148
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Towards targeted therapy for Angelman syndrome

&
Pages 317-325 | Received 16 Nov 2015, Accepted 23 Dec 2015, Published online: 06 Feb 2016

Bibliography

  • Williams CA, Driscoll DJ, Dagli AI. Clinical and genetic aspects of Angelman syndrome. Genet Med. 2010;12(7):385–395.
  • Clayton-Smith J, Laan L. Angelman syndrome: a review of the clinical and genetic aspects. J Med Genet. 2003;40(2):87–95.
  • Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet. 1997;15(1):70–73.
  • Matsuura T, Sutcliffe JS, Fang P, et al. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet. 1997;15(1):74–77.
  • Buiting K, Clayton-Smith J, Driscoll DJ, et al. Clinical utility gene card for: Angelman syndrome. Eur J Hum Genet. 2015;23(2). DOI:10.1038/ejhg.2014.93.
  • Jiang Y-H, Armstrong D, Albrecht U, et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron. 1998;21(4):799–811.
  • Gustin RM, Bichell TJ, Bubser M, et al. Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome. Neurobiol Dis. 2010;39(3):283–291.
  • Daily J, Smith AG, Weeber EJ. Spatial and temporal silencing of the human maternal UBE3A gene. Eur J Paediatr Neurol. 2012;16(6):587–591.
  • Abeliovich A, Paylor R, Chen C, et al. PKCγ mutant mice exhibit mild deficits in spatial and contextual learning. Cell. 1993;75(7):1263–1271.
  • Bach ME, Hawkins RD, Osman M, et al. Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell. 1995;81(6):905–915.
  • Crawley JN, Belknap JK, Collins A, et al. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology. 1997;132(2):107–124.
  • Weeber EJ, Jiang Y-H, Elgersma Y, et al. Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J Neuroscience. 2003;23(7):2634–2644.
  • Van Woerden GM, Harris KD, Hojjati MR, et al. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation. Nat Neurosci. 2007;10(3):280–282.
  • Kaphzan H, Buffington SA, Jung JI, et al. Alterations in intrinsic membrane properties and the axon initial segment in a mouse model of Angelman syndrome. J Neurosci. 2011;31(48):17637–17648.
  • Kaphzan H, Buffington SA, Ramaraj AB, et al. Genetic reduction of the α1 subunit of Na/K-ATPase corrects multiple hippocampal phenotypes in Angelman syndrome. Cell Rep. 2013;4(3):405–412.
  • Shonesy BC, Jalan-Sakrikar N, Cavener VS, et al. CaMKII: a molecular substrate for synaptic plasticity and memory. Prog Mol Biol Transl Sci. 2014;122:61–87.
  • Muller D, De Roo M, Nikonenko I. Activity-mediated structural plasticity of dendritic spines. In: Pickel VM, Segal M, editors. Synapse: structure and function. New York, NY: Elsevier Science; 2013. p. 377.
  • Dindot SV, Antalffy BA, Bhattacharjee MB, et al. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet. 2008;17(1):111–118.
  • Arai A, Kessler M. Pharmacology of ampakine modulators: from AMPA receptors to synapses and behavior. Curr Drug Targets. 2007;8(5):583–602.
  • Lynch G, Rex CS, Chen LY, et al. The substrates of memory: defects, treatments, and enhancement. Eur J Pharmacol. 2008;585(1):2–13.
  • Simmons DA, Rex CS, Palmer L, et al. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc Natl Acad Sci. 2009;106(12):4906–4911.
  • Kramár EA, Chen LY, Lauterborn JC, et al. BDNF upregulation rescues synaptic plasticity in middle-aged ovariectomized rats. Neurobiol Aging. 2012;33(4):708–719.
  • Baudry M, Kramar E, Xu X, et al. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Neurobiol Dis. 2012;47(2):210–215.
  • Grieco JC, Ciarlone SL, Gieron-Korthals M, et al. An open-label pilot trial of minocycline in children as a treatment for Angelman syndrome. BMC Neurol. 2014;14(1):232.
  • Hiesberger T, Trommsdorff M, Howell BW, et al. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron. 1999 Oct;24(2):481–489.
  • Strasser V, Fasching D, Hauser C, et al. Receptor clustering is involved in Reelin signaling. Mol Cell Biol. 2004 Feb;24(3):1378–1386.
  • Chen Y, Beffert U, Ertunc M, et al. Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci. 2005 Sep 7;25(36):8209–8216.
  • Beffert U, Weeber EJ, Morfini G, et al. Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J Neurosci. 2004 Feb 25;24(8):1897–1906.
  • Beffert U, Morfini G, Bock HH, et al. Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J Biol Chem. 2002 Dec 20;277(51):49958–49964.
  • Herz J, Chen Y. Reelin, lipoprotein receptors and synaptic plasticity. Nat Reviews Neurosci. 2006 Nov;7(11):850–859.
  • Weeber EJ, Beffert U, Jones C, et al. Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem. 2002 Oct 18;277(42):39944–39952.
  • Qiu S, Weeber EJ. Reelin signaling facilitates maturation of CA1 glutamatergic synapses. J Neurophysiol. 2007 Mar;97(3):2312–2321.
  • Qiu S, Zhao LF, Korwek KM, et al. Differential reelin-induced enhancement of NMDA and AMPA receptor activity in the adult hippocampus. J Neurosci. 2006 Dec 13;26(50):12943–12955.
  • Niu S, Yabut O, D’Arcangelo G. The Reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J Neurosci. 2008 Oct 8;28(41):10339–10348.
  • Niu S, Renfro A, Quattrocchi CC, et al. Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron. 2004 Jan 8;41(1):71–84.
  • Rogers JT, Rusiana I, Trotter J, et al. Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density. Learn Memory. 2011;18(9):558–564.
  • Hethorn WR, Ciarlone SL, Filonova I, et al. Reelin supplementation recovers synaptic plasticity and cognitive deficits in a mouse model for Angelman syndrome. Eur J Neurosci. 2015;41(10):1372–1380.
  • Bailus BJ, Segal DJ. The prospect of molecular therapy for Angelman syndrome and other monogenic neurologic disorders. BMC Neurosci. 2014;15(1):76.
  • Pelc K, Boyd SG, Cheron G, et al. Epilepsy in Angelman syndrome. Seizure. 2008;17(3):211–217.
  • Daily JL, Nash K, Jinwal U, et al. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome. PLoS One. 2011;6(12):e27221.
  • Silva-Santos S, Van Woerden GM, Bruinsma CF, et al. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model. J Clin Invest. 2015;125(5):2069–2076.
  • Peters SU, Bird LM, Kimonis V, et al. Double‐blind therapeutic trial in Angelman syndrome using betaine and folic acid. Am J Med Genet. 2010;152A(8):1994–2001.
  • Bird LM, Tan WH, Bacino CA, et al. A therapeutic trial of pro‐methylation dietary supplements in Angelman syndrome. Am J Med Genet. 2011;155(12):2956–2963.
  • Jiang Y-H, Lev-Lehman E, Bressler J, et al. Genetics of Angelman syndrome. Am J Hum Genet. 1999;65(1):1–6.
  • Chamberlain SJ, Lalande M. Angelman syndrome, a genomic imprinting disorder of the brain. J Neurosci. 2010;30(30):9958–9963.
  • Huang H-S, Allen JA, Mabb AM, et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature. 2012;481(7380):185–189.
  • Meng L, Ward AJ, Chun S, et al. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature. 2015;518(7539):409–412.
  • Miller TM, Pestronk A, David W, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 2013;12(5):435–442.
  • Kordasiewicz HB, Stanek LM, Wancewicz EV, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012;74(6):1031–1044.
  • Jay V, Becker LE, Chan F, et al. Puppet-like syndrome of Angelman: a pathologic and neurochemical study. Neurology. 1991;41(3):416–422.
  • Chéron G, Servais L, Wagstaff J, et al. Fast cerebellar oscillation associated with ataxia in a mouse model of Angelman syndrome. Neuroscience. 2005;130(3):631–637.
  • Egawa K, Kitagawa K, Inoue K, et al. Decreased tonic inhibition in cerebellar granule cells causes motor dysfunction in a mouse model of Angelman syndrome. Sci Transl Med. 2012;4(163):163ra57–63ra57.
  • Wallace ML, Burette AC, Weinberg RJ, et al. Maternal loss of Ube3a produces an excitatory/inhibitory imbalance through neuron type-specific synaptic defects. Neuron. 2012;74(5):793–800.
  • Valente KD, Koiffmann CP, Fridman C, et al. Epilepsy in patients with Angelman syndrome caused by deletion of the chromosome 15q11-13. Arch Neurol. 2006;63(1):122.
  • Thibert RL, Conant KD, Braun EK, et al. Epilepsy in Angelman syndrome: A questionnaire‐based assessment of the natural history and current treatment options. Epilepsia. 2009;50(11):2369–2376.
  • Hermann BP, Seidenberg M, Bell B. The neurodevelopmental impact of childhood onset temporal lobe epilepsy on brain structure and function and the risk of progressive cognitive effects. Prog Brain Res. 2002;135:429–438.
  • Sutula T, Lauersdorf S, Lynch M, et al. Deficits in radial arm maze performance in kindled rats: evidence for long-lasting memory dysfunction induced by repeated brief seizures. J Neuroscience. 1995;15(12):8295–8301.
  • Aldenkamp A, Arends J. The relative influence of epileptic EEG discharges, short nonconvulsive seizures, and type of epilepsy on cognitive function. Epilepsia. 2004;45(1):54–63.
  • Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1(2):848–858.
  • D’Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Rev. 2001;36(1):60–90.
  • Laan LA, Renier WO, Arts WFM, et al. Evolution of epilepsy and EEG findings in Angelman syndrome. Epilepsia. 1997;38(2):195–199.
  • Crawley JN. Behavioral phenotyping strategies for mutant mice. Neuron. 2008;57(6):809–818.
  • Crusio WE. Behavioral genetics of the mouse: volume 1, genetics of behavioral phenotypes. Cambridge: Cambridge University Press; 2013.
  • Huang H-S, Burns AJ, Nonneman RJ, et al. Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. Behav Brain Res. 2013;243:79–90.
  • McLin JP, Steward O. Comparison of seizure phenotype and neurodegeneration induced by systemic kainic acid in inbred, outbred, and hybrid mouse strains. Eur J Neurosci. 2006;24(8):2191–2202.
  • Schauwecker PE. Seizure-induced neuronal death is associated with induction of c-Jun N-terminal kinase and is dependent on genetic background. Brain Res. 2000;884(1):116–128.
  • Bruinsma CF, Schonewille M, Gao Z, et al. Dissociation of locomotor and cerebellar deficits in a murine Angelman syndrome model. J Clin Invest. 2015;125(11):4305–4315.
  • Sun J, Liu Y, Moreno S, et al. Imbalanced mechanistic target of rapamycin C1 and C2 activity in the cerebellum of Angelman syndrome mice impairs motor function. J Neurosci. 2015;35(11):4706–4718.
  • Cheron G, Márquez-Ruiz J, Kishino T, et al. Disruption of the LTD dialogue between the cerebellum and the cortex in Angelman syndrome model: a timing hypothesis. Front Syst Neurosci. 2014;8(221):1–9.
  • Greer PL, Hanayama R, Bloodgood BL, et al. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell. 2010;140(5):704–716.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.