118
Views
13
CrossRef citations to date
0
Altmetric
Special Report

Hitting the bull’s eye: targeting HMGA1 in cancer stem cells

&

References

  • Dick JE. Stem cell concepts renew cancer research. Blood 112, 4793–4807 (2008).
  • McDermott SP, Wicha MS. Targeting breast cancer stem cells. Mol. Oncol. 4, 404–419 (2010).
  • Marjanovic ND, Weinberg RA, Chaffer CL. Cell Plasticity and Heterogeneity in Cancer. Clin. Chem. 59(1), 168–179 (2013).
  • Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21, 283–296 (2012).
  • Koorstra JB, Hustinx SR, Offerhaus GJ, Maitra A. Pancreatic carcinogenesis. Pancreatol. 8(2), 110–125 (2008).
  • Hristov A, Cope L, Di Cello F et al. HMGA1 correlates with advanced tumor grade and decreased survival in pancreatic ductal adenocarcinoma. Mod. Pathol. 23, 98–104 (2010).
  • Gerlinger M, Rowan AJ, Horswell S et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).
  • Gerber JM, Smith DB, Ngwang Bet al.. Clinically relevant population of leukemic CD34+CD38-cells in acute myeloid leukemia. Blood 119(12) 3571– 3577 (2012).
  • Ben-Porath MW, Thomson VJ, Carey Ret al.. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499–507 (2008).
  • Shah SN, Kerr C, Cope L et al. HMGA1 reprograms somatic cells into pluripotent stem cells by inducing stem cell transcriptional networks. PLoS ONE 7(11), e48533 (2012).
  • Belton A, Gabrovsky A, Kyung Bae Y et al. HMGA1 induces intestinal polyposis in transgenic mice and drives tumor progression and stem cell properties in colon cancer cells. PLoS ONE 7(1), e30034 (2012).
  • Shah SN, Cope L, Poh W et al. HMGA1: a master regulator of tumor progression in triple negative breast cancer. PLoS ONE 8(5), e63419 (2013).
  • Reeves R, Beckerbauer L. HMGI/Y proteins: flexible regulators of transcription and chromatin structure. Biochim. Biophys. Acta 1519, 13–29 (2001).
  • Fusco A, Fedele M. Roles of HMGA proteins in cancer. Nat. Rev. Cancer 7, 899–910 (2007).
  • Resar LMS. High mobility group A1 gene: transforming inflammation into cancer? Cancer Res. 70(2), 436–439 (2010).
  • Johnson KR, Lehn DA, Elton TS, Barr PJ, Reeves R. Complete murine cDNA sequence, genomic structure, and tissue expression of the high mobility group protein HMG-I(Y). J. Biol. Chem. 263, 18338–18342 (1988).
  • Friedmann M, Holth LT, Zoghbi HY, Reeves R. Organization, inducible-expression and chromosome localization of the human HMG-I(Y) nonhistone protein gene. Nuc. Acids Res. 21, 4259–4267 (1993).
  • Pedulla ML, Treff NR, Resar LMS, Reeves R. Sequence and analysis of the murine Hmgiy (Hmga1) gene locus. Gene 271, 51–58 (2001).
  • Lund T, Holtlund J, Fredriksen M, Laland SG. On the presence of two new high mobility group-like proteins in HeLa S3 cells. FEBS Lett. 152, 163–167 (1983).
  • Reeves R, Edberg DD, Li Y. Architectural transcription factor HMGI(Y) promotes tumor progression and mesenchymal transition of human epithelial cells. Mol. Cell Biol. 21, 575–594 (2001).
  • Martinez Hoyos J, Fedele M, Battista S et al. Identification of the genes up- and down-regulated by the high mobility group A1 (HMGA1) proteins: tissue specificity of the HMGA1-dependent gene regulation. Cancer Res. 64, 5728–5735 (2004).
  • Schuldenfrei A, Belton A, Kowalski J et al. HMGA1 drives inflammatory pathways, cell cycle progression, and embryonic stem cell genes during lymphoid tumorigenesis. BMC Genomics 12, 549 (2011).
  • Thanos D, Maniatis, T. The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell 71, 777–789 (1992).
  • Du W, Maniatis T. The high mobility group protein HMG I(Y) can stimulate or inhibit DNA binding of distinct transcription factor ATF-2 isoforms. Proc. Natl Acad. Sci. USA 91, 11318–11322 (1994).
  • Falvo JV, Thanos D, Maniatis T. Reversal of intrinsic DNA bends in the IFN beta gene enhancer by transcription factors and the architectural protein HMG I(Y). Cell 83, 1101–1111 (1995).
  • Thanos D, Maniatis T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 83, 1091–1100 (1995).
  • Munshi N, Agalioti T, Lomvardas S, Merika M, Chen G, Thanos D. Coordination of a transcriptional switch by HMGI(Y) acetylation. Science 293, 1133–1136. (2001).
  • Panne D, Maniatis T, Harrison SC. An atomic model of the interferon-beta enhanceosome. Cell 129, 1111–1123 (2007).
  • E Ford, D. Thanos. The transcriptional code of human IFN-β gene expression. Biochem. Biophy. Acta 1799, 328–336 (2010).
  • Saitoh Y, Laemmli UK. Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Cell 76, 609–622 (1994).
  • Girard F, Bello B, Laemmli UK, Gehring WJ. (1998) In vivo analysis of scaffold-associated regions in Drosophila: a synthetic high-affinity SAR binding protein suppresses position effect variegation. EMBO J. 7, 2079–2085 (1998).
  • Zhao K, Kas E, Gonzalez E., Laemmli UK. SAR-dependent mobilization of histone H1 by HMG-I/Y in vitro: HMG-I/Y is enriched in H1-depleted chromatin. EMBO J. 12, 3237–3247 (1993).
  • Strick R, Laemmli UK. SARs are cis DNA elements of chromosome dynamics: synthesis of a SAR repressor protein. Cell 83, 1137–1148 (1995).
  • Mirkovitch J, Mirault ME, Laemmli UK. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39, 223–232 (1984).
  • Reeves R, Wolffe AP. Substrate structure influences binding of the non-histone protein HMG-I(Y) to free nucleosomal DNA. Biochemistry 35, 5063–5074 (1996).
  • Reeves R, Leonard WJ, Nissen MS. 2000. Binding of HMG-I(Y) imparts architectural specificity to a positioned nucleosome on the promoter of the human interleukin-2 receptor alpha gene. Mol. Cell Biol. 20, 4666–4679 (2000).
  • Himes SR, Reeves R, Attema J, Nissen M, Li Y, Shannon MF. The role of high-mobility group I(Y) proteins in expression of IL-2 and T-cell proliferation. J. Immunol. 164, 3157–3168 (2000).
  • Attema JL, Reeves R, Murray V, Levichkin I, Temple MD, Tremethick DJ, Shannon MF. The human IL-2 gene promoter can assemble a positioned nucleosome that becomes remodeled upon T-cell activation. J. Immunol. 169, 2466–2476(2002).
  • Henderson A, Holloway A, Reevers R, Tremethick DJ. Recruitment of SWI/SNF to the human immunodeficiency virus type 1 promoter. Mol. Cell Biol. 24, 389–397 (2004).
  • Chiappetta G, Avantaggiato V, Visconti R et al. High level expression of the HMGI (Y) gene during embryonic development. Oncogene 13, 2439–2446 (1996).
  • Zhou G, Chen J, Lee S, Clark T, Rowley JD, Wang SM. The pattern of gene expression in human CD34+ stem/progenitor cells. Proc. Natl Acad. Sci. USA 98, 13966–13971 (2001).
  • Chou B-K, Mali P, Huang X et al. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with a unique epigenetic and gene expression signatures. Cell Res. 11, 518–529 (2011).
  • Karp JE, Smith BD, Resar LMS et al. Phase I and pharmacokinetic study of “hybrid” (bolus-infusion) flavopiridol administered followed in time sequence by cytosine arabinoside and mitoxantrone for adults with relapsed and refractory acute leukemias. Blood 117, 3302–3310 (2011).
  • Nelson DM, Joseph B, Hillion J, Segal J, Karp J, Resar LMS. Flavopiridol induces BCL-2 expression and represses oncogenic transcription factors in leukemic blasts from adults with refractory acute myeloid leukemia. Leuk. Lymphoma 52, 1999–2006 (2011).
  • Munoz J, Stange DE, Schepers AG et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent +4 markers. EMBO J. 31, 3079–3091 (2012).
  • Battista S, Pentimalli F, Baldassarre G.et al. Loss of HMGA1 gene function affects embryonic stem cell lympho-hematopoietic differentiation. FASEB J. 17, 1496–1498 (2003).
  • Foti D, Chiefari E, Fedele M et al. Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nat. Med. 11, 765–773 (2005).
  • Fedele M, Fidanza V, Battista S et al. Haploinsufficiency of the HMGA1 gene causes cardiac hypertrophy and myelo-lymphoproliferative disorders in mice. Cancer Res. 66, 2536–2543 (2006).
  • Xu Y, Sumter Felder T, Bhattacharya R. The HMG-I oncogene causes highly penetrant, metastatic lymphoid malignancy in transgenic mice and is overexpressed in human lymphoid malignancy. Cancer Res. 64, 3371–3375 (2004).
  • Fedele M, Pentimalli F, Baldassarre G et al. Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 24, 3427–3435 (2005).
  • Tesfaye A, Di Cello F, Hillion J et al. The High-Mobility Group A1 gene up-regulates Cyclooxygenase-2 expression in uterine tumorigenesis. Cancer Res. 67, 3998–4004 (2007).
  • Di Cello F, Dhara S, Hristov A et al. Inactivation of the Cdkn2a locus cooperates with HMGA1 to drive T-cell leukemogenesis. Leuk. Lymphoma 54(8), 1762–1768 (2013).
  • Somervaille TC, Matheny CJ, Spencer GJ et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 4, 129–140 (2009).
  • Wood LJ, Mukherjee M, Dolde CE et al. HMG-I/Y: a new c-Myc target gene and potential human oncogene. Mol. Cell Biol. 20, 5490–5502 (2000).
  • Wood LJ, Maher J, Bunton TE, Resar LMS. The oncogenic properties of the HMG-I gene family. Cancer Res. 60, 4256–4261 (2000).
  • Pomeroy SL, Tamayo P, Gaasenbeek M et al. Prediction of central nervous system embryonaltumour outcome based on gene expression. Nature 415, 436–442 (2002).
  • Takaha N, Resar LMS, Vindivich D, Coffey D. High mobility protein HMGI(Y) enhances tumor cell growth, invasion, and matrix metalloproteinase-2 expression in prostate cancer cells. Prostate 60, 160–167 (2004).
  • Hommura F, Katabami M, Leaner VD et al. HMG-I/Y is a cJun/AP-1 responsive gene and is necessary for cJun induced anchorage-independent growth. Mol. Cancer Res. 2, 303–314 (2004).
  • Shah S, Resar LMS. HMGA1 in Cancer: potential biomarker and therapeutic target. Histol. Histopath. 27, 567–579 (2012).
  • Roy S, Di Cello F, Kowalski J et al.. HMGA1 overexpression correlates with relapse in childhood B-lineage acute lymphoblastic leukemia. Leuk. Lymphoma 54(11), 2565–2567 (2013).
  • Dolde CE, Mukherjee M, Cho C, Resar LMS. The role of HMG-I/Y in human breast cancer cells. Breast Cancer Res. Treat. 71, 181–191 (2002).
  • Hillion J, Wood LJ, Mukerjee M et al. Up-regulation of matrix metalloproteinase-2 by HMGA1 promotes transformation in undifferentiated, large cell human lung cancer. Mol Cancer Res. 7, 1803–1812 (2009).
  • Hillion J, Dhara S, Sumter TF et al. The HMGA1a-STAT3 axis: an “Achilles heel” for hematopoietic malignancies? Cancer Res. 68, 10121–10127 (2008).
  • Liau SS, Jazag A, Whang EE. HMGA1 is a determinant of cellular invasiveness and in vivo metastatic potential in pancreatic adenocarcinoma. Cancer Res. 66, 11613–11622 (2006).
  • Sarhadi VK, Wikman H, Salmenkivi K et al. Increased expression of high mobility group A proteins in lung cancer. J. Pathol. 209, 206–212 (2006).
  • Mani SA, Guo W, Liao M J et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).
  • Lim J, Thiery JP. Epithelial-mesenchymal transitions: insights from development. Development 139(19), 3471–3486 (2012).
  • Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Sem. Cancer Biol. 22, 396–401 (2012).
  • Dhar A, Hu J, Reeves R, Resar L, Colburn N. Dominant negative c-Jun (TAM67) target genes: HMGA1 is required for tumor promoter-induced transformation. Oncogene 23, 4466–4476 (2004).
  • Scala S, Portella G, Fedele M, Chiappetta G, Fusco A. Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias. Proc. Natl Acad. Sci. USA 97, 4256–4261 (2000).
  • Foster LC, Wiesel P, Huggins GS et al. Role of activating protein-1 and high mobility group-I(Y) protein in the induction of CD44 gene expression by interleukin-1beta in vascular smooth muscle cells. FASEB J. 14, 368–378 (2000).
  • Beckerbauer L, Tepe JJ, Cullison Jet al.. FR900482 class of anti-tumor drugs cross-links oncoprotein HMG I/Y to DNA in vivo. Chem. Biol. 7, 805–812 (2000).
  • Beckerbauer L, Tepe JJ, Eastman RAet al.. Differential effects of FR900482 and FK317 on apoptosis, IL-2 gene expression, and induction of vascular leak syndrome. Chem. Biol. 9, 427–441 (2002).
  • Ma W, Oriz-Quintero B, Rangel R, et al. Innate activation of inflammatory gene networks, alveolar destruction and neonatal death in AKNA deficient mice. Cell Res. 21, 1564–1577 (2011).
  • Moliterno A, Resar L. AKNA : another AT-hook transcription factor hooking up with inflammation. Cell Res. 21, 1528–1530 (2011).
  • Di Cello F, Hillion J, Aderinto A et al. COX-2 inhibitors block uterine tumorigenesis in HMGA1a transgenic mice and human uterine cancer xenografts. Mol. Cancer Ther. 7(7), 2090–2095 (2008).
  • Hillion J, Di Cello F, Belton Aet al.. Nanoparticle delivery of inhibitory STAT3 GQ-oligonucleotides blocks tumor growth in an HMGA1 transgenic model of T-cell leukemia. Leuk. Lymphoma doi:10.3109/10428194.2013.821202 (2013) (Epub ahead of print).
  • Boylan NJ, Suk JS, Lai SK et al. Highly compacted DNA nanoparticles with low MW PEG coatings: In vitro, ex vivo and in vivo evaluation. J. Control. Release 157, 72–79 (2012).
  • Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 63, 185–198 (2012).
  • Pramanik D, Campbell NR, Karikari C et al. Resititution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol. Cancer Ther. 10, 1470–1480 (2011).
  • Mussnich P, D’Angelo D, Leone V, Croce CM, Fusco A. The high mobility group A proteins contribute to thyroid cell transformation by regulating miR-603 and miR-10b expression. Mol. Oncol. 7, 531–542 (2013).
  • Resar LMS, Brodsky RA. “Let”-ing go with clonal expansion? Blood 117, 5788–5790 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.