132
Views
43
CrossRef citations to date
0
Altmetric
Review

Role of TGF-β in cancer and the potential for therapy and prevention

&
Pages 649-661 | Published online: 10 Jan 2014

REFERENCES

  • Massague J. TGF-I3 signal transduction. Ann. Rev. Biochem. 67,753-791 (1998).
  • Derynck R, Goeddel DV, Ullrich A et al Synthesis of messenger RNAs for transforming growth factors-a and -13 and the epidermal growth factor receptor by human tumors. Cancer Res. 47(3), 707–712 1987.
  • Dickson RB, Kasid A, Huff KK et al. Activation of growth factor secretion in tumorigenic states of breast cancer induced by 17 I3-estradiol or v-Ha-ms oncogene. Pmc. Natl Acad. Sci. USA84(3),837–841 (1987).
  • Lyons RM, Gentry LE, Purchio AF, Moses HL. Mechanism of activation of latent recombinant transforming growth factor-131 by plasmin. I Cell Biol. 110 (4), 1361–1367 (1990).
  • •An association between the transforming growth factor (TGO-13 pathway and angiogenesis, through the activation of TGF-13 by plasmin.
  • Sato Y, Rifkin DB. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-I3 1-like molecule by plasmin during co-culture. J. Cell Biol. 109(1), 309–315 (1989).
  • Crawford SE, Stellmach V, Murphyullrich JE et al. Thrombospondin-1 is a major activator of TGF-I3-1 in vivo. Ce1193(7), 1159–1170 (1998).
  • Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-0 and promotes tumor invasion and angiogenesis. Genes Dev. 14(2), 163–176 (2000).
  • Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin. Cancer Rio. 10(6), 415–433 (2000). invasion: matrix metalloproteinases. &min. Cancer Biol. 11(2), 143–152 (2001).
  • Aghdasi B, Ye K, Resnick A et al. FKBP12, the 12-kDa FK506-binding protein, is a physiologic regulator of the cell cycle. Proc. Natl Acad. Sci USA 98(5),
  • Wang T, Li BY, Danielson PD et al The immunophilin FKBP12 functions as a common inhibitor of the TGF-I3 family Type I receptors. C1186 (3), 435–444 (1996).
  • Yao D, Dore JJ Jr, Leof EB. FKBP12 is a negative regulator of transforming growth factor-I3 receptor internalization. J. Biol. Chem. 275(17), 13149–13154 (2000).
  • Datta PK, Chytil A, Gorska AE, Moses HL. Identification of STRAP, a novel WD domain protein in transforming growth factor-I3 signaling. J. Biol. Chem. 273(52), 34671–34674 (1998).
  • Griswold-Prenner I, Kamibayashi C, Maruoka EM, Mumby MC, Derynck R. Physical and functional interactions between Type I transforming growth factor-I3 receptors and Balpha, a WD-40 repeat subunit of phosphatase 2A. Mal Cell Biol. 18(11), 6595–6604 (1998).
  • Massague J. How cells read TGF-I3 signals. Nature Rev Mal Cell Biol. 1(3), 169–178 (2000).
  • it0h S, Itoh F, Goumans MJ, ten Dijke Signaling of transforming growth factor-I3 family members through Smad proteins. Eur. j Biochem. 267(24), 6954–6967 (2000).
  • Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-I3 family signaling. Nature 425(6958), 577–584 (2003).
  • Dunfield LD, Dwyer EJ, Nachtigal MW. TGF I3-induced Smad signaling remains intact in primary human ovarian cancer cells. Endocrinology 143 (4), 1174–1181 (2002).
  • Ulloa L, Doody J, Massague J. Inhibition of transforming growth factor-I3/SMAD signaling by the interferon-y/STAT pathway. Nature 397(6721), 710–713 (1999).
  • Bitzer M, von Gersdorff G, Liang D et al A mechanism of suppression of TGF-13/SMAD signaling by NF-KB/RelA. Genes Dev 14(2), 187–197 (2000).
  • Kretzschmar M, Doody J, Timokhina I, Massague J. A mechanism of repression of TGFI3/Smad signaling by oncogenic Ras. Genes Dev. 13(7), 804–816 (1999). Yu L, Hebert MC, Zhang YE. TGF-I3 receptor-activated p38 MAPK mediates Smad-independent TGF-I3 responses. EMI30 J. 21(14), 3749–3759 (2002). Describes a mechanism of signal transduction for TGF-13 that is independent of the Smads. Edlund S, Bu S, Schuster N et al. Transforming growth factor-I31 (TGF-I3)-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-I3-activated kinase 1 and mitogen-activated protein kinase kinase 3. Mal Biol. Cell. 14(2), 529–544 (2003).
  • Hannon GJ, Beach D. p15INK4B is a potential effector of TGF-I3-induced cell cycle arrest. Nature 371(6494), 257–261 (1994).
  • Reynisdottir I, Polyak K, Iavarone A, Massague J. Kip/Cip and Ink4 Cdk inhibitors co-operate to induce cell cycle arrest in response to TGF-I3. Genes Dev 9(15), 1831–1845 (1995).
  • Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF. Transforming growth factor-I3 induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc. Natl Acad. Sci USA 92(12), 5545–5549 (1995).
  • Rotello RJ, Lieberman RC, Purchio AF, Gerschenson LE. Co-ordinated regulation of apoptosis and cell proliferation by transforming growth factor-I31 in cultured uterine epithelial cells. Proc. Natl Acad. Sci. USA 88(8), 3412–3415 (1991).
  • Oberhammer FA, Pavelka M, Sharma S et al Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor-131. Proc. Natl Acad. Li. USA 89(12), 5408–5412 (1992).
  • Chaouchi N, Arvanitakis L, Auffredou MT, Blanchard DA, Vazquez A, Sharma S. Characterization of transforming growth factor-I31 induced apoptosis in normal human B-cells and lymphoma B-cell lines. Oncogene 11 (8), 1615–1622 (1995).
  • Landstrom M, Heldin NE, Bu S et al Smad7 mediates apoptosis induced by transforming growth factor-I3 in prostatic carcinoma cells. CLI17: Bid 10(9), 535–538 (2000).
  • Larisch S, Yi Y, Lotan R et al A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nature Cell Biol. 2(12), 915–921 (2000).
  • Patil S, Wildey GM, Brown TL, Choy L, Derynck R, Howe PH. Smad7 is induced by CD40 and protects WEHI 231 B-lymphocytes from transforming growth factor-I3-induced growth inhibition and apoptosis. J. Biol. Chem. 275 (49), 38363–38370 (2000).
  • Perlman R, Schiemann WP, Brooks MW, Lodish HF, Weinberg RA. TGF-I3-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nature Cell Biol. 3(8), 708–714 (2001).
  • Yanagisawa K, Osada H, Masuda A et al Induction of apoptosis by Smad3 and downregulation of Smad3 expression in response to TGF-I3 in human normal lung epithelial cells. Oncogene 17(13), 1743–1747 (1998).
  • Dai JL, Bansal RK, Kern SE. G1 cell cycle arrest and apoptosis induction by nuclear Smad4/Dpc4: phenotypes reversed by a tumorigenic mutation. Proc. Natl Acad. Sci. USA 96(4), 1427–1432 (1999).
  • Wakefield LM, Roberts AB. TGF-I3 signaling: positive and negative effects on tumorigenesis. Curr Opin. Genet. Dev 12(1), 22–29 (2002).
  • Akhurst RJ, Derynck R. TGF-I3 signaling in cancer — a double-edged sword. 7i-ends Cell Biol. 11(11), S44—S51 (2001).
  • Sporn MB, Roberts AB. TGF-I3: problems and prospects. Cell Regull (12), 875–882 (1990).
  • Pierce DF Jr, Gorska AE, Chytil A et al Mammary tumor suppression by transforming growth factor-I3 1 transgene expression. Proc. Natl Acad. Li. USA 92(10), 4254–4258 (1995).
  • Tang B, Bottinger EP, Jakowlew SB et al Transforming growth factor-I31 is a new form of tumor suppressor with true haploid insufficiency. Nattily Med. 4(7), 802–807 (1998).
  • Koli KM, Arteaga CL. Processing of the transforming growth factor-I3 Type I and II receptors. Biosynthesis and ligand-induced regulation. Bid Chem. 272 (10), 6423–6427 (1997).
  • Chen T, Carter D, Garrigue-Antar L, Reiss M. Transforming growth factor-I3 Type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res. 58(21), 4805–4810 (1998).
  • Anbazhagan R, Bornman DM, Johnston JC, Westra WH, Gabrielson E. The 5387Y mutation of the transforming growth factor-I3 receptor Type I gene is uncommon in metastases of breast cancer and other common types of adenocarcinoma. Cancer Res. 59(14), 3363–3364 (1999).
  • Schutte M, Hruban RII, Hedrick L et al DPC4 gene in various tumor types. Cancer Res. 56(11), 2527–2530 (1996).
  • Verbeek BS, Adriaansen-Slot SS, Rijksen G, Vroom TM. Grb2 overexpression in nuclei and cytoplasm of human breast cells: a histochemical and biochemical study of normal and neoplastic mammary tissue specimens. J. Pathol 183 (2), 195–203 (1997).
  • Calm GA, Gafa R, Tibiletti MG et al. Genetic progression in microsatellite instability high (MST-H) colon cancers correlates with clinico-pathological parameters. A study of the TGF-I3 RII, BAX, HMSH3, HMSH6, IGFIIR and BLM genes. Int. I Cancer89(3), 230–235 (2000).
  • Grady WM, Myeroff LL, Swinler SE et al Mutational inactivation of transforming growth factor-I3 receptor Type II in microsatellite stable colon cancers. Cancer Res. 59(2), 320–324 (1999).
  • Parsons R, Myeroff LL, Liu B et al Microsatellite instability and mutations of the transforming growth factor-I3 type II receptor gene in colorectal cancer. Cancer Res. 55,5548–5550 (1995).
  • Lu SL, Zhang WC, Akiyama Y, Nomizu T, Yuasa Y. Genomic structure of the transforming growth factor-I3 type II receptor gene and its mutations in hereditary nonpolyposis colorectal cancers. Cancer Res. 56,4595-4598 (1996).
  • Wang J, Sun LZ, Myeroff L et al. Demonstration that mutation of the type II transforming growth factor-I3 receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J. Biol. Chem. 270,22044-22049 (1995).
  • Ilyas M, Efstathiou JA, Straub J, Kim HC, Bodmer WE Transforming growth factor-I3 stimulation of colorectal cancer cell lines: Type II receptor bypass and changes in adhesion molecule expression. Proc. Natl Acad. Sci. USA 96(6), 3087–3091 (1999).
  • Togo G, Okamoto M, Shiratori Y et al. Does mutation of transforming growth factor-I3 Type II receptor gene play an important role in colorectal polyps? Dig. Dis. Li. 44(9), 1803–1809 (1999).
  • Rashid A, Zahurak M, Goodman SN, Hamilton SR. Genetic epidemiology of mutated K-ras proto-oncogene, altered suppressor genes and microsatellite instability in colorectal adenomas. Gut44(6), 826–833 (1999).
  • Duval A, Gayet J, Zhou XP, Iacopetta B, Thomas G, Hamelin R. Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res. 59 (17), 4213–4215 (1999).
  • Watanabe T, Wu TT, Catalano PJ et al. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engif Med. 344(16), 1196–1206 (2001).
  • ••Interesting paper demonstrating theindependent prognostic value of several genetic alterations such as mutations of TGFBR2 in colon cancer. It indicates that TGFBR2 mutations confer a good prognosis in colorectal cancer, which supports the hypothesis that abrogation of TGF-13 signaling is associated with decreased tumor aggressiveness.
  • Miyaki M, Kuroki T Role of Smad4 (DPC4) inactivation in human cancer. Biochem. Biophys. Res. Commun. 306(4), 799–804 (2003).
  • Maitra A, Krueger JE, Tascilar M et al Carcinoid tumors of the extrahepatic bile ducts: a study of seven cases. Am. J. Surg. Pathol 24(11), 1501–1510 (2000).
  • Takaku K, Miyoshi H, Matsunaga A, Oshima M, Sasaki N, Taketo MM. Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res. 59(24), 6113–6117 (1999).
  • XU X, Brodie SG, Yang X et al Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19(15), 1868–1874 (2000).
  • Guo RJ, Wang Y, Kaneko E et al Analyses of mutation and loss of heterozygosity of coding sequences of the entire transforming growth factor-I3 Type II receptor gene in sporadic human gastric cancer. Carcinogenesis 19(9), 1539–1544 (1998).
  • Kang SH, Bang YJ, Im YH et al Transcriptional repression of the transforming growth factor-I3 Type I receptor gene by DNA methylation results in the development of TGF-I3 resistance in human gastric cancer. Oncogene 18(51), 7280–7286 (1999).
  • Tanaka S, Mori M, Mafune K, Ohno S, Sugimachi K. A dominant negative mutation of transforming growth factor-I3 receptor Type II gene in microsatellite stable oesophageal carcinoma. BE J. Cancer 82(9), 1557–1560 (2000).
  • Yakicier MC, Irmak MB, Romano A, Kew M, Ozturk M. Smad2 and Smad4 gene mutations in hepatocellular carcinoma. Oncogene 18(34), 4879–4883 (1999).
  • Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RII, Kern SE. Geneticalterations of the transforming growth factor-I3 receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res. 58(23), 5329–5332 (1998).
  • Wang D, Kanuma T, Mizunuma H et al Analysis of specific gene mutations in the transforming growth factor-I3 signal transduction pathway in human ovarian cancer. Cancer Res. 60 (16), 4507–4512 (2000).
  • Zhou Y, Kato H, Shan D et al Involvement of mutations in the DPC4 promoter in endometrial carcinoma development. Mal Catrinog. 25(1), 64–72 (1999).
  • Chen T, Triplett J, Dehner B J et al Transforming growth factor-I3 receptor Type I gene is frequently mutated in ovarian carcinomas. Cancer Res. 61(12), 4679–4682 (2001).
  • Schiemann WP, Pfeifer WM, Levi E, Kadin ME, Lodish HE A deletion in the gene for transforming growth factor-I3 Type I receptor abolishes growth regulation by transforming growth factor 13 in a cutaneous T-cell lymphoma. B/ooc/94(8), 2854–2861 (1999).
  • Yanagisawa K, Uchida K, Nagatake M et al Heterogeneities in the biological and biochemical functions of Smad2 and Smad4 mutants naturally occurring in human lung cancers. Oncogene 19(19), 2305–2311 (2000).
  • Dams E, Van de Kelft EJ, Martin JJ, Verlooy J, Willems PJ. Instability of microsatellites in human gliomas. Cancer Res. 55(7), 1547–1549 (1995).
  • Garrigue-Antar L, Munoz-Antonia T, Antonia SJ, Gesmonde J, Vellucci VF, Reiss M. Missense mutations of the transforming growth factor-I3 Type II receptor in human head and neck squamous carcinoma cells. Cancer Res. 55(18), 3982–3987 (1995).
  • Kim SK, Fan Y, Papadimitrakopoulou V et al DPC4, a candidate tumor suppressor gene, is altered infrequently in head and neck squamous cell carcinoma. Cancer Res. 56(11), 2519–2521 (1996).
  • Papadimitrakopoulou VA, Oh Y, El Naggar A, Izzo J, Clayman G, Mao L. Presence of multiple incontiguous deleted regions at the long arm of chromosome 18 in head and neck cancer. Clin. Cancer Res. 4(3), 539–544 (1998).
  • Pasche B, Luo Y, Rao PH et al Type I transforming growth factor-I3 receptor maps to 9q22 and exhibits a polymorphism and a rare variant within a polyalanine tract. Cancer Res. 58(13), 2727–2732 (1998).
  • Pasche B, Kolachana P, Nafa K et al T 6R-I(6 A) is a candidate tumor susceptibility allele. Cancer Res. 59(22), 5678–5682 (1999).
  • ••Focuses on the characterization of acommon TGFBR1 polymorphism, TGFBR1*6A, and postulates that it may act as a tumor susceptibility allele. Demonstrates that cells carrying TGFBR1*6A are less effectively growth inhibited by TGF-I3 than cells that carry TGFBR1. Also provides the first epidemiologic evidence of increased cancer risk among TGFBR1*6A carriers.
  • Chen T, de Vries EG, Hollema H et al Structural alterations of transforming growth factor-I3 receptor genes in human cervical carcinoma. Int. j Cancer 82(1), 43–51 (1999).
  • Kaklamani VG, Hou N, Bian Y et al TGFBR1*6A and cancer risk: a meta-analysis of seven case-control studies. Clin. Oncol 21(17), 3236–3243 (2003).
  • •Meta-analysis establishing the association of TGFBR1*6A with the development of breast and ovarian cancers.
  • Pasche B, KakLamani VG, Hou N et al. TGFBR1*6A and cancer: a meta-analysis of 12 case-control studies. j Clin. Oncol 22, 756–758 (2004).
  • •Meta-analysis of 12 case-control studies including 7850 individuals: 4399 cases and 3451 controls. Confirms the increased risk of breast and ovarian cancers incurred by TGFBR1*6A carriers. Also demonstrates that TGFBR1*6A carriers have a 20% and TGFBR1*6A homozygotes a 102% increased risk of colorectal cancer.
  • Dunning AM, Ellis PD, McBride S et al A transforming growth factor-PI signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res. 63(10), 2610–2615 (2003).
  • •Demonstrates that the T29C TGFB1 polymorphism results in higher levels of TGF-13 secretion.
  • Ziv E, Cauley J, Morin PA, Saiz R, Browner WS. Association between the T29>C polymorphism in the transforming growth factor-I31 gene and breast cancer among elderly white women: the Study of Osteoporotic Fractures. JAIVIA 285(22), 2859–2863 (2001).
  • •Identifies a TGFB1 polymorphism (TGFB1*CC) that decreases the risk for breast cancer by more than 50%.
  • Hishida A, Iwata H, Hamajima N et al. Transforming growth factor-PI T29C polymorphism and breast cancer risk in Japanese women. Breast Cancer10(1), 63–69 (2003).
  • Marchand LL, Haiman CA, van den Berg D, Wilkens LR, Kolonel LN, Henderson BE. T29C polymorphism in the transforming growth factor-PI gene and postmenopausal breast cancer risk: the Multiethnic Cohort Study. Cancer Epidemiol Biomarkers Prey. 13(3), 412–415 (2004).
  • Howe JR, Roth S, Ringold JC et al Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280(5366), 1086–1088 (1998).
  • Lu SL, Kawabata M, Imamura T, Miyazono K, Yuasa Y. Two divergent signaling pathways for TGF-I3 separated by a mutation of its Type II receptor gene. Biochem. Biophys. Res. Commun. 259(2), 385–390 (1999).
  • Shin KH, Park YJ, Park JG. Mutational analysis of the transforming growth factor-I3 receptor Type II gene in hereditary nonpolyposis colorectal cancer and early-onset colorectal cancer patients. Clin. Cancer Res. 6(2), 536–540 (2000).
  • Fumagalli S, Doneda L, Nomura N, Larizza L. Expression of the c-ski proto-oncogene in human melanoma cell lines. Melanoma Res. 3(1), 23–27 (1993).
  • Luo K, Stroschein SL, Wang W et al The Ski oncoprotein interacts with the Smad proteins to repress TGF-I3 signaling. Genes Dev 13(17), 2196–2206 (1999).
  • He J, Tegen SB, Krawitz AR, Martin GS, Luo K. The transforming activity of Ski and SnoN is dependent on their ability to repress the activity of Smad proteins. J. Biol. Chem. 278(33), 30540–30547 (2003).
  • Hahm KB, Cho K, Lee C et al Repression of the gene encoding the TGF-I3 Type II receptor is a major target of the EWS-FLI1 oncoprotein. Nature Genet. 23 (2), 222–227 (1999).
  • Derynck R, Akhurst RJ, Balmain A. TGF-I3 signaling in tumor suppression and cancer progression. Nature Genet. 29(2), 117–129 (2001).
  • Oft M, Akhurst RJ, Balmain A. Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nature Cell. Biol. 4(7), 487–494 (2002).
  • Portella G, Cumming SA, Liddell J et al Transforming growth factor-I3 is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. Cell Growth Differ. 9 (5), 393–404 (1998).
  • Clli W, Fowlis DJ, Bryson S et al TGFI31 inhibits the formation of benign skin tumors but enhances progression to invasive spindle carcinomas in transgenic mice. Ce1186(4), 531–542 (1996).
  • Yin JJ, Selander K, Chirgwin JM et al TGF-I3 signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. j Clin. Invest. 103(2), 197–206 (1999).
  • •Focuses on the potential mechanism underlying the development of bone metastases and the role of TGF-13.
  • Andreasen PA, Kjoller L, Christensen L, Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis: a review. int. j Cancer 72 (1), 1–22 (1997).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Ce//100(1), 57–70 (2000).
  • Ueki N, Nakazato M, Ohkawa T et al Excessive production of transforming growth factor-31 can play an important role in the development of tumorigenesis by its action for angiogenesis: validity of neutralizing antibodies to block tumor growth. Biochim. Biophys. Acta 1137, 189–196 (1992).
  • Schwarte-Waldhoff I, Volpert OV, Bouck NP et al Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc. Natl Acad. Li. USA 97(17), 9624–9629 (2000).
  • de Jong JS, van Diest PJ, van der Valk P, Baak JR Expression of growth factors, growth-inhibiting factors and their receptors in invasive breast cancer. II: correlations with proliferation and angiogenesis. j Pathol 184(1), 53–57 (1998).
  • Ito N, Kawata S, Tamura S et al Positive correlation of plasma transforming growth factor-I31 levels with tumor vascularity in hepatocellular carcinoma. Cancer Lett. 89(1), 45–48 (1995).
  • Roberts AB, Sporn MB, Assoian RK et al Transforming growth factor type-I3: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl Acad. Sci. USA 83(12), 4167–4171 (1986).
  • Sunderkotter C, Goebeler M, Schulze-Osthoff K, Bhardwaj R, Sorg C. Macrophage-derived angiogenesis factors. Pharmacol Ther: 51 (2), 195–216 (1991) .
  • Yang EY, Moses HL. Transforming growth factor-Pl.-induced changes in cell migration, proliferation and angiogenesis in the chicken chorioallantoic membrane. J. Cell. Biol. 111(2), 731–741 (1990).
  • Ashcroft GS. Bidirectional regulation of macrophage function by TGF-P. Microbes Infect. 1(15), 1275–1282 (1999).
  • Edwards DR, Murphy G, Reynolds JJ et al Transforming growth factor-I3 modulates the expression of collagenase and metalloproteinase inhibitor. EMI30 6(7), 1899–1904 (1987).
  • •Describes a potential mechanism for the potentiation of metastasis by TGF-13.
  • Kordula T, Guttgemann I, Rose-John S et al Synthesis of tissue inhibitor of metalloproteinase-1 (TIMP-1) in human hepatoma cells (HepG2). Upregulation by interleukin-6 and transforming growth factor-131. FEBS Lett. 313 (2), 143–147 (1992).
  • Shimizu S, Nishikawa Y, Kuroda K et al. Involvement of transforming growth factor-I31 in autocrine enhancement of gelatinase B secretion by murine metastatic colon carcinoma cells. Cancer Res. 56(14), 3366–3370 (1996).
  • Sehgal I, Thompson TC. Novel regulation of Type IV collagenase (matrix metalloproteinase-9 and -2) activities by transforming growth factor-I31 in human prostate cancer cell lines. Mal Biol. Celi 10(2), 407–416 (1999).
  • Duivenvoorden WC, Hirte HW, Singh G. Transforming growth factor-I31 acts as an inducer of matrix metalloproteinase expression and activity in human bone-metastasizing cancer cells. Clin. Exp. Metastasis 17(1), 27–34 (1999). no Hagedorn HG, Bachmeier BE, Nerlich AG. Synthesis and degradation of basement membranes and extracellular matrix and their regulation by TGF-I3 in invasive carcinomas (review). int. j Oncol 18(4), 669–681 (2001).
  • Letamendia A, Lastres P, Botella LM et al. Role of endoglin in cellular responses to transforming growth factor-I3. A comparative study with I3-glycan. j Chem. 273(49), 33011–33019 (1998).
  • Barbara NP, Wrana JL, Letarte M. Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-I3 superfamily. j Biol. Chem. 274 (2), 584–594 (1999).
  • Li C, Hampson IN, Hampson L, Kumar P, Bernabeu C, Kumar S. CD105 antagonizes the inhibitory signaling of transforming growth factor-I31 on human vascular endothelial cells. FASEB 14(1), 55–64 (2000).
  • Lastres P, Letamendia A, Zhang H et al. Endoglin modulates cellular responses to TGF-131.j Cell. Biol. 133(5), 1109–1121 (1996).
  • Seon BK, Matsuno F, Haruta Y, Kondo M, Barcos M. Long-lasting complete inhibition of human solid tumors in SCID mice by targeting endothelial cells of tumor vasculature with antihuman endoglin immunotoxin. Clin. Cancer Res. 3(7), 1031–1044 (1997).
  • Matsuno F, Haruta Y, Kondo M, Tsai H, Barcos M, Seon BK. Induction of lasting complete regression of preformed distinct solid tumors by targeting the tumor vasculature using two new anti-endoglin monoclonal antibodies. Clin. Cancer Res. 5(2), 371–382 (1999).
  • Tabata M, Kondo M, Haruta Y, Seon BK. Anti-angiogenic radioimmunotherapy of human solid tumors in SCID mice using (125)I-labeled anti-endoglin monoclonal antibodies. Int. J. Cancer 82 (5), 737–742 (1999).
  • Dalal BI, Keown PA, Greenberg AH. Immunocytochemical localization of secreted transforming growth factor-I31 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am. J. Pathol 143(2), 381–389 (1993).
  • Kakonen SM, Selander KS, Chirgwin JM et al. Transforming growth factor-I3 stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J. Biol. Chem. 277(27), 24571–24578 (2002).
  • Oft M, Heider KH, Beug H. TGF-6 signaling is necessary for carcinoma cell invasiveness and metastasis. 6.117: Biol. 8(23), 1243–1252 (1998).
  • Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E. TGF-I3-1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 10(19), 2462–2477 (1996).
  • Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-I3 induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127\(Pt 2), 2021-2036 (1994).
  • Bhowmick NA, Chytil A, Plieth D et al. TGF-6 signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659), 848–851 (2004).
  • Fortunel N, Hatzfeld J, Kisselev S et al. Release from quiescence of primitive human hematopoietic stem/progenitor cells by blocking their cell-surface TGF-6 Type II receptor in a short-term in vitro assay. Stem Cells18(2), 102–111 (2000).
  • Fortunel NO, Hatzfeld A, Hatzfeld JA. Transforming growth factor-I3: pleiotropic role in the regulation of hematopoiesis. B/ooc/96(6), 2022-2036 (2000).
  • Keller JR, McNiece IK, Sill KT et al. Transforming growth factor-I3 directly regulates primitive murine hematopoietic cell proliferation. B/ooc/75 (3), 596–602 (1990).
  • •Describes the effect of TGF-13 on hematopoietic cells.
  • Soma T, Yu JM, Dunbar CE. Maintenance of murine long-term repopulating stem cells in ex Om culture is affected by modulation of transforming growth factor-I3 but not macrophage inflammatory protein-la activities. B/ooc/87(11), 4561–4567 (1996).
  • Keller JR, Jacobsen SE, Sill KT, Ellingsworth LR, Ruscetti FVV. Stimulation of granulopoiesis by transforming growth factor-I3: synergy with granulocyte/macrophage-colony-stimulating factor. Proc. Natl Acad. Sci USA 88(16), 7190–7194 (1991).
  • Jacobsen SE, Ruscetti FVV, Dubois CM, Lee J, Boone TC, Keller JR. Transforming growth factor-I3 trans-modulates the expression of colony stimulating factor receptors on murine hematopoietic progenitor cell lines. Blood 77(8), 1706–1716 (1991).
  • Hatzfeld J, Li ML, Brown EL et al. Release of early human hematopoietic progenitors from quiescence by antisense transforming growth factor-I31 or Rb oligonucleotides. Exp. Merl 174(4), 925–929 (1991).
  • Batard P, Monier MN, Fortunel N et al TGF-61 maintains hematopoietic immaturity by a reversible negative control of cell cycle and induces CD34 antigen up-modulation. J. Cell. Scill3\(Pt 3), 383–390 (2000).
  • Marone M, Scambia G, Bonanno G et al Transforming growth factor-I31 transcriptionally activates CD34 and prevents induced differentiation of TF-1 cells in the absence of any cell-cycle effects. Leukemia 16(1), 94–105 (2002).
  • Pierelli L, Marone M, Bonanno G et al. Modulation of bc1-2 and p27 in human primitive proliferating hematopoietic progenitors by autocrine TGF-61 is a cell cycle-independent effect and influences their hematopoietic potential. Blood 95(10), 3001–3009 (2000).
  • Knaus PI, Lindemann D, DeCoteau JF et al A dominant inhibitory mutant of the type ii transforming growth factor-I3 receptor in the malignant progression of a cutaneous T-cell lymphoma. Mal Cell. Biol. 16,3480-3489 (1996).
  • Geiser AG, Letterio JJ, Kulkarni AB, Karlsson S, Roberts AB, Sporn MB. Transforming growth factor-31 (TGF-I3 1) Acad. Sc]. USA 90(21), 9944–9948 (1993).
  • Letterio JJ, Geiser AG, Kulkarni AB et al. Autoimmunity associated with TGF-I3-1-deficiency in mice is dependent on MHC class II antigen expression. I Clin. Invest.
  • Bouchard C, Fridman WH, Sautes C. Mechanism of inhibition of lipopolysaccharide-stimulated mouse B-cell responses by transforming growth factor-131. Immunol Lett. 40 (2), 105–110 (1994).
  • Kehrl JH, Thevenin C, Rieckmann P, Fauci AS. Transforming growth factor-I3 suppresses human B-lymphocyte Ig production by inhibiting synthesis and the switch from the membrane form to the secreted form of Ig mRNA. j Immunol 146(11), 4016–4023 (1991).
  • Kiessling R, Klein E, Wigzell H. 'Natural' killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur j Immunol 5(2), 112–117 (1975).
  • Kiessling R, Klein E, Pross H, Wigzell H. 'Natural' killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur. j Immunol 5 (2), 117–121 (1975).
  • Perussia B. Lymphokine-activated killer cells, natural killer cells and cytokines. Curr. Opin. Immunol 3(1), 49–55 (1991).
  • Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319(6055), 675–678 (1986).
  • Bellone G, Aste-Amezaga M, Trinchieri G, Rodeck U. Regulation of NK cell functions by TGF-I31. I Immunol 155 (3), 1066–1073 (1995).
  • Pierson BA, Gupta K, Hu WS, Miller JS. Human natural killer cell expansion is regulated by thrombospondin-mediated activation of transforming growth factor-I3 1 and independent accessory cell-derived contact and soluble factors. B/ooc/87(1), 180–189 (1996).
  • Rook AH, Kehrl JH, Wakefield LM et al Effects of transforming growth factor-I3 on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. j Immunol 136(10), 3916–3920 (1986).
  • Kripke ML. Antigenicity of murine skin tumors induced by ultraviolet light. j Natl Cancer Inst. 53(5), 1333–1336 (1974).
  • Urban JL, Burton RC, Holland JM, Kripke ML, Schreiber H. Mechanisms of syngeneic tumor rejection. Susceptibility of host-selected progressor variants to various immunological effector cells. I Exp. Med. 155(2), 557–573 (1982).
  • Seliger B, Maeurer MJ, Ferrone S. TAP off-tumors on. Immunol Today 18 (6), 292–299 (1997).
  • Doherty PC, Knowles BB, Wettstein PJ. Immunological surveillance of tumors in the context of major histocompatibility complex restriction of T-cell function. Adv. Cancer Res. 42,1–65 (1984).
  • Ferrone S, Marincola FM. Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today16(10), 487–494 (1995).
  • Hellstrom KE, Hellstrom I, Chen L. Can co-stimulated tumor immunity be therapeutically efficacious? Immunol Rev 145,123–145 (1995).
  • Gimmi CD, Freeman GJ, Gribben JG, Gray G, Nadler LM. Human T-cell clonal anergy is induced by antigen presentation in the absence of B7 costimulation. Proc. Natl Acad. Sc]. USA 90(14), 6586–6590 (1993).
  • Wojtowicz-Praga S. Reversal of tumor-induced immunosuppression: a new approach to cancer therapy. J. iminunotheE 20(3), 165–177 (1997).
  • Letterio JJ, Roberts AB. Regulation of immune responses by TGF-P. Ann. Rev Immunol 16,137–161 (1998).
  • Czamiecki CW, Chiu HH, Wong GH, McCabe SM, Palladino MA. Transforming growth factor-I3 1 modulates the expression of class II histocompatibility antigens on human cells. I Immunol 140 (12), 4217–4223 (1988).
  • Arteaga CL, Koli KM, Dugger TC, Clarke R. Reversal of tamoxifen resistance of human breast carcinomas in vivo by neutralizing antibodies to transforming growth factor-I3. I Natl Cancer Inst. 91 (1), 46–53 (1999).
  • Knabbe C, Lippman ME, Wakefield LM et al. Evidence that transforming growth factor-I3 is a hormonally regulated negative growth factor in human breast cancer cells. Celi48(3), 417–428 (1987). Demonstrates that TGF-13 inhibits the growth of estrogen receptor-negative breast cancer cell lines.
  • Screpanti I, Santoni A, Gulino A, Herberman RB, Frati L. Estrogen and anti-estrogen modulation of the levels of mouse natural killer activity and large granular lymphocytes. Cell Immunol 106 (2), 191–202 (1987).
  • Mandeville R, Ghali SS, Chausseau JP. In vitro stimulation of human NK activity by an estrogen antagonist (tamoxifen). Eur.j Cancer Clin. Oiled 20(7), 983–985 (1984).
  • Berry J, Green BJ, Matheson DS. Modulation of natural killer cell activity by tamoxifen in stage I postmenopausal breast cancer. Eur I Cancer Clin. Oncol 23(5), 517–520 (1987).
  • Baral E, Nagy E, Berczi I. Modulation of natural killer cell-mediated cytotoxicity by tamoxifen and estradiol. Cancer 75 (2), 591–599 (1995).
  • Gottardis MM, Wagner RJ, Borden EC, Jordan VC. Differential ability of anti-estrogens to stimulate breast cancer cell (MCF-7) growth in vivo and in vitro. Cancer Res. 49(17), 4765–4769 (1989).
  • Fakhrai H, Dorigo O, Shawler DL et al. Eradication of established intracranial rat gliomas by transforming growth factor-I3 antisense gene therapy. Proc. Natl Acad. Sc]. USA 93(7), 2909–2914 (1996).
  • Won J, Kim H, Park EJ, Hong Y, Kim SJ, Yun Y. Tumorigenicity of mouse thymoma is suppressed by soluble Type II transforming growth factor-I3 receptor therapy. Cancer Res. 59(6), 1273–1277 (1999).
  • Shah AH, Lee C. TGF-P-based immunotherapy for cancer: breaching the tumor firewall. Prostate 45 (2), 167–172 (2000).
  • Shah AH, Tabayoyong WB, Kundu SD et al Suppression of tumor metastasis by blockade of transforming growth factor-I3 signaling in bone marrow cells through a retroviral-mediated gene therapy in mice. Cancer Res. 62(24), 7135–7138 (2002).
  • •Important paper demonstrating the prometastatic role of TGF-13 in cancer through abrogation of imrnunosurveillance.
  • Muraoka RS, Dumont N, Ritter CA et al. Blockade of TGF-I3 inhibits mammary tumor cell viability, migration and metastases. Clin. Invest. 109(12), 1551–1559 (2002).
  • •Potential therapeutic role of TGF-13 blockage in tumor progression and metastasis.
  • Kulkarni AB, Huh CG, Becker D al Transforming growth factor-I31 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl Acad. Sc]. USA 90(2), 770–774 (1993).
  • •Demonstrating that the lack of TGF-I3 during development of transgenic mice is lethal.
  • Dang H, Geiser AG, Letterio JJ et al SLE-like autoantibodies and Sjogren's syndrome-like lymphoproliferation in TGF-I3 knockout mice. J. Immunol 155(6), 3205–3212 (1995).
  • Yang YA, Dukhanina O, Tang B al Lifetime exposure to a soluble TGF-I3 antagonist protects mice against metastasis without adverse side effects. J. Gun. Invest. 109(12), 1607–1615 (2002). Investigators exposed mice to a TGF-13 antagonist and demonstrated a decrease in metastatic potential.
  • Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J. Transforming growth factor-I3 signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc. Natl Acad. Sc] USA 100(14), 8430 (2003).
  • ••Demonstrates that increased TGF-I3signaling in vivo delays the development of breast cancer but enhances the aggressiveness of established breast cancer.
  • Callahan JF, Burgess JL, Fornwald JA al Identification of novel inhibitors of the transforming growth factor-I31 (TGF-I31) Type I receptor (ALK5). J. Med. Chem. 45(5), 999–1001 (2002).
  • Inman GJ, Nicolas FJ, Callahan JF al SB-431542 is a potent and specific inhibitor of transforming growth factor-I3 superfamily Type I activin receptor-like kinase (ALK) receptors ALK4, ALK5 and ALK7. Mot. Pharmacol 62(1), 65–74 (2002).
  • Eyers PA, Craxton M, Morrice N, Cohen P, Goedert M. Conversion of SB-203580-insensitive MAPK family members to drug-sensitive forms by a single amino-acid substitution. Chem. Biol. 5(6), 321–328 (1998).
  • Laping NJ, Grygielko E, Mathur A et al Inhibition of transforming growth factor (TGF)-pl-induced extracellular matrix with a novel inhibitor of the TGF-I3 Type I receptor kinase activity: SB-431542. Mal Phatmacol 62(1), 58–64 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.