic vectors comprised of modified AAV1 capsid proteins for efficient vector purification and targeting to vascular endothelial cells. Gene Ther 2006;13(11):926-31
  • Bartlett JS, Kleinschmidt J, Boucher RC, Samulski RJ. Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab’gamma)2 antibody. Nat Biotechnol 1999;17(2):181-6
  • Arnold GS, Sasser AK, Stachler MD, Bartlett JS. Metabolic biotinylation provides a unique platform for the purification and targeting of multiple AAV vector serotypes. Mol Ther 2006;14(1):97-106
  • Ponnazhagan S, Mahendra G, Kumar S, et al. Conjugate-based targeting of recombinant adeno-associated virus type 2 vectors by using avidin-linked ligands. J Virol 2002;76(24):12900-7
  • Nonnenmacher M, Weber T. Intracellular transport of recombinant adeno-associated virus vectors. Gene Ther 2012;19(6):649-58
  • Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Mol Ther 2010;18(1):80-6
  • McCarty DM, Monahan PE, Samulski RJ. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther 2001;8(16):1248-54
  • Martino AT, Suzuki M, Markusic DM, et al. The genome of self-complementary adeno-associated viral vectors increases Toll-like receptor 9-dependent innate immune responses in the liver. Blood 2011;117(24):6459-68
  • Xu Z, Ye J, Zhang A, et al. Gene Therapy for Hemophilia B with liver-specific element mediated by Rep-RBE site-specific integration system. J Cardiovasc Pharmacol 2015;65(2):153-9
  • Chuah MK, Petrus I, De Bleser P, et al. Liver-specific transcriptional modules identified by genome-wide in silico analysis enable efficient gene therapy in mice and non-human primates. Mol Ther 2014;22(9):1605-13
  • Flotte TR, Afione SA, Solow R, et al. Expression of the cystic fibrosis transmembrane conductance regulator from a novel adeno-associated virus promoter. J Biol Chem 1993;268(5):3781-90
  • Ling C, Wang Y, Lu Y, et al. Enhanced transgene expression from single-stranded D-sequence-substituted recombinant AAV vectors in human cell lines in vitro and in murine hepatocytes in vivo. J Virol 2015;89(2):952-61
  • Somia N, Verma IM. Gene therapy: trials and tribulations. Nat Rev Genet 2000;1(2):91-9
  • Vandenberghe LH, Bell P, Maguire AM, et al. Dosage thresholds for AAV2 and AAV8 photoreceptor gene therapy in monkey. Sci Transl Med 2011;3(88):88ra54
  • Black A, Vasireddy V, Chung DC, et al. Adeno-associated virus 8-mediated gene therapy for choroideremia: preclinical studies in in vitro and in vivo models. J Gene Med 2014;16(5-6):122-30
  • MacLaren RE, Groppe M, Barnard AR, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 2014;383(9923):1129-37
  • Jacobson SG, Cideciyan AV, Ratnakaram R, et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 2012;130(1):9-24
  • Molday LL, Djajadi H, Yan P, et al. RD3 gene delivery restores guanylate cyclase localization and rescues photoreceptors in the Rd3 mouse model of Leber congenital amaurosis 12. Hum Mol Genet 2013;22(19):3894-905
  • Ku CA, Chiodo VA, Boye SL, et al. Gene therapy using self-complementary Y733F capsid mutant AAV2/8 restores vision in a model of early onset Leber congenital amaurosis. Hum Mol Genet 2011;20(23):4569-81
  • Smith AJ, Schlichtenbrede FC, Tschernutter M, et al. AAV-Mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol Ther 2003;8(2):188-95
  • Palfi A, Millington-Ward S, Chadderton N, et al. Adeno-associated virus-mediated rhodopsin replacement provides therapeutic benefit in mice with a targeted disruption of the rhodopsin gene. Hum Gene Ther 2010;21(3):311-23
  • Jiang L, Frederick JM, Baehr W. RNA interference gene therapy in dominant retinitis pigmentosa and cone-rod dystrophy mouse models caused by GCAP1 mutations. Front Mol Neurosci 2014;7:25
  • Beltran WA, Cideciyan AV, Lewin AS, et al. Gene augmentation for X-linked retinitis pigmentosa caused by mutations in RPGR. Cold Spring Harb Persp Med 2014;5(2):a017392
  • Ardeljan D, Wang Y, Park S, et al. Interleukin-17 retinotoxicity is prevented by gene transfer of a soluble interleukin-17 receptor acting as a cytokine blocker: implications for age-related macular degeneration. PLoS ONE 2014;9(4):e95900
  • Maclachlan TK, Lukason M, Collins M, et al. Preclinical safety evaluation of AAV2-sFLT01- a gene therapy for age-related macular degeneration. Mol Ther 2011;19(2):326-34
  • Meyer K, Ferraiuolo L, Schmelzer L, et al. Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA - a dose response study in mice and nonhuman primates. Mol Ther 2015;23(3):477-87
  • Little D, Valori CF, Mutsaers CA, et al. PTEN depletion decreases disease severity and modestly prolongs survival in a mouse model of spinal muscular atrophy. Mol Ther 2015;23(2):270-7
  • Lee NC, Chien YH, Hu MH, et al. Treatment of congenital neurotransmitter deficiencies by intracerebral ventricular injection of an adeno-associated virus serotype 9 vector. Hum Gene Ther 2014;25(3):189-98
  • Muramatsu S, Fujimoto K, Kato S, et al. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 2010;18(9):1731-5
  • Cederfjall E, Broom L, Kirik D. Controlled striatal DOPA production from a gene delivery system in a rodent model of Parkinson’s disease. Mol Ther 2015. [ Epub ahead of print]
  • Gholizadeh S, Arsenault J, Xuan IC, et al. Reduced phenotypic severity following adeno-associated virus-mediated FMR1 gene delivery in fragile x mice. Neuropsychopharmacology 2014;39(13):3100-11
  • Perdomini M, Belbellaa B, Monassier L, et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med 2014;20(5):542-7
  • Batista AR, Gianni D, Ventosa M, et al. Gene therapy approach to FAP: in vivo influence of T119M in TTR deposition in a transgenic V30M mouse model. Gene Ther 2014;21(12):1041-50
  • Stanek LM, Sardi SP, Mastis B, et al. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther 2014;25(5):461-74
  • Miyake N, Miyake K, Asakawa N, et al. Long-term correction of biochemical and neurological abnormalities in MLD mice model by neonatal systemic injection of an AAV serotype 9 vector. Gene Ther 2014;21(4):427-33
  • Piguet F, Sondhi D, Piraud M, et al. Correction of brain oligodendrocytes by AAVrh.10 intracerebral gene therapy in metachromatic leukodystrophy mice. Hum Gene Ther 2012;23(8):903-14
  • Hinderer C, Bell P, Gurda BL, et al. Liver-directed gene therapy corrects cardiovascular lesions in feline mucopolysaccharidosis type I. Proc Natl Acad Sci USA 2014;111(41):14894-9
  • Ferla R, Claudiani P, Cotugno G, et al. Similar therapeutic efficacy between a single administration of gene therapy and multiple administrations of recombinant enzyme in a mouse model of lysosomal storage disease. Hum Gene Ther 2014;25(7):609-18
  • Han SO, Li S, Brooks ED, et al. Enhanced efficacy from gene therapy in Pompe disease using co-receptor blockade. Hum Gene Ther 2015;26(1):26-35
  • Smith BK, Collins SW, Conlon TJ, et al. Phase I/II trial of adeno-associated virus-mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes. Hum Gene Ther 2013;24(6):630-40
  • Liu J, Wallace LM, Garwick-Coppens SE, et al. RNAi-mediated gene silencing of mutant myotilin improves myopathy in LGMD1A mice. Mol Ther Nucleic Acids 2014;3:e160
  • Mendell JR, Rodino-Klapac LR, Rosales XQ, et al. Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol 2010;68(5):629-38
  • Arimura S, Okada T, Tezuka T, et al. Neuromuscular disease. DOK7 gene therapy benefits mouse models of diseases characterized by defects in the neuromuscular junction. Science 2014;345(6203):1505-8
  • Le Guiner C, Montus M, Servais L, et al. Forelimb treatment in a large cohort of dystrophic dogs supports delivery of a recombinant AAV for exon skipping in duchenne patients. Mol Ther 2014;22(11):1923-35
  • Bowles DE, McPhee SW, Li C, et al. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther 2012;20(2):443-55
  • Mendell JR, Sahenk Z, Malik V, et al. A Phase 1/2a follistatin gene therapy trial for Becker muscular dystrophy. Mol Ther 2015;23(1):192-201
  • Ying L, Matabosch X, Serra M, et al. Biochemical and physiological improvement in a mouse model of smith-lemli-opitz syndrome (SLOS) following gene transfer with AAV vectors. Mol Genet Metabol Rep 2014;1:103-13
  • Ferreira V, Twisk J, Kwikkers K, et al. Immune responses to intramuscular administration of alipogene tiparvovec (AAV1-LPL(S447X)) in a phase II clinical trial of lipoprotein lipase deficiency gene therapy. Hum Gene Ther 2014;25(3):180-8
  • Mueller C, Chulay JD, Trapnell BC, et al. Human Treg responses allow sustained recombinant adeno-associated virus-mediated transgene expression. J Clin Invest 2013;123(12):5310-18
  • Flotte TR, Trapnell BC, Humphries M, et al. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing alpha1-antitrypsin: interim results. Hum Gene Ther 2011;22(10):1239-47
  • Nathwani AC, Reiss UM, Tuddenham EG, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 2014;371(21):1994-2004
  • Cao Z, Zheng P, Lin Y. A comparative study of hFIX expression mediated by rAAV8 and rAAV1 administrated intramuscularly. Cytotherapy 2007;9(6):593-9
  • Monahan PE, Sun J, Gui T, et al. Employing a gain-of-function factor IX variant R338L to advance the efficacy and safety of hemophilia B human gene therapy: Preclinical evaluation supporting an ongoing AAV clinical trial. Hum Gene Ther 2015;26(2):69-81
  • Yagi H, Ogura T, Mizukami H, et al. Complete restoration of phenylalanine oxidation in phenylketonuria mouse by a self-complementary adeno-associated virus vector. J Gene Med 2011;13(2):114-22
  • Weinstein DA, Correia CE, Conlon T, et al. Adeno-associated virus-mediated correction of a canine model of glycogen storage disease type Ia. Hum Gene Ther 2010;21(7):903-10
  • Keeler AM, Conlon T, Walter G, et al. Long-term correction of very long-chain acyl-coA dehydrogenase deficiency in mice using AAV9 gene therapy. Mol Ther 2012;20(6):1131-8
  • Platt RJ, Chen S, Zhou Y, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 2014;159(2):440-55
  • Barzel A, Paulk NK, Shi Y, et al. Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature 2015;517(7534):360-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.