483
Views
3
CrossRef citations to date
0
Altmetric
Review

Emerging therapeutic options for Waldenström macroglobulinemia/lymphoplasmacytic lymphoma

, , &

References

  • Waldenström J. Incipient myelomatosis or essential hyperglobulinemia with fibrinogenopenia-a new syndrome? Acta Med Scand 1944;117(3-4):216-47
  • Gertz MA. Waldenstrom macroglobulinemia: 2015 update on diagnosis, risk stratification, and management. Am J Hematol 2015;90(4):346-54
  • Wang H, Chen Y, Li F, et al. Temporal and geographic variations of Waldenstrom macroglobulinemia incidence: a large population-based study. Cancer 2012;118(15):3793-800
  • Buske C, Leblond V, Dimopoulos M, et al. Waldenstrom’s macroglobulinaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2013;24(Suppl 6):vi155-9
  • Castillo JJ, Olszewski AJ, Kanan S, et al. Overall survival and competing risks of death in patients with Waldenstrom macroglobulinaemia: an analysis of the Surveillance, epidemiology and end results database. Br J Haematol 2015;169(1):81-9
  • Kristinsson SY, Eloranta S, Dickman PW, et al. Patterns of survival in lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia: a population-based study of 1,555 patients diagnosed in Sweden from 1980 to 2005. Am J Hematol 2013;88(1):60-5
  • Castillo JJ, Olszewski AJ, Hunter ZR, et al. Incidence of secondary malignancies among patients with Waldenstrom macroglobulinemia: An analysis of the SEER database. Cancer 2015. [Epub ahead of print]
  • Kapoor P, Paludo J, Vallumsetla N, et al. Waldenstrom macroglobulinemia: What a hematologist needs to know. Blood Rev 2015. [Epub ahead of print]
  • Kyle RA, Benson JT, Larson DR, et al. Progression in smoldering Waldenstrom macroglobulinemia: long-term results. Blood 2012;119(19):4462-6
  • Owen RG, Treon SP, Al-Katib A, et al. Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol 2003;30(2):110-15
  • Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med 2012;367(9):826-33
  • Xu L, Hunter ZR, Yang G, et al. Detection of MYD88 L265P in peripheral blood of patients with Waldenstrom’s Macroglobulinemia and IgM monoclonal gammopathy of undetermined significance. Leukemia 2014;28(8):1698-704
  • Wang Z, Fritschle W, Bennington R, et al. MYD88 L265P mutation detection: analysis of flow cytometry sorted plasma and lymphoid cell clones improves sensitivity and specificity for wm/lpl diagnosis (Abstract 1645). Blood (ASH Annual Meeting Abstracts) 2014;124(21):1645
  • Morel P, Duhamel A, Gobbi P, et al. International prognostic scoring system for Waldenstrom macroglobulinemia. Blood 2009;113(18):4163-70
  • Owen RG, Kyle RA, Stone MJ, et al. Response assessment in Waldenstrom macroglobulinaemia: update from the VIth international Workshop. Br J Haematol 2013;160(2):171-6
  • Yang G, Zhou Y, Liu X, et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in waldenstrom macroglobulinemia. Blood 2013;122(7):1222-32
  • Hunter ZR, Xu L, Yang G, et al. The genomic landscape of waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood 2014;123(11):1637-46
  • Treon SP, Cao Y, Xu L, et al. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood 2014;123(18):2791-6
  • Cao Y, Hunter ZR, Liu X, et al. CXCR4 WHIM-like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant MYD88(L265P) -directed survival signalling in Waldenstrom macroglobulinaemia cells. Br J Haematol 2015;168(5):701-7
  • Cao Y, Hunter ZR, Liu X, et al. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s Macroglobulinemia. Leukemia 2015;29(1):169-76
  • Chang H, Qi C, Trieu Y, et al. Prognostic relevance of 6q deletion in Waldenstrom’s macroglobulinemia: a multicenter study. Clin Lymphoma Myeloma 2009;9(1):36-8
  • Gutierrez NC, Ocio EM, de Las Rivas J, et al. Gene expression profiling of B lymphocytes and plasma cells from Waldenstrom’s macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals. Leukemia 2007;21(3):541-9
  • Leblebjian H, Agarwal A, Ghobrial I. Novel treatment options for Waldenstrom macroglobulinemia. Clin Lymphoma Myeloma Leuk 2013;13(Suppl 2):S310-16
  • Gaudette BT, Boise LH. Mir-155 Expression raises the apoptotic threshold in Waldenström macroglobulinemia by inhibition of FOXO3a and Bim (Abstract 1671). Blood (ASH Annual Meeting Abstracts) 2014;124(21):1671
  • FDA. FDA expands approved use of imbruvica for rare form of non-Hodgkin lymphoma. 2015. Available from: www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm432123.htm [Last accessed 4 may 2015]
  • Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenström’s macroglobulinemia. N Engl J Med 2015;372(15):1430-40
  • Roccaro AM, Leleu X, Sacco A, et al. Dual targeting of the proteasome regulates survival and homing in Waldenstrom macroglobulinemia. Blood 2008;111(9):4752-63
  • Treon SP, Hunter ZR, Matous J, et al. Multicenter clinical trial of bortezomib in relapsed/refractory Waldenstrom’s macroglobulinemia: results of WMCTG Trial 03-248. Clin Cancer Res 2007;13(11):3320-5
  • Chen CI, Kouroukis CT, White D, et al. Bortezomib is active in patients with untreated or relapsed Waldenstrom’s macroglobulinemia: a phase II study of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007;25(12):1570-5
  • Treon SP, Ioakimidis L, Soumerai JD, et al. Primary therapy of Waldenstrom macroglobulinemia with bortezomib, dexamethasone, and rituximab: WMCTG clinical trial 05-180. J Clin Oncol 2009;27(23):3830-5
  • Ghobrial IM, Xie W, Padmanabhan S, et al. Phase II trial of weekly bortezomib in combination with rituximab in untreated patients with Waldenstrom Macroglobulinemia. Am J Hematol 2010;85(9):670-4
  • Ghobrial IM, Gertz M, Laplant B, et al. Phase II trial of weekly bortezomib in combination with rituximab in relapsed or relapsed and refractory Waldenstrom macroglobulinemia. J Clin Oncol 2010;28(8):1422-8
  • Dimopoulos MA, García-Sanz R, Gavriatopoulou M, et al. Primary therapy of Waldenstrom macroglobulinemia (WM) with weekly bortezomib, low-dose dexamethasone, and rituximab (BDR): long-term results of a phase 2 study of the European Myeloma Network (EMN). Blood 2013;122(19):3276-82
  • Rosenthal AC, et al. A Phase II clinical trial of rituximab, cyclophosphamide, bortezomib, and dexamethasone (R-CyBor-D) in relapsed low grade and mantle cell lymphoma (Abstract 4410). Blood (ASH Annual Meeting Abstracts) 2014;124(21):4410
  • Treon SP, Tripsas CK, Meid K, et al. Carfilzomib, rituximab, and dexamethasone (CaRD) treatment offers a neuropathy-sparing approach for treating Waldenstrom’s macroglobulinemia. Blood 2014;124(4):503-10
  • Siegel DS, et al. Updated results from a multicenter, open-label, dose-escalation phase 1b/2 study of single-agent oprozomib in patients with Waldenström macroglobulinemia (WM) (Abstract 1715). Blood (ASH Annual Meeting Abstracts) 2014;124(21):1715
  • Treon SP, Soumerai JD, Branagan AR, et al. Thalidomide and rituximab in Waldenstrom macroglobulinemia. Blood 2008;112(12):4452-7
  • Treon SP, Soumerai JD, Branagan AR, et al. Lenalidomide and rituximab in Waldenstrom’s macroglobulinemia. Clin Cancer Res 2009;15(1):355-60
  • Leleu X, et al. Lenalidomide is safe and active in Waldenstrom macroglobulinemia (WM) (Abstract 4478). Blood (ASH Annual Meeting Abstracts) 2014;124(21):4478
  • Rosenthal AC, Amylou CD, Katherine G, et al. A Phase 2 Study of lenalidomide, rituximab, cyclophosphamide and dexamethasone (LR-CD) for untreated low grade non-Hodgkin lymphoma requiring therapy: Waldenström’s macroglobulinemia cohort Results (Abstract 4352). Blood (ASH Annual Meeting Abstracts) 2013;122:21
  • Thomas SK, Georgina MA, Feng L, et al. Phase I trial of pomalidomide (P) in patients (pts) with relapsed and/or refractory (R/R) waldenström’s macroglobulinemia (WM) (Abstract 8536). J Clin Oncol 2014;32(suppl):5S
  • Leleu X, Jia X, Runnels J, et al. The akt pathway regulates survival and homing in Waldenstrom macroglobulinemia. Blood 2007;110(13):4417-26
  • Roccaro AM, Sacco A, Husu EN, et al. Dual targeting of the PI3K/Akt/mTOR pathway as an antitumor strategy in Waldenstrom macroglobulinemia. Blood 2010;115(3):559-69
  • Ghobrial IM, Witzig TE, Gertz M, et al. Long-term results of the phase II trial of the oral mTOR inhibitor everolimus (RAD001) in relapsed or refractory Waldenstrom macroglobulinemia. Am J Hematol 2014;89(3):237-42
  • Ghobrial IM, et al. Final results of Phase I/II trial of the oral mTOR inhibitor everolimus (RAD001) in combination with bortezomib and rituximab (RVR) in relapsed or refractory Waldenstrom macroglobulinemia (Abstract 3081). Blood (ASH Annual Meeting Abstracts) 2014;124(21):3081
  • Ghobrial IM, Roccaro A, Hong F, et al. Clinical and translational studies of a phase II trial of the novel oral Akt inhibitor perifosine in relapsed or relapsed/refractory Waldenstrom’s macroglobulinemia. Clin Cancer Res 2010;16(3):1033-41
  • Gopal AK, Kahl BS, de Vos S, et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 2014;370(11):1008-18
  • Flinn I, et al. A Phase 1 Evaluation of Duvelisib (IPI-145), a PI3K-δ,γ Inhibitor, in Patients with Relapsed/Refractory iNHL (Abstract 802). Blood (ASH Annual Meeting Abstracts) 2014;124(21):802
  • Moreau AS, Jia X, Ngo HT, et al. Protein kinase C inhibitor enzastaurin induces in vitro and in vivo antitumor activity in Waldenstrom macroglobulinemia. Blood 2007;109(11):4964-72
  • Ghobrial IM, Moreau P, Harris B, et al. A multicenter phase II study of single-agent enzastaurin in previously treated Waldenstrom macroglobulinemia. Clin Cancer Res 2012;18(18):5043-50
  • Khot A, Dickinson M, Prince HM. Panobinostat in lymphoid and myeloid malignancies. Expert Opin Investig Drugs 2013;22(9):1211-23
  • Ghobrial IM, Campigotto F, Murphy TJ, et al. Results of a phase 2 trial of the single-agent histone deacetylase inhibitor panobinostat in patients with relapsed/refractory Waldenstrom macroglobulinemia. Blood 2013;121(8):1296-303
  • Treon SP, Hanzis C, Tripsas C, et al. Bendamustine therapy in patients with relapsed or refractory Waldenstrom’s macroglobulinemia. Clin Lymphoma Myeloma Leuk 2011;11(1):133-5
  • Rummel M.J, Niederle N, Maschmeyer G, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet 2013;381(9873):1203-10
  • Tedeschi A, Picardi P, Ferrero S, et al. Bendamustine and rituximab combination is safe and effective as salvage regimen in Waldenstrom macroglobulinemia. Leuk Lymphoma 2015. [Epub ahead of print]
  • Cheson BD, Crawford J. A phase I study of bendamustine, lenalidomide and rituximab in relapsed and refractory lymphomas. Br J Haematol 2015;169(4):528-33
  • Furman RR, et al. A Phase II Trial of ofatumumab in subjects with Waldenstrom’s macroglobulinemia (Abstract 3701). Blood (ASH Annual Meeting Abstracts) 2011;118(21):3701
  • Kanan S, et al. Clinical Characteristics of rituximab intolerance in patients with Waldenstrom’s macroglobulinemia. Blood 2014;124:2610-0
  • Treon SP, Soumerai JD, Hunter ZR, et al. Long-term follow-up of symptomatic patients with lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia treated with the anti-CD52 monoclonal antibody alemtuzumab. Blood 2011;118(2):276-81
  • Liu X, et al. Direct targeting of MYD88 homodimerization in Waldenstrom’s Macroglobulinemia, in IWWM-8. IWWM; London: 2014
  • Buhrlage S. Kinome targets and inhibitors in WM, in IWWM-8. IWWM; London: 2014
  • Lim KH, Barton GM, Staudt LM, Oncogenic MYD88 mutants require Toll-like receptors, in AACR. AACR; Washington DC: 2013
  • Wang D, Jiang W, Sullivan T, et al. Novel Approach to the Potential Treatment of Patients with B-Cell Lymphomas Harboring the MYD88 L265P Mutation: Combination Treatment with TLR Antagonist and Rituximab (Abstract 508). Blood (ASH Annual Meeting Abstracts) 2014;124(21):508
  • Balasubramanian WR, et al. Novel IRAK-4 inhibitors exhibit highly potent anti-proliferative activity in DLBCL cell lines with activating MYD88 L265P mutation. AACR; Philadephia: 2015
  • Vajda E.G, et al. IRAK4 inhibitors display synergistic activity when combined with BTK or PI3K inhibitors in B cell lymphomas. AACR; Philadelphia: 2015
  • Fegan C, et al. The Bruton’s Tyrosine Kinase (BTK) Inhibitor ONO-4059: Promising Single Agent Activity and Well Tolerated in Patients with High Risk Chronic Lymphocytic Leukaemia (CLL) (Abstract 3328). Blood (ASH Annual Meeting Abstracts) 2014. 124(21):3328
  • Ngo HT, Leleu X, Lee J, et al. SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood 2008;112(1):150-8
  • McDermott DH, Liu Q, Velez D, et al. A phase 1 clinical trial of long-term, low-dose treatment of WHIM syndrome with the CXCR4 antagonist plerixafor. Blood 2014;123(15):2308-16
  • Cao Y, Yang G, Hunter ZR, et al. The BCL2 antagonist ABT-199 triggers apoptosis, and augments ibrutinib and idelalisib mediated cytotoxicity in CXCR4 and CXCR4 mutated Waldenstrom macroglobulinaemia cells. Br J Haematol 2015;170(1):134-8
  • Paulus A, Akhtar S, Yoon H, et al. Targeted. disruption of USP14 and UCHL5 with the novel deubiquitinase enzyme (DUB) inhibitor, VLX1570, induces immense proteotoxicity and cell death in malignant plasma cells (abstract 3116). Blood (ASH Annual Meeting Abstracts) 2014;124(21):3116
  • Smith EL, Palomba ML, Park JH, Brentjens RJ. A systemic xenograft model of Waldenström’s macroglobulinemia demonstrates the potent anti-tumor effect of second generation CD19 directed chimeric antigen receptor modified T cells in this disease (Abstract 4484). Blood (ASH Annual Meeting Abstracts) 2014;124(21):4484
  • Maddocks KJ, Cohen JB, Christian B, et al. A phase II study of MLN8237 (Alisertib) alone and in combination with rituximab in patients with relapsed or refractory B-cell non-hodgkin lymphomas (NHL) (Abstract 3082). Blood (ASH Annual Meeting Abstracts) 2014;124(21):3082
  • Azab K, Paulus A, Azab F, et al. A novel and personalized method using simulation for predicting effective therapeutics for Waldenströms macroglobulinemia (Abstract 3024). Blood (ASH Annual Meeting Abstracts) 2014;124(21):3024
  • Phase 0/1 Biomarker and pharmacodynamic study of roflumilast in patients with advanced B-cell hematologic malignancies (CTRC# 13-0013). Available from: https://clinicaltrials.gov/ct2/show/NCT01888952
  • An Open-label, Phase 1b study of ACP 196 in subjects with Waldenström macroglobulinemia. Available from: https://clinicaltrials.gov/ct2/show/NCT02180724
  • Phase 1/2 dose escalation study in patients with relapsed or refractory Waldenstrom’s macroglobulinemia (8400-401). Available from: https://clinicaltrials.gov/ct2/show/NCT02092909
  • Immunotherapy for asymptomatic phase lymphoplasmacytic lymphoma. Available from: https://clinicaltrials.gov/ct2/show/NCT01209871
  • Study of the glutaminase inhibitor CB-839 in hematological tumors. Available from: https://clinicaltrials.gov/ct2/show/NCT02071888
  • Open-label study of the safety and activity of oprozomib in patients with hematologic malignancies. Available from: https://clinicaltrials.gov/ct2/show/NCT01416428
  • A Phase I trial of DI-B4 in patients with advanced CD19 positive indolent B-cell malignancies. Available from: https://clinicaltrials.gov/ct2/show/NCT01805375
  • ACP-196 in Combination with pembrolizumab, for treatment of B-cell malignancies. Available from: https://clinicaltrials.gov/ct2/show/NCT02362035
  • Laboratory treated t cells in treating patients with relapsed or refractory chronic lymphocytic leukemia, non-Hodgkin lymphoma, or acute lymphoblastic leukemia. Available from: https://clinicaltrials.gov/ct2/show/NCT01865617
  • Vincristine sulfate liposome injection (Marqibo®), bendamustine and rituximab—Phase I trial in indolent B-cell lymphoma (BRiM). Available from: https://clinicaltrials.gov/ct2/show/NCT02257242
  • Alisertib in combination with vorinostat in treating patients with relapsed or recurrent Hodgkin lymphoma, B-cell non-Hodgkin lymphoma, or peripheral T-cell lymphoma. Available from: https://clinicaltrials.gov/ct2/show/NCT01567709
  • Ibrutinib in treating relapsed or refractory B-cell non-Hodgkin lymphoma in patients with HIV infection. Available from: https://clinicaltrials.gov/ct2/show/NCT02109224
  • Alisertib and romidepsin in treating patients with relapsed or refractory B-cell or T-cell lymphomas. Available from: https://clinicaltrials.gov/ct2/show/NCT01897012
  • Lenalidomide and ibrutinib in treating patients with relapsed or refractory B-cell non-Hodgkin lymphoma. Available from: https://clinicaltrials.gov/ct2/show/NCT01955499
  • Romidepsin in treating patients with lymphoma, chronic lymphocytic leukemia, or solid tumors with liver dysfunction. Available from: https://clinicaltrials.gov/ct2/show/NCT01638533
  • Cellular immunotherapy following cyclophosphamide in treating patients with recurrent non-Hodgkin lymphomas, chronic lymphocytic leukemia or B-cell prolymphocytic leukemia. Available from: https://clinicaltrials.gov/ct2/show/NCT02153580
  • Study of BKM120 & rituximab in patients with relapsed or refractory indolent B-cell lymphoma. Available from: https://clinicaltrials.gov/ct2/show/NCT02049541
  • Rituximab, Romidepsin, and Lenalidomide in treating patients with recurrent or refractory B-cell non-Hodgkin lymphoma. Available from: https://clinicaltrials.gov/ct2/show/NCT02281279
  • Panobinostat and everolimus in treating patients with recurrent multiple myeloma, non-Hodgkin lymphoma, or Hodgkin lymphoma. Available from: https://clinicaltrials.gov/ct2/show/NCT00918333
  • CPI-613, bendamustine hydrochloride, and rituximab in treating patients with relapsed or refractory B-Cell Non-Hodgkin lymphoma. Available from: https://clinicaltrials.gov/ct2/show/NCT02168907
  • Cellular immunotherapy following cyclophosphamide in treating patients with recurrent non-Hodgkin lymphomas, chronic lymphocytic leukemia or B-cell prolymphocytic leukemia. Available from: https://clinicaltrials.gov/ct2/show/NCT02153580
  • Brentuximab vedotin + rituximab as frontline therapy for Pts w/CD30+ and/or EBV+ Lymphomas. Available from: https://clinicaltrials.gov/ct2/show/NCT01805037
  • Lenalidomide and combination chemotherapy (DA-EPOCH-R) in treating patients with MYC-associated B-Cell lymphomas. Available from: https://clinicaltrials.gov/ct2/show/NCT02213913
  • Safety, tolerability, and pharmacokinetics of idelalisib in Japanese adults with relapsed or refractory indolent b-cell non-Hodgkin lymphomas or chronic lymphocytic leukemia. Available from: https://clinicaltrials.gov/ct2/show/NCT02242045
  • Safety study of the selective inhibitor of nuclear export (SINE) KPT-330 in patients with advanced hematological cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01607892
  • ACP-196 in combination with ACP-319, for treatment of B-cell malignancies. Available from: https://clinicaltrials.gov/ct2/show/NCT02328014
  • Romidepsin + oral 5-azacitidine in relapsed/refractory lymphoid malignancies. Available from: https://clinicaltrials.gov/ct2/show/NCT01998035
  • Pralatrexate + romidepsin in relapsed/refractory lymphoid malignancies (PDX+Romi). Available from: https://clinicaltrials.gov/ct2/show/NCT01947140
  • Dendritic cell vaccine in treating patients with indolent b-cell lymphoma or multiple myeloma. Available from: https://clinicaltrials.gov/ct2/show/NCT00937183
  • Carfilzomib plus belinostat in relapsed/refractory NHL. Available from: https://clinicaltrials.gov/ct2/show/NCT02142530
  • Everolimus and bortezomib in treating patients with relapsed or refractory lymphoma. Available from: https://clinicaltrials.gov/ct2/show/NCT00671112
  • randomised trial in Waldenstrom’s macroglobulinaemia (R2W). Available from: https://clinicaltrials.gov/ct2/show/NCT01592981
  • Study of phosphatidylinositol-3-kinase (pi3k) inhibitor idelalisib (gs-1101) in Waldenström macroglobulinemia. Available from: https://clinicaltrials.gov/ct2/show/NCT02439138
  • A study of belimumab in treating symptomatic Waldenstroms macroglobulinaemia. Available from: https://clinicaltrials.gov/ct2/show/NCT01142011
  • Trial of ixazomib, dexamethasone and rituximab in patients with untreated Waldenstrom’s macroglobulinemia. Available from: https://clinicaltrials.gov/ct2/show/NCT02400437
  • Fase II study with brb for non-Hodgkin lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia’s (FIL_BRB). Available from: https://clinicaltrials.gov/ct2/show/NCT02371148
  • A Phase II study of carfilzomib in relapsed Waldenström’s macroglobulinemia (WM) IST-CAR-531. Available from: https://clinicaltrials.gov/ct2/show/NCT01813227
  • A Phase II study of doxycycline in relapsed NHL. Available from: https://clinicaltrials.gov/ct2/show/NCT02086591
  • Panobinostat in treating patients with relapsed or refractory non-Hodgkin lymphoma. Available from: https://clinicaltrials.gov/ct2/show/NCT01261247
  • Alisertib with and without rituximab in treating patients with relapsed or refractory B-cell non-Hodgkin lymphoma. Available from: https://clinicaltrials.gov/ct2/show/NCT01812005
  • A Phase 2 of Entospletinib in subjects with relapsed or refractory hematologic malignancies. Available from: https://clinicaltrials.gov/ct2/show/NCT01799889
  • Ibrutinib with rituximab in adults with Waldenström’s macroglobulinemia. Available from: https://clinicaltrials.gov/ct2/show/NCT02165397
  • Trial comparing chlorambucil to fludarabine in patients with advanced Waldenström macroglobulinemia. Available from: https://clinicaltrials.gov/ct2/show/nct00566332
  • Efficacy and safety of idelalisib (gs-1101) in combination with rituximab for previously treated indolent non-Hodgkin lymphomas (Yosemite). Available from: https://clinicaltrials.gov/ct2/show/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.