49
Views
38
CrossRef citations to date
0
Altmetric
Review

Recent advances in the field of tubulin polymerization inhibitors

Pages 695-708 | Published online: 10 Jan 2014

References

  • Jordan MA, Hadfield JA, Lawrence NJ, McGown AT Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res. Rev 18, 259–296 (1998).
  • Li Q, Sham HL, Rosenberg SH. Antimitotic agents. Ann. Rep. Med. Chem. 34, 139–148 (1999).
  • von Angerer E. New inhibitors of tubulin polymerisation. Exp. Opin. Ther. Patents 9, 1069–1081 (1999).
  • •Thorough and comprehensive review, covers the patent literature of tubulin polymerization inhibitors for 1996-1999.
  • Jimenez-Barbero J, Amat-Guerri F, Snyder JP. The solid state, solution and tubulin-bound conformations of agents that promote microtubule stabilization. CUIT: Med. Chem. AntiCancer Agents2, 91–122 (2002).
  • Rowinsky EK, Donehower RC. The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics. Pharmacol The]: 52, 35–84 (1992).
  • Dumontet C, Sikic BI. Mechanism of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J. Gun. awl. 3, 1061–1070 (1999).
  • Fardel 0, Lecureur V, Guillouzo A. The P- glycoprotein multidrug transporter. Gen. Pharmacol 27, 1283–1291 (1996).
  • Cole SP, Deeley RG. Multidrug resistance mediated by the ATP-binding cassette transporter protein MRP. Bioessays 20, 931–940 (1998).
  • Hussain M, Wozniak AJ, Edelstein MB. Neurotoxicity of antineoplastic agents. Grit. Rev Oncol Hematol 14, 61–75 (1993).
  • Windebank AJ. Chemotherapeutic neuropathy. Curr. Opin. Neurol 12, 565–571 (1999).
  • Hastie SB. Interactions of colchicine with tubulin. Pharmacol The]: 51, 377–401 (1991).
  • Nogales E, Wolf SG, Downing KH. Structure of the a/I3 tubulin dimer by electron crystallography. Nature. 391, 199–203 (1998).
  • Uckun FM, Mao C, Vassilev AO, Huang H, Jan ST Structure-based design of a novel synthetic spiroketal pyran as a pharmacophore for the marine natural product spongistatin 1. Bioorg. Med. Chem. Lett. 10, 541–545 (2000).
  • Snyder JP, Nettles JH, Cornett B, Downing KH, Nogales E. The binding conformation of taxol in I3-tubulin: a model based on electron crystallographic density. Proc. Natl Acad. Li. USA 98, 5312–5316 (2001).
  • Pettit GR, Singh SB, Hamel E, Lin CM, Alberts DS, Garcia Kendall D. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia 45, 209–211 (1989).
  • Pettit GR, Singh SB, Boyd MR et al Antineoplastic agents. 291. Isolation and synthesis of combretastatins A-4, A-5, and A-6. J. Med. Chem. 38, 1666–1672 (1995).
  • Pettit GR, Rhodes MR. Antineoplastic agents 389. New syntheses of the combretastatin A-4 prodrug. Anticancer Drug Des. 13, 183–191 (1998).
  • Tozer GM, Prise VE, Wilson J et al. Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res. 59, 1626–1634 (1999).
  • Gwaltney SL, Imade HM, Barr KJ et al. Novel sulfonate analogues of combretastatin A-4: potent antimitotic agents. Bioorg. Med Chem. Lett. 11, 871–874 (2001).
  • DUCki S, Forrest R, Hadfield JA etal. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorg. Med. Chem. Lett. 8, 1051–1056 (1998).
  • Lawrence NJ, McGown AT, Ducki S, Hadfield JA. The interaction of chalcones with tubulin. Anti-Cancer Drug Des. 15, 135–141 (2000).
  • Ohsumi K, Hatanaka T, Fujita K et al. Synthesis and antitumor activity of cis-restricted combretastatins: five membered heterocyclic analogues. Bioorg. Med. Chem. Lett. 8, 3153–3158 (1998).
  • Wu-Wong JR, Alder JD, Alder L et al. Identification and characterization of A-105972, an antineoplastic agent. Cancer Res. 61(4), 1486–1492 (2001).
  • Tahir SK, Han EKH, Credo B et al A-204197, a new tubulin binding agent with antimitotic activity in tumor cell lines resistant to known microtubule inhibitors. Cancer Res. 61(14), 5480–5485 (2001).
  • Li Q, Woods KW, Claiborne A et al. Synthesis and biological evaluation of 2-indolyloxazolines as a new class of tubulin polymerization inhibitors. Discovery of A-289099 as an orally active antitumor agent. Bioorg. Med. Chem. Lett. 12, 465–469 (2002).
  • Wang L, Woods KW, Li Q et al. Potent, orally active heterocycle-based combretastatin A-4 analogues: synthesis, structure-activity relationship, pharmacokinetics, and in vivo antitumour activity evaluation. J. Med. Chem. 45, 1697–1711 (2002).
  • ••Interesting report including an orally-active imidazole-based combretastatin derivative.
  • Pinney KG, Bounds AD, Dingeman KM et al. A new anti-tubulin agent containing the benzo [b]thiophene ring system. Bioorg. Med. Chem. Lett. 9, 1081–1086 (1999).
  • Flynn BL, Flynn GP, Hamel E, Jung MK. The synthesis and tubulin binding activity of thiophene-based analogues of combretastatin A-4. Bioorg. Med. Chem. Lett. 11, 2341–2343 (2001).
  • Bacher G, Nickel B, Emig P etal. D-24851, a novel synthetic microtubule inhibitor, exerts curative antitumoral activity in vivo, shows efficiacy toward multidrug-resistant tumor cells, and lacks neurotoxicity. Cancer Res. 61, 392–399 (2001).
  • ••Report on a novel orally-active tubulinpolymerization inhibitor, being efficient against MDR (+) tumors and lacking neurotoxicity.
  • Gastpar R, Goldbrunner M, Marko D, von Angerer E. Methoxy-substituted 3-formy1-2-phenylindoles inhibit tubulin polymerization. J. Med. Chem. 41, 4965–4972 (1998).
  • Medarde M, Ramos AC, Caballero E etal. Synthesis and anti-neoplastic activity of combretastatin analogues: heterocombretastatins. FIR: J. Med. Chem. 33, 71–77 (1998).
  • Medarde M, Ramos AC, Caballero E etal. Synthesis and pharmacological activity of diarylindole derivatives. Cytotoxic agents based on combretastatins. Bioorg. Med. Chem. Lett. 9, 2303–2308 (1999).
  • Mahboobi S, Pongratz H, Hufsky H et al. Synthetic 2-aroylindole derivatives as a new class of potent tubulin-inhibitory, antimitotic agents. J. Med. Chem. 44, 4535–4553 (2001).
  • Gourley M, Williamson JS. Angiogenesis: New targets for the development of anticancer chemotherapies. Curr Pharm. Des 6, 417–439 (2000).
  • Leoni LM, Hamel E, Genini D et al Indanocine, a microtubule-binding indanone and a selective inducer of apoptosis in multidrug-resistant cancer cells. J. Nati Cancer Inst. 92, 217–222 (2000).
  • •Report on a novel tubulin polymerization inhibitor that inhibits the growth of nondividing cells and shows toxicity towards MDR-positive cells.
  • Shih H, Deng L, Carrera CJ, Adachi S, Cottam HB, Carson DA. Rational design, synthesis and structure-activity relationships of antitumor CO -2-benzylidene-l-tetralones and (4-2-benzylidene-1-indanones. Bioorg. Med. Chem. Lett. 10, 487–490 (2000).
  • Uckun FM, Mao C, Jan ST etal. SPIKET and COBRA compounds as novel tubulin modulators with potent anticancer activity. C1117: Opin. Investig Drugs. 1,252-256 (2000). Provides instructive examples for the rational design of tubulin polymerization inhibitors.
  • Uckun FM, Mao C, Jan ST et a/. Spongistatins as tubulin targeting agents. C1117: Pharm. Des. 7, 1291–1296 (2001).
  • Pettit GR, Cichacz ZA, Gao F et al Isolation and structure of spongistatin 1. J. Org. Chem. 58, 1302–1304 (1993).
  • Uckun FM, Mao C, Vassilev AO, Navara CS, Narla RKS, Jan ST A rationally designed anticancer drug targeting a unique binding cavity of tubulin. Bioorg. Med. Chem. Lett. 10, 1015–1018 (2000).
  • Poncet J. The dolastatins, a family of promising antineoplastic agents. C1117: Pharm. Design 5, 139–162 (1999).
  • Bai R, Taylor GF, Schmidt JM et al Interaction of dolastatin 10 with tubulin: induction of aggregation and binding and dissociation reactions. Md. Pharmacol 47, 965–976 (1995).
  • Fotsis T, Zhang, Y, Pepper MS et al The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature 368, 237–239 (1994).
  • Schumacher G, Kataoka M, Roth JA, Mukhopadhyay T Potent antitumor activity of 2-methoxyestradiol in human pancreatic cancer cell lines. Clin. Cancer Res. 5, 493–499 (1999).
  • Cushman M, He HM, Katzenellenbogen JA et at Synthesis of analogs of 2-methoxyestradiol with enhanced inhibitory effects on tubulin polymerization and cancer cell growth. J. Med Chem. 40, 2323–2334 (1997).
  • Wang Z, Yang D, Mohanakrishnan AK et al Synthesis of B-ring homologated estradiol analogues that modulate tubulin polymerization and microtubule stability. J. Med. Chem 43, 2419–2429 (2000).
  • ••Interesting report on synthesis andbiological effects of B-ring expanded steroid derivatives with compounds showing paclitaxel-like properties, while others are similar to colchicine.
  • Verclier-Pinard P, Wang Z, Mohanakrishnan AK, Cushman M, Hamel E. A steroid derivative with paclitaxel-like effects on tubulin polymerization. Md. Pharmacol 57, 568–575 (2000).
  • Gerwick WH, Proteau PJ, Nagle DG, Hamel E, Blokhin A, Slate D. Structure of curacin A, a novel antimitotic, antiproliferative, and brine shrimp toxic natural product from the marine cyanobacterium Lyngbia majuscula. J. Org. Chem 59, 1243–1245 (1994).
  • Blokhin AV, Yoo HD, Geralds RS, Nagle DG, Gerwick WH, Hamel E. Characterization of the interaction of the marine cyanobacterial natural product curacin A with the colchicine site of tubulin and initial structure-activity studies with analogues. Mol Pharmacol 48, 523–531 (1995).
  • Verclier-Pinard P, Sitachitta M, Rossi JV, Sackett DL, Gerwick WH, Hamel E. Biosynthesis and radiolabeled curacin A and its rapid and apparently irreversible binding to the colchicine site of tubulin. Arch. Biochem. Biophys. 370, 51–58 (1999).
  • Kanoh K, Kohno S, Katada J, Takahashi J, Uno I. 0 -Phenylahistin arrests cells in mitosis by inhibiting tubulin polymerization. J. Antibiot. (76 lryo) 52, 134–141 (1999).
  • Kanoh K, Kohno S, Katada J, Takahashi J, Uno I, Hayashi Y. Synthesis and biological activities of phenylahistin derivatives. Bioorg. Med. Chem. 7, 1451–1457 (1999).
  • Legault J, Gaulin JF, Mounetou E et al. Microtubule disruption induced in vivo by alkylation of 13-tubulin by 1 aryl 3 (2 chloroethyl)ureas, a novel class of soft alkylting agents. Cancer Res. 60, 985–992 (2000).
  • Medina JC, Shan B, Beckmann H et al Novel antineoplastic agents with efficacy against multidrug resistant tumor cells. Bioorg. Med. Chem. Lett. 8, 2653–2656 (1998).
  • Shan B, Medina JC, Santha E et al. Selective, covalent modification of beta-tubulin residue Cys-239 by T138067, an antitumor agent with in vivo efficacy against multidrug-resistant tumors. Proc. Nati Acad. Sci. USA 96, 5686–5691 (1999).
  • Combeau C, Provost J, Lancelin F et al RPR112378 and RPR115781: two representatives of a new family of microtubule assembly inhibitors. Md. Pharmacol 57, 553–563 (2000).
  • Hill BT Vinflunine, a second generation novel vinca alkaloid with a distinctive pharmacological profile, now in clinical development and prospects for future mitotic blockers. C1117: Pharm. Des. 7, 1199–1212 (2001).
  • Fumoleau P, Raymond E, Bennouna J et al Phase I trial of vinflunine (L0070) a novel fluorinated vinca alkaloid in patients (pts) with advanced solid malignancies: final results. Proc. Am. Assoc. Cancer Res. 42, 834 (2001).
  • Ngan VK, Bellman K, Panda D, Hill BT, Jordan MA, Wilson L. Novel action of the antitumor drugs vinflunine and vinorelbine on microtubules. Cancer Res. 60, 5045–5051 (2000).
  • Etievant C, Kruczynski A, Barret JM, Tait AS, Kavallaris M, Hill BT Markedly diminished drug resistance-inducing properties of vinflunine (20 ',20 '-difluoro-3 ',4"-dihydrovinorelbine) relative to vinorelbine, identified in murine and human tumour cells in vivo and in vitro. Cancer Chemother. Pharmacol 48, 62–70 (2001).
  • Hill BT, Fiebig HH, Waud WR, Poupo MF, Colpaert F, Kruczynski A. Superior in vivo experimental antitumour activity of vinflunine, relative to vinorelbine, in a panel of human tumour xenografts. Etll: Cancer35, 512–520 (1999).
  • Holwell SE, Hill BT, Bibby MC. Anti-vascular effects of vinflunine in the MAC 15A transplantable adenocarcinoma model. Br. Cancer 84, 290–295 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.