199
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Drug development for mitochondrial disease: recent progress, current challenges, and future prospects

, , , &

Bibliography

  • Turnbull DM, Rustin P. Genetic and biochemical intricacy shapes mitochondrial cytopathies. Neurobiol Dis. 2015. pii: S0969-9961(15)00023-6. doi:10.1016/j.nbd.2015.02.003. [Epub ahead of print]
  • Luft R, Ikkos D, Palmieri G, et al. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest. 1962;41:1776–1804.
  • Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242(4884):1427–1430.
  • Wallace DC, Zheng XX, Lott MT, et al. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell. 1988;55(4):601–610.
  • Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988;331(6158):717–719.
  • Rustin P, Chretien D, Bourgeron T, et al. Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta. 1994;228(1):35–51.
  • Bourgeron T, Chretien D, Poggi-Bach J, et al. Mutation of the fumarase gene in two siblings with progressive encephalopathy and fumarase deficiency. J Clin Invest. 1994;93(6):2514–2518.
  • Bourgeron T, Rustin P, Chretien D, et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet. 1995;11(2):144–149.
  • Tyler D. The mitochondrion in health and diseases. New York (NY): VCH Publishers, Inc; 1992.
  • MITOMAP. A human mitochondrial genome database. 2007. Available from: http://wwwmitomaporg.
  • Bird MJ, Thorburn DR, Frazier AE. Modelling biochemical features of mitochondrial neuropathology. Biochim Biophys Acta. 2014;1840(4):1380–1392.
  • Sullivan LB, Gui DY, Hosios AM, et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell. 2015;162(3):552–563.
  • Birsoy K, Wang T, Chen WW, et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell. 2015;162(3):540–551.
  • Barrientos A, Korr D, Tzagoloff A. Shy1p is necessary for full expression of mitochondrial COX1 in the yeast model of Leigh’s syndrome. EMBO J. 2002;21(1–2):43–52.
  • Hamalainen RH, Suomalainen A. Generation and characterization of induced pluripotent stem cells from patients with mtDNA mutations. Methods Mol Biol. 2016;1353:65–75.
  • Fernandez-Ayala DJ, Sanz A, Vartiainen S, et al. Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation. Cell Metab. 2009;9(5):449–460.
  • Larsson NG, Rustin P. Animal models for respiratory chain disease. Trends Mol Med. 2001;7(12):578–581.
  • Khan NA, Auranen M, Paetau I, et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med. 2014;6(6):721–731.
  • Llewellyn KJ, Nalbandian A, Gomez A, et al. Administration of CoQ10 analogue ameliorates dysfunction of the mitochondrial respiratory chain in a mouse model of Angelman syndrome. Neurobiol Dis. 2015;76:77–86.
  • Johnson SC, Yanos ME, Kayser EB, et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013;342(6165):1524–1528.
  • Rahman S. Emerging aspects of treatment in mitochondrial disorders. J Inherit Metab Dis. 2015;38(4):641–653.
  • Kerr DS. Review of clinical trials for mitochondrial disorders: 1997–2012. Neurotherapeutics. 2013;10(2):307–319.
  • Tischner C, Wenz T. Keep the fire burning: current avenues in the quest of treating mitochondrial disorders. Mitochondrion. 2015;24:32–49.
  • Rice J. Animal models: not close enough. Nature. 2012;484(7393):S9.
  • Benit P, El-Khoury R, Schiff M, et al. Genetic background influences mitochondrial function: modeling mitochondrial disease for therapeutic development. Trends Mol Med. 2010;16(5):210–217.
  • Foury F, Kucej M. Yeast mitochondrial biogenesis: a model system for humans? Curr Opin Chem Biol. 2002;6(1):106–111.
  • Tsang WY, Lemire BD. The role of mitochondria in the life of the nematode, Caenorhabditis elegans. Biochim Biophys Acta. 2003;1638(2):91–105.
  • Fernandez-Moreno MA, Farr CL, Kaguni LS, et al. Drosophila melanogaster as a model system to study mitochondrial biology. Methods Mol Biol. 2007;372:33–49.
  • Steele SL, Prykhozhij SV, Berman JN. Zebrafish as a model system for mitochondrial biology and diseases. Transl Res. 2014;163(2):79–98.
  • Hamalainen RH, Manninen T, Koivumaki H, et al. Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model. Proc Natl Acad Sci U S A. 2013;110(38):E3622–E3630.
  • Ma H, Folmes CD, Wu J, et al. Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature. 2015;524(7564):234–238.
  • Bourgeron T, Chretien D, Amati P, et al. Expression of respiratory chain deficiencies in human cultured cells. Neuromuscul Disord. 1993;3(5–6):605–608.
  • Bénit P, Goncalves S, Dassa EP, et al. The variability of the Harlequin mouse phenotype resembles that of human mitochondrial-complex I-deficiency syndromes. Plos One. 2008;3:e3208.
  • Geromel V, Darin N, Chretien D, et al. Coenzyme Q(10) and idebenone in the therapy of respiratory chain diseases: rationale and comparative benefits. Mol Genet Metab. 2002;77(1–2):21–30.
  • Rotig A, de Lonlay P, Chretien D, et al. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet. 1997;17(2):215–217.
  • Rustin P, Rotig A, Munnich A, et al. Heart hypertrophy and function are improved by idebenone in Friedreich’s ataxia. Free Radic Res. 2002;36(4):467–469.
  • Parkinson MH, Schulz JB, Giunti P. Co-enzyme Q10 and idebenone use in Friedreich’s ataxia. J Neurochem. 2013;126(Suppl 1):125–141.
  • Giovanni DS, Valeria P, Bahaa F, et al. Monitoring cardiac function during idebenone therapy in Friedreich’s ataxia. Curr Pharm Des. 2015;21(4):479–483.
  • Klopstock T, Metz G, Yu-Wai-Man P, et al. Persistence of the treatment effect of idebenone in Leber’s hereditary optic neuropathy. Brain. 2013;136(Pt 2):e230.
  • Sabet-Peyman EJ, Khaderi KR, Sadun AA. Is Leber hereditary optic neuropathy treatable? Encouraging results with idebenone in both prospective and retrospective trials and an illustrative case. J Neuroophthalmol. 2012;32(1):54–57.
  • Meier T, Perlman SL, Rummey C, et al. Assessment of neurological efficacy of idebenone in pediatric patients with Friedreich’s ataxia: data from a 6-month controlled study followed by a 12-month open-label extension study. J Neurol. 2012;259(2):284–291.
  • Lynch DR, Perlman SL, Meier T. A phase 3, double-blind, placebo-controlled trial of idebenone in friedreich ataxia. Arch Neurol. 2010;67(8):941–947.
  • Lagedrost SJ, Sutton MS, Cohen MS, et al. Idebenone in Friedreich ataxia cardiomyopathy-results from a 6-month phase III study (IONIA). Am Heart J. 2011;161(3):639–645 e1.
  • Enns GM. Treatment of mitochondrial disorders: antioxidants and beyond. J Child Neurol. 2014;29(9):1235–1240.
  • Klopstock T, Yu-Wai-Man P, Dimitriadis K, et al. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain. 2011;134(9):2677–2686.
  • Meyerson C, Van Stavern G, McClelland C. Leber hereditary optic neuropathy: current perspectives. Clin Ophthalmol. 2015;9:1165–1176.
  • Giordano C, Carelli V. Reply: mitochondrial DNA copy number differentiates the Leber’s hereditary optic neuropathy affected individuals from the unaffected mutation carriers. Brain. 2015. pii: awv217. [Epub ahead of print]
  • Lightowlers RN, Chrzanowska-Lightowlers ZM. Salvaging hope: is increasing NAD(+) a key to treating mitochondrial myopathy? EMBO Mol Med. 2014;6(6):705–707.
  • Cerutti R, Pirinen E, Lamperti C, et al. NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 2014;19(6):1042–1049.
  • Komen JC, Thorburn DR. Turn up the power – pharmacological activation of mitochondrial biogenesis in mouse models. Br J Pharmacol. 2014;171(8):1818–1836.
  • Kumar S, Lombard DB. Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid Redox Signal. 2015;22(12):1060–1077.
  • Prakash A, Kumar A. Pioglitazone alleviates the mitochondrial apoptotic pathway and mito-oxidative damage in the d-galactose-induced mouse model. Clin Exp Pharmacol Physiol. 2013;40(9):644–651.
  • Fan K, Li X, Cao Y, et al. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer Drugs. 2015;26(8):813–823.
  • Cwerman-Thibault H, Augustin S, Ellouze S, et al. Gene therapy for mitochondrial diseases: Leber Hereditary Optic Neuropathy as the first candidate for a clinical trial. C R Biol. 2014;337(3):193–206.
  • Cabezas-Opazo FA, Vergara-Pulgar K, Perez MJ, et al. Mitochondrial dysfunction contributes to the pathogenesis of alzheimer’s disease. Oxid Med Cell Longev. 2015;2015:509654.
  • Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85(2):257–273.
  • Koilkonda R, Yu H, Talla V, et al. LHON gene therapy vector prevents visual loss and optic neuropathy induced by G11778A mutant mitochondrial DNA: biodistribution and toxicology profile. Invest Ophthalmol Vis Sci. 2014;55(12):7739–7753.
  • Cwerman-Thibault H, Augustin S, Lechauve C, et al. Nuclear expression of mitochondrial ND4 leads to the protein assembling in complex I and prevents optic atrophy and visual loss. Mol Ther Methods Clin Dev. 2015;2:15003.
  • Viscomi C, Bottani E, Civiletto G, et al. In vivo correction of COX deficiency by activation of the AMPK/PGC-1alpha axis. Cell Metab. 2011;14(1):80–90.
  • El-Hattab AW, Adesina AM, Jones J, et al. MELAS syndrome: clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab. 2015;116(1–2):4–12.
  • Noe N, Dillon L, Lellek V, et al. Bezafibrate improves mitochondrial function in the CNS of a mouse model of mitochondrial encephalopathy. Mitochondrion. 2013;13(5):417–426.
  • Tonazzi A, Giangregorio N, Console L, et al. Mitochondrial carnitine/acylcarnitine translocase: insights in structure/ function relationships. Basis for drug therapy and side effects prediction. Mini Rev Med Chem. 2015;15(5):396–405.
  • Roestenberg P, Manjeri GR, Valsecchi F, et al. Pharmacological targeting of mitochondrial complex I deficiency: the cellular level and beyond. Mitochondrion. 2012;12(1):57–65.
  • Bresolin N, Bet L, Ferrante C, et al. Immunological and biochemical studies and pilot therapeutic trial with ubidecarenone in Kearns-Sayre patients. Adv Neurol. 1988;48:239–256.
  • Valero T. Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Des. 2014;20(35):5507–5509.
  • Burlina AB, Milanesi O, Biban P, et al. Beneficial effect of sodium dichloroacetate in muscle cytochrome C oxidase deficiency. Eur J Pediatr. 1993;152(6):537.
  • Kaufmann P, Engelstad K, Wei Y, et al. Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial. Neurology. 2006;66(3):324–330.
  • Gano LB, Patel M, Rho JM. Ketogenic diets, mitochondria, and neurological diseases. J Lipid Res. 2014;55(11):2211–2228.
  • Arveladze G, Geladze N, Khachapuridze N, et al. [Mitochondrial dysfunction: modern aspects of therapy (Review)]. Georgian Med News. 2015;244–245:78–84.
  • Martinelli D, Catteruccia M, Piemonte F, et al. EPI-743 reverses the progression of the pediatric mitochondrial disease–genetically defined Leigh syndrome. Mol Genet Metab. 2012;107(3):383–388.
  • Yoshino M, Naka A, Sakamoto Y, et al. Dietary isoflavone daidzein promotes Tfam expression that increases mitochondrial biogenesis in C2C12 muscle cells. J Nutr Biochem. 2015;26(11):1193–1199.
  • Kim HK, Mendonca KM, Howson PA, et al. The link between mitochondrial complex I and brain-derived neurotrophic factor in SH-SY5Y cells – the potential of JNX1001 as a therapeutic agent. Eur J Pharmacol. 2015;764:379–384.
  • Park S, Karunakaran U, Jeoung NH, et al. Physiological effect and therapeutic application of alpha lipoic acid. Curr Med Chem. 2014;21(32):3636–3645.
  • Ferrannini E. The target of metformin in type 2 diabetes. N Engl J Med. 2014;371(16):1547–1548.
  • Kelso GF, Porteous CM, Coulter CV, et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem. 2001;276(7):4588–4596.
  • Dare AJ, Bolton EA, Pettigrew GJ, et al. Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol. 2015;5:163–168.
  • Qi X, Hosoi T, Okuma Y, et al. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol. 2004;66(4):899–908.
  • Shukry M, Kamal T, Ali R, et al. Pinacidil and levamisole prevent glutamate-induced death of hippocampal neuronal cells through reducing ROS production. Neurol Res. 2015;17:1743132815Y0000000077.
  • Wessels B, Ciapaite J, van den Broek NM, et al. Pioglitazone treatment restores in vivo muscle oxidative capacity in a rat model of diabetes. Diabetes Obes Metab. 2015;17(1):52–60.
  • Li P, Wang X, Zhao M, et al. Polydatin protects hepatocytes against mitochondrial injury in acute severe hemorrhagic shock via SIRT1-SOD2 pathway. Expert Opin Ther Targets. 2015;19(7):997–1010.
  • Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127(6):1109–1122.
  • Gibellini L, Bianchini E, De Biasi S, et al. Natural compounds modulating mitochondrial functions. Evid Based Complement Alternat Med. 2015;2015:527209.
  • He H, Tao H, Xiong H, et al. Rosiglitazone causes cardiotoxicity via peroxisome proliferator-activated receptor gamma-independent mitochondrial oxidative stress in mouse hearts. Toxicol Sci. 2014;138(2):468–481.
  • Demyanenko IA, Popova EN, Zakharova VV, et al. Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice. Aging (Albany NY). 2015;7(7):475–485.
  • Bowden SA, Patel HP, Beebe A, et al. Successful medical therapy for hypophosphatemic rickets due to mitochondrial complex I deficiency induced de Toni-Debre-Fanconi syndrome. Case Rep Pediatr. 2013;2013:354314.
  • Marfo K, Garala M, Kvetan V, et al. Use of Tris-hydroxymethyl aminomethane in severe lactic acidosis due to highly active antiretroviral therapy: a case report. J Clin Pharm Ther. 2009;34(1):119–123.
  • Lee SH, Kim KR, Ryu SY, et al. Impaired short-term plasticity in mossy fiber synapses caused by mitochondrial dysfunction of dentate granule cells is the earliest synaptic deficit in a mouse model of Alzheimer’s disease. J Neurosci. 2012;32(17):5953–5963.
  • Ortigoza-Escobar JD, Serrano M, Molero M, et al. Thiamine transporter-2 deficiency: outcome and treatment monitoring. Orphanet J Rare Dis. 2014;9:92.
  • Colombo B, Saraceno L, Comi G. Riboflavin and migraine: the bridge over troubled mitochondria. Neurol Sci. 2014;35(Suppl 1):141–144.
  • McCarty MF, Contreras F. Increasing superoxide production and the labile iron pool in tumor cells may sensitize them to extracellular ascorbate. Front Oncol. 2014;4:249.
  • Ajith TA, Padmajanair G. Mitochondrial pharmaceutics: A new therapeutic strategy to ameliorate oxidative stress in Alzheimer’s disease. Curr Aging Sci. 2015;8(3):235–240.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.