118
Views
19
CrossRef citations to date
0
Altmetric
Review

Immunotherapy of multiple myeloma: the start of a long and tortuous journey

, , &
Pages 1769-1785 | Published online: 10 Jan 2014

References

  • International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br. J. Haematol.121(5), 749–757 (2003).
  • Attal M, Harousseau JL. Autologous peripheral blood progenitor cell transplantation for multiple myeloma. Baillieres Best Pract. Res. Clin. Haematol..12(1–2), 171–191 (1999).
  • Child JA, Morgan GJ, Davies FE et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N. Eng. J. Med.348(19), 1875–1883 (2003).
  • Greipp PR, San Miguel J, Durie BG et al. International staging system for multiple myeloma. J. Clin. Oncol.23(15), 3412–3420 (2005).
  • Palumbo A, Bringhen S, Caravita T et al. Oral melphalan and prednisone chemotherapy plus thalidomide compared with melphalan and prednisone alone in elderly patients with multiple myeloma: randomised controlled trial. Lancet367(9513), 825–831 (2006).
  • Palumbo A, Bertola A, Musto P et al. Oral melphalan, prednisone, and thalidomide for newly diagnosed patients with myeloma. Cancer104(7), 1428–1433 (2005).
  • Facon T, Mary J, Harousseau JL et al. Superiority of melphalan-prednisone (MP) + thalidomide (THAL) over MP and autologous stem cell transplantation in the treatment of newly diagnosed elderly patients with multiple myeloma. J. Clin. Oncol.24(S18) (2006) (Abstract 1).
  • Dingli D, Rajkumar SV, Nowakowski GS et al. Combination therapy with thalidomide and dexamethasone in patients with newly diagnosed multiple myeloma not undergoing upfront autologous stem cell transplantation: a Phase II trial. Haematologica90(12), 1650–1654 (2005).
  • Cavo M, Zamagni E, Tosi P et al. Superiority of thalidomide and dexamethasone over vincristine-doxorubicindexamethasone (VAD) as primary therapy in preparation for autologous transplantation for multiple myeloma. Blood106(1), 35–39 (2005).
  • Sidra G, Williams CD, Russell NH et al. Combination chemotherapy with cyclophosphamide, thalidomide and dexamethasone for patients with refractory, newly diagnosed or relapsed myeloma. Haematologica91(6), 862–863 (2006).
  • Rajkumar SV, Hayman S, Lacy MQ et al. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood106(11), (2005) (Abstract 781).
  • Barlogie B, Jagannath S, Vesole DH et al. Superiority of tandem autologous transplantation over standard therapy for previously untreated multiple myeloma. Blood89(3), 789–793 (1997).
  • Attal M, Harousseau J-L, Facon T et al. Single versus double autologous stem-cell transplantation for multiple myeloma. N. Engl. J. Med.349(26), 2495–2502 (2003).
  • Harousseau JL. Stem cell transplantation in multiple myeloma (0, 1, or 2). Curr. Opin. Oncol.17(2), 93–98 (2005).
  • Brinker BT, Waller EK, Leong T et al. Maintenance therapy with thalidomide improves overall survival after autologous hematopoietic progenitor cell transplantation for multiple myeloma. Cancer106(10), 2171–2180 (2006).
  • Attal M, Harousseau JL, Leyvraz S et al. Maintenance therapy with thalidomide improves survival in multiple myeloma patients. Blood108(10), 3289–3294 (2006).
  • Richardson PG, Barlogie B, Berenson J et al. Extended follow-up of a Phase II trial in relapsed, refractory multiple myeloma: final time-to-event results from the SUMMIT trial. Cancer106(6), 1316–1319 (2006).
  • Richardson PG, Sonneveld P, Schuster MW et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N. Engl. J. Med.352(24), 2487–2498 (2005).
  • Wang M, Knight R, Dimopoulos M et al. Comparison of lenalidomide in combination with dexamethasone to dexamethasone alone in patients who have received prior thalidomide in relapsed or refractory multiple myeloma. Presented at: ASCO Annual Meeting Atlanta, GA, USA, June 2–6 (2006).
  • Gale RP, Horowitz MM, Bortin MM. IBMTR analysis of bone marrow transplants in acute leukaemia. Advisory Committee of the International Bone Marrow Transplant Registry (IBMTR). Bone Marrow Transplant.4(Suppl. 3), 83–84 (1989).
  • Hughes TP, Economou K, Mackinnon S et al. Slow evolution of chronic myeloid leukaemia relapsing after BMT with T-cell depleted donor marrow. Br. J. Haematol.73(4), 462–467 (1989).
  • Kolb H, Mittermuller J, Clemm C et al. Donor leukocyte transfusions for the treatment of recurrent chronic myelogenous leukaemia in marrow transplant patients. Blood76, 2462–2465 (1990).
  • Bensinger W, Buckner C, Anasetti C et al. Allogeneic marrow transplantation for multiple myeloma: an analysis of risk factors on outcome. Blood88(7), 2787–2793 (1996).
  • Corradini P, Voena C, Tarella C et al. Molecular and clinical remission in multiple myeloma: role of autologous and allogeneic transplantation of haematopoietic cells. J. Clin. Oncol.17, 208–215 (1999).
  • Perez-Simon JA, Martino R, Alegre A et al. Chronic but not acute graft-versus-host disease improves outcome in multiple myeloma patients after non-myeloablative allogeneic transplantation. Br. J. Haematol.121(1), 104–108 (2003).
  • Tricot G, Vesole D, Jaganath S et al. Graft-versus-myeloma effect: proof of principle. Blood87, 1196–1199 (1996).
  • Verdonck LF, Petersen EJ, Lokhorst HM et al. Donor leukocyte infusions for recurrent hematologic malignancies after allogeneic bone marrow transplantation: impact of infused and residual donor T cells. Bone Marrow Transplant.22(11), 1057–1063 (1998).
  • Crawley C, Lalancette M, Szydlo R et al. Outcomes for reduced-intensity allogeneic transplantation for multiple myeloma: an analysis of prognostic factors from the Chronic Leukaemia Working Party of the EBMT. Blood105(11), 4532–4539 (2005).
  • Lokhorst HM, Schattenberg A, Cornelissen JJ, Thomas LL, Verdonck LF. Donor leukocyte infusions are effective in relapsed multiple myeloma after allogeneic bone marrow transplantation. Blood90(10), 4206–4211 (1997).
  • Lokhorst HM, Schattenberg A, Cornelissen JJ et al. Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome. J. Clin. Oncol.18(16), 3031–3037 (2000).
  • Salama M, Nevill T, Marcellus D et al. Donor leukocyte infusions for multiple myeloma. Bone Marrow Transplant.26(11), 1179–1184 (2000).
  • Huff CA, Jones RJ. Bone marrow transplantation for multiple myeloma: where we are today. Curr. Opin. Oncol.14(2), 147–151 (2002).
  • Cook G, Campbell JD. Immune regulation in multiple myeloma: the host-tumour conflict. Blood Rev.13(3), 151–162 (1999).
  • Kwak LW, Taub DD, Duffey PL et al. Transfer of myeloma idiotype-specific immunity from an actively immunised marrow donor. Lancet345(8956), 1016–1020 (1995).
  • Yiwen L, Bendandi M, Deng Y et al. Tumour-specific recognition of human myeloma cells by idiotype-induced CD8+ T cells. Blood96, 2828–2833 (2000).
  • Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell106(3), 255–258 (2001).
  • Heath WR, Belz GT, Behrens GM et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev.199, 9–26 (2004).
  • Shigematsu H, Iwagaki H, Mizuno S, Akashi K. The majority of plasmacytoid dendritic cells originate from myeloid progenitors in murine hematopoiesis. Exp. Hematology31(7 Suppl. 1), S195 (2003).
  • Matzinger P. An innate sense of danger. Semin. Immunol.10(5), 399–415 (1998).
  • Ohl L, Mohaupt M, Czeloth N et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity21(2), 279–188 (2004).
  • Beckmann JH, Yan S, Luhrs H et al. Prolongation of allograft survival in ccr7-deficient mice. Transplantation77(12), 1809–1814 (2004).
  • Qu C, Edwards EW, Tacke F et al. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J. Exp. Med.200(10), 1231–1241 (2004).
  • Sebastiani S, Albanesi C, De PO et al. The role of chemokines in allergic contact dermatitis. Arch. Dermatol. Res.293(11), 552–559 (2002).
  • Marsland BJ, Battig P, Bauer M et al. CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. Immunity22(4), 493–505 (2005).
  • Granucci F, Vizzardelli C, Pavelka N et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat. Immunol.2(9), 882–888 (2001).
  • Adams S, O’Neill D, Bhardwaj N. Maturation matters: importance of maturation for antitumor immunity of dendritic cell vaccines. J. Clin. Oncol.22(18), 3834–3835 (2004).
  • Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med.193(2), 233–238 (2001).
  • Liu YJ, Kanzler H, Soumelis V, Gilliet M. Dendritic cell lineage, plasticity and cross-regulation. Nat. Immunol.2(7), 585–589 (2001).
  • Jonuleit H, Schmitt E, Steinbrink K, Enk AH. Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol.22(7), 394–400 (2001).
  • Fearnley DB, McLellan AD, Mannering SI, Hock BD, Hart DN. Isolation of human blood dendritic cells using the CMRF-44 monoclonal antibody: implications for studies on antigen-presenting cell function and immunotherapy. Blood89(10), 3708–3716 (1997).
  • Lopez JA, Bioley G, Turtle CJ et al. Single step enrichment of blood dendritic cells by positive immunoselection. J. Immunol. Methods274(1–2), 47–61 (2003).
  • MacDonald KP, Munster DJ, Clark GJ et al. Characterization of human blood dendritic cell subsets. Blood100(13), 4512–4520 (2002).
  • Dzionek A, Fuchs A, Schmidt P et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol.165(11), 6037–6046 (2000).
  • Morse MA, Nair S, Fernandez-Casal M et al. Preoperative mobilization of circulating dendritic cells by Flt3 ligand administration to patients with metastatic colon cancer. J. Clin. Oncol.18(23), 3883–3893 (2000).
  • Maraskovsky E, Brasel K, Teepe M et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med.184(5), 1953–1962 (1996).
  • Brown RD, Pope B, Murray A et al. Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7–1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-β and interleukin-10. Blood98(10), 2992–2998 (2001).
  • Ratta M, Fagnoni F, Curti A et al. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood100(1), 230–237 (2002).
  • Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature360(6401), 258–261 (1992).
  • Zhu K, Shen Q, Ulrich M, Zheng M. Human monocyte-derived dendritic cells expressing both chemotactic cytokines IL-8, MCP-1, RANTES and their receptors, and their selective migration to these chemokines. Chinese Med. J.113(12), 1124–1128 (2000).
  • Ferlazzo G, Klein J, Paliard X, Wei WZ, Galy A. Dendritic cells generated from CD34+ progenitor cells with flt3 ligand, c-kit ligand, GM-CSF, IL-4, and TNF-α are functional antigen-presenting cells resembling mature monocyte-derived dendritic cells. J. Immunother.23(1), 48–58 (2000).
  • Caux C, Massacrier C, Dezutter-Dambuyant C et al. Human dendritic Langerhans cells generated in vitro from CD34+ progenitors can prime naive CD4+ T cells and process soluble antigen. J. Immunol.155(11), 5427–5435 (1995).
  • Dong R, Cwynarski K, Entwistle A et al. Dendritic cells from CML patients have altered actin organization, reduced antigen processing, and impaired migration. Blood101(9), 3560–3567 (2003).
  • Thurnher M, Papesh C, Ramoner R et al.In vitro generation of CD83+ human blood dendritic cells for active tumor immunotherapy. Exp. Hematol.25(3), 232–237 (1997).
  • Romani N, Reider D, Heuer M et al. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J. Immunol. Methods196(2), 137–151 (1996).
  • Tarte K, Fiol G, Rossi JF, Klein B. Extensive characterization of dendritic cells generated in serum-free conditions: regulation of soluble antigen uptake, apoptotic tumor cell phagocytosis, chemotaxis and T cell activation during maturation in vitro. Leukemia14(12), 2182–2192 (2000).
  • De Vries IJ, Lesterhuis WJ, Scharenborg NM et al. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin. Cancer Res.9(14), 5091–5100 (2003).
  • De Vries IJ, Krooshoop DJ, Scharenborg NM et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res.63(1), 12–17 (2003).
  • Cook G, Campbell JD, Carr CE, Boyd KS, Franklin IM. Transforming growth factor β from multiple myeloma cells inhibits proliferation and IL-2 responsiveness in T lymphocytes. J. Leukocyte Biol.66(6), 981–988 (1999).
  • Brown R, Murray A, Pope B et al. Either interleukin-12 or interferon-γ can correct the dendritic cell defect induced by transforming growth factor β in patients with myeloma. Br. J. Haematol.125(6), 743–748 (2004).
  • Villunger A, Egle A, Marschitz I et al. Constitutive expression of Fas (Apo-1/CD95) ligand on multiple myeloma cells: a potential mechanism of tumor-induced suppression of immune surveillance. Blood90(1), 12–20 (1997).
  • Oyama T, Ran S, Ishida T et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-κ B activation in hemopoietic progenitor cells. J. Immunol.160(3), 1224–1232 (1998).
  • Gimmi CD, Morrison BW, Mainprice BA et al. Breast cancer-associated antigen, DF3/MUC1, induces apoptosis of activated human T cells. Nat. Med.2(12), 1367–1370 (1996).
  • Agrawal B, Krantz MJ, Reddish MA, Longenecker BM. Cancer-associated MUC1 mucin inhibits human T-cell proliferation, which is reversible by IL-2. Nat. Med.4(1), 43–49 (1998).
  • Treon SP, Maimonis P, Chauhan D, Anderson KC. Soluble Muc-1 is elevated in multiple myeloma (MM) bone marrow (BM) plasma and inhibits T cell proliferation. Blood92(10 Suppl. 1), A411 (1998).
  • Sauter B, Albert ML, Francisco L et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med.191(3), 423–434 (2000).
  • Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med.5(11), 1249–1255 (1999).
  • Curiel TJ, Coukos G, Zou L et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med.10(9), 942–949 (2004).
  • Abe M, Hiura K, Wilde J et al. Role for macrophage inflammatory protein (MIP)-1α and MIP-1β in the development of osteolytic lesions in multiple myeloma. Blood100(6), 2195–2202 (2002).
  • Choi SJ, Cruz JC, Craig F et al. Macrophage inflammatory protein 1-α is a potential osteoclast stimulatory factor in multiple myeloma. Blood96(2), 671–675 (2000).
  • Hashimoto T, Abe M, Oshima T et al. Ability of myeloma cells to secrete macrophage inflammatory protein (MIP)-1α and MIP-1β correlates with lytic bone lesions in patients with multiple myeloma. Br. J. Haematol.125(1), 38–41 (2004).
  • Magrangeas F, Nasser V, Avet-Loiseau H et al. Gene expression profiling of multiple myeloma reveals molecular portraits in relation to the pathogenesis of the disease. Blood101(12), 4998–5006 (2003).
  • Terpos E, Politou M, Szydlo R et al. Serum levels of macrophage inflammatory protein-1 α (MIP-1α) correlate with the extent of bone disease and survival in patients with multiple myeloma. Br. J. Haematol.123(1), 106–109 (2003).
  • Oyajobi BO, Franchin G, Williams PJ et al. Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood102(1), 311–319 (2003).
  • Lentzsch S, Gries M, Janz M et al. Macrophage inflammatory protein 1-α (MIP-1 α ) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood101(9), 3568–3573 (2003).
  • Michigami T, Shimizu N, Williams PJ et al. Cell–cell contact between marrow stromal cells and myeloma cells via VCAM-1 and α 4β 1-integrin enhances production of osteoclast-stimulating activity. Blood96(5), 1953–1960 (2000).
  • Triozzi PL, Khurram R, Aldrich WA et al. Intratumoral injection of dendritic cells derived in vitro in patients with metastatic cancer. Cancer89(12), 2646–2654 (2000).
  • Blocklet D, Toungouz M, Kiss R et al.111In-oxine and 99mTc-HMPAO labelling of antigen-loaded dendritic cells: in vivo imaging and influence on motility and actin content. Eur. J. Nucl. Med. Mol. Imag.30(3), 440–447 (2003).
  • Yi Q, Freeman ME, Szmania S et al. Intranodal vaccination with idiotype-pulsed dendritic cells induces potent and long-lasting cellular and humoral immune responses in myeloma patients. Blood102 (2003) (Abstract 5277).
  • Beckhove P, Witzens M, Choi C et al. MUC1-reactive cytotoxic memory T cells in bone marrow of multiple myeloma patients. Blood102 (2003) (Abstract 5227).
  • Yi Q, Osterborg A, Bergenbrant S et al. Idiotype-reactive T-cell subsets and tumor load in monoclonal gammopathies. Blood86(8), 3043–3049 (1995).
  • van Rhee F, Szmania SM, Zhan F et al. NY-ESO-1 is highly expressed in poor prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood105(10), 3939–3944 (2005).
  • Brown RD, Yuen E, Nelson M, Gibson J, Joshua D. The prognostic significance of T cell receptor β gene rearrangements and idiotype-reactive T cells in multiple myeloma. Leukemia11(8), 1312–1317 (1997).
  • Raitakari M, Brown RD, Gibson J, Joshua DE. T cells in myeloma. Hematol. Oncol.21(1), 33–42 (2003).
  • Mileshkin L, Gambell P, Ritchie D et al. The prognostic effect of CD57+ cytotoxic T cells in patients with multiple myeloma treated with thalidomide. Clin. Cancer Res. (2006) (In Press).
  • Noonan K, Matsui W, Serafini P et al. Activated marrow-infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors. Cancer Res.65(5), 2026–2034 (2005).
  • Teague RM, Sather BD, Sacks JA et al. Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors. Nat. Med.12(3), 335–341 (2006).
  • Li Y, Bendandi M, Deng Y et al. Tumor-specific recognition of human myeloma cells by idiotype-induced CD8+ T cells. Blood96(8), 2828–2833 (2000).
  • Wen YJ, Barlogie B, Yi Q. Idiotype-specific cytotoxic T lymphocytes in multiple myeloma: evidence for their capacity to lyse autologous primary tumor cells. Blood97(6), 1750–1755 (2001).
  • Osterborg A, Yi Q, Henriksson L et al. Idiotype immunization combined with granulocyte-macrophage colony-stimulating factor in myeloma patients induced type I, major histocompatibility complex-restricted, CD8- and CD4-specific T-cell responses. Blood91(7), 2459–2466 (1998).
  • Rasmussen T, Hansson L, Osterborg A, Johnsen HE, Mellstedt H. Idiotype vaccination in multiple myeloma induced a reduction of circulating clonal tumor B cells. Blood101(11), 4607–4610 (2003).
  • Stritzke J, Zunkel T, Steinmann J et al. Therapeutic effects of idiotype vaccination can be enhanced by the combination of granulocyte-macrophage colony-stimulating factor and interleukin 2 in a myeloma model. Br. J. Haematol.120(1), 27–35 (2003).
  • King CA, Spellerberg MB, Zhu D et al. DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat. Med.4(11), 1281–1286 (1998).
  • Hemmi H, Takeuchi O, Kawai T et al. A toll-like receptor recognizes bacterial DNA. Nature408(6813), 740–745 (2000).
  • Coscia M, Mariani S, Battaglio S et al. Long-term follow-up of idiotype vaccination in human myeloma as a maintenance therapy after high-dose chemotherapy. Leukemia18(1), 139–145 (2004).
  • Bendandi M, Gocke CD, Kobrin CB et al. Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma. Nat. Med.5(10), 1171–1177 (1999).
  • Redfern CH, Guthrie TH, Bessudo A et al. Phase II trial of idiotype vaccination in previously treated patients with indolent non-Hodgkin's lymphoma resulting in durable clinical responses. J. Clin. Oncol.24(19), 3107–3112 (2006).
  • Borrello I, Biedrzycki B, Sheets N et al. Autologous tumor combined with a GM–CSF-secreting cell line vaccine (GVAX®) following autologous stem cell transplant (ASCT) in multiple myeloma. Blood104(11) (2004) (Abstract 440).
  • Reichardt V, Okada C, Liso A et al. Idiotype vaccination using dendritic cells afterautologous peripheral blood stem cell transplantation for multiple myeloma – a feasibility study. Blood93, 2411–2419 (1999).
  • Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S et al. Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol. Blood Marrow Transplant.6(6), 621–627 (2000).
  • Lim SH, Bailey-Wood R. Idiotypic protein-pulsed dendritic cell vaccination in multiple myeloma. Int. J. Cancer83(2), 215–222 (1999).
  • Reichardt VL, Milazzo C, Brugger W et al. Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells. Haematologica88(10), 1139–1149 (2003).
  • Wen YJ, Min R, Tricot G, Barlogie B, Yi Q. Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma: promising effector cells for immunotherapy. Blood99(9), 3280–3285 (2002).
  • Szmania SM, Rosen NA, Freeman J et al. Cryopreserved tumor protein loaded dendritic cell vaccines induce potent immune responses in patients with poor prognosis multiple myeloma. Blood102, (2003) (Abstract 1652).
  • Ridolfi R, Riccobon A, Galassi R et al. Evaluation of in vivo labelled dendritic cell migration in cancer patients. J. Transl. Med.2(1), 27 (2004).
  • Feijoo E, Alfaro C, Mazzolini G et al. Dendritic cells delivered inside human carcinomas are sequestered by interleukin-8. Int. J. Cancer116(2), 275–281 (2005).
  • Rice A, Hart D. Technology evaluation: APC-80200, Dendreon. Curr. Opin. Mol. Ther.4(5), 523–527 (2002).
  • Rew SB, Peggs K, Sanjuan I et al. Generation of potent antitumor CTL from patients with multiple myeloma directed against HM1.24. Clin. Cancer Res.11(9), 3377–3384 (2005).
  • Jalili A, Ozaki S, Hara T et al. Induction of HM1.24 peptide-specific cytotoxic T lymphocytes by using peripheral-blood stem-cell harvests in patients with multiple myeloma. Blood106(10), 3538–3545 (2005).
  • Azuma T, Otsuki T, Kuzushima K et al. Myeloma cells are highly sensitive to the granule exocytosis pathway mediated by WT1-specific cytotoxic T lymphocytes. Clin. Cancer Res.10(21), 7402–7412 (2004).
  • Dhodapkar KM, Krasovsky J, Williamson B, Dhodapkar MV. Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J. Exp. Med.195(1), 125–133 (2002).
  • Batchu RB, Moreno AM, Szmania SM et al. Protein transduction of dendritic cells for NY-ESO-1-based immunotherapy of myeloma. Cancer Res.65(21), 10041–10049 (2005).
  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α−chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol.155(3), 1151–1164 (1995).
  • Asano M, Toda M, Sakaguchi N, Sakaguchi S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med.184(2), 387–396 (1996).
  • Jonuleit H, Giesecke-Tuettenberg A, Tuting T et al. A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int. J. Cancer93(2), 243–251 (2001).
  • Sakaguchi S, Sakaguchi N, Shimizu J et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev.182, 18–32 (2001).
  • Prabhala R, Neri P, Tassone P et al. Dysregulated CD4+CD25+ T-regulatory cells and TLRs in myeloma. Blood104(11) (2004) (Abstract 2466).
  • Banerjee D, Dhodapkar MV, Matayeva E, Steinman RM, Dhodapkar KM. Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine matured DCs in myeloma patients. Blood108(8), 2655–2661 (2006).
  • Ahmadzadeh M, Rosenberg SA. Il-2 administration increases CD4+ CD25hi FoxP3+ regulatory T cells in cancer patients. Blood107(6), 2409–2414 (2006).
  • Mesel-lemoine M, Cherai M, Le Gouvello S et al. Initial depletion of regulatory T cells: the missing solution to preserve the immune functions of T lymphocytes designed for cell therapy. Blood107(1), 381–388 (2006).
  • Campbell JD, Cook G, Robertson SE et al. Suppression of IL-2-induced T cell proliferation and phosphorylation of STAT3 and STAT5 by tumor-derived TGF β is reversed by IL-15. J. Immunol.167(1), 553–561 (2001).
  • Mariani S, Coscia M, Even J et al. Severe and long-lasting disruption of T-cell receptor diversity in human myeloma after high-dose chemotherapy and autologous peripheral blood progenitor cell infusion. Br. J. Haematol.113(4), 1051–1059 (2001).
  • Vij R, Borrello I, Martin T et al. A Phase I/II study of Xcellerated T cells after autologous peripheral blood stem cell transplantation in patients with multiple myeloma. Blood102 (2003) (Abstract 139).
  • Sze DM, Brown RD, Yang S et al. Clonally expanded T cells in myeloma with a late memory/effector phenotype are associated with improved survival. Blood102 (2003) (Abstract 3451).
  • Rosenberg SA, Yannelli JR, Yang JC et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J. Natl Cancer Inst.86(15), 1159–1166 (1994).
  • Morgan RA, Dudley ME, Wunderlich JR et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science314(5796), 126–129 (2006).
  • Jones E, Dahm-Vicker M, Simon AK et al. Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immunol.2, 1 (2002).
  • Vela-Ojeda J, Esparza MA, Reyes-Maldonado E et al. CD4+ CD25+ lymphocyte and dendritic cell mobilization with intermediate doses of recombinant human granulocyte colony-stimulating factor in healthy donors. Stem Cells Dev.14(3), 310–316 (2005).
  • Sutmuller RP, van Duivenvoorde LM, van Elsas A et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med.194(6), 823–832 (2001).
  • Salazar-Mather TP, Orange JS, Biron CA. Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1α (MIP-1α)-dependent pathways. J. Exp. Med.187(1), 1–14 (1998).
  • Smyth MJ, Thia KY, Street SE et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med.191(4), 661–668 (2000).
  • Ljunggren HG, Karre K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol. Today11(7), 237–244 (1990).
  • Ferlazzo G, Munz C. NK cell compartments and their activation by dendritic cells. J. Immunol.172(3), 1333–1339 (2004).
  • Andrews DM, Scalzo AA, Yokoyama WM, Smyth MJ, Degli-Esposti MA. Functional interactions between dendritic cells and NK cells during viral infection. Nat. Immunol.4(2), 175–181 (2003).
  • Ferlazzo G, Tsang ML, Moretta L et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med.195(3), 343–351 (2002).
  • Zheng C, Ostad M, Andersson M et al. Natural cytotoxicity to autologous antigen-pulsed dendritic cells in multiple myeloma. Br. J. Haematol.118(3), 778–785 (2002).
  • Moretta L, Ferlazzo G, Mingari MC, Melioli G, Moretta A. Human natural killer cell function and their interactions with dendritic cells. Vaccine21(2), S38–S42 (2003).
  • Frohn C, Hoppner M, Schlenke P et al. Anti-myeloma activity of natural killer lymphocytes. Br. J. Haematol.119(3), 660–664 (2002).
  • Gonzalez M, San Miguel JF, Gascon A et al. Increased expression of natural-killer-associated and activation antigens in multiple myeloma. Am. J. Hematol.39(2), 84–89 (1992).
  • El-Sherbiny YM, Davies FE, Cook G et al. NK cell repertoire in myeloma and the impact of thalidomide. Blood102(11) (2003) (Abstract 1617).
  • Carbone E, Neri P, Mesuraca M et al. HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood105(1), 251–258 (2005).
  • Dhodapkar MV, Geller MD, Chang DH et al. A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J. Exp. Med.197(12), 1667–1676 (2003).
  • Porrata LF, Gastineau DA, Padley D, Bundy K, Markovic SN. Re-infused autologous graft natural killer cells correlates with absolute lymphocyte count recovery after autologous stem cell transplantation. Leuk. Lymphoma44(6), 997–1000 (2003).
  • Marten A, Renoth S, von Lilienfeld-Toal M et al. Enhanced lytic activity of cytokine-induced killer cells against multiple myeloma cells after co-culture with idiotype-pulsed dendritic cells. Haematologica86(10), 1029–1037 (2001).
  • Smyth MJ, Crowe NY, Pellicci DG et al. Sequential production of interferon-γ by NK1.1+ T cells and natural killer cells is essential for the antimetastatic effect of α-galactosylceramide. Blood99(4), 1259–1266 (2002).
  • Chang DH, Liu N, Klimek V et al. Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: therapeutic implications. Blood108(2), 618–621 (2006).
  • Kitamura H, Iwakabe K, Yahata T et al. The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med.189(7), 1121–1128 (1999).
  • Hermans IF, Silk JD, Gileadi U et al. NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J. Immunol.171(10), 5140–5147 (2003).
  • Galimberti S, Benedetti E, Morabito F et al. Different γ/δ T clones sustain GVM and GVH effects in multiple myeloma patients after non-myeloablative transplantation. Leuk. Res.30(5), 529–535 (2006).
  • von Lilienfeld-Toal M, Nattermann J, Feldmann G et al. Activated γδ T cells express the natural cytotoxicity receptor natural killer p 44 and show cytotoxic activity against myeloma cells. Clin. Exp. Immunol.144(3), 528–533 (2006).
  • Wilhelm M, Kunzmann V, Eckstein S et al. Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood102(1), 200–206 (2003).
  • Chen S, Zani C, Khouri Y et al. Design of a genetic immunotoxin to eliminate toxin immunogenicity. Gene Ther.2, 116–123 (1995).
  • Yang JC, Haworth L, Sherry RM et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med.349(5), 427–434 (2003).
  • Ono K, Ohtomo T, Yoshida K et al. The humanized anti-HM1.24 antibody effectively kills multiple myeloma cells by human effector cell-mediated cytotoxicity. Mol. Immunol.36(6), 387–395 (1999).
  • Treon SP, Agus TB, Link B et al. CD20-directed antibody-mediated immunotherapy induces responses and facilitates hematologic recovery in patients with Waldenstrom's macroglobulinemia. J. Immunother.24(3), 272–279 (2001).
  • Lim SH, Zhang Y, Wang Z et al. Rituximab administration following autologous stem cell transplantation for multiple myeloma is associated with severe IgM deficiency. Blood103(5), 1971–1972 (2004).
  • Musto P, Carella AM Jr, Greco MM et al. Short progression-free survival in myeloma patients receiving rituximab as maintenance therapy after autologous transplantation. Br. J. Haematol.123(4), 746–747 (2003).
  • Matsui W, Huff CA, Wang Q et al. Characterization of clonogenic multiple myeloma cells. Blood103(6), 2332–2336 (2004).
  • Jones RJ. Differentiation of cancer stem cells. Exp. Hematol.31(7 Suppl. 1), S136 (2003).
  • Musto P, Carella AM Jr, Greco MM et al. Short progression-free survival in myeloma patients receiving rituximab as maintenance therapy after autologous transplantation. Br. J. Haematol.123(4), 746–747 (2003).
  • Lotze MT, Grimm EA, Mazumder A, Strausser JL, Rosenberg SA. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res.41(11 Pt 1), 4420–4425 (1981).
  • Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J. Exp. Med.155(6), 1823–1841 (1982).
  • Rosenberg SA, Lotze MT, Muul LM et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med.313(23), 1485–1492 (1985).
  • Rosenberg SA, Lotze MT, Muul LM et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N. Engl. J. Med.316(15), 889–897 (1987).
  • Lotze MT, Chang AE, Seipp CA et al. High-dose recombinant interleukin 2 in the treatment of patients with disseminated cancer. Responses, treatment-related morbidity, and histologic findings. JAMA256(22), 3117–3124 (1986).
  • Yang JC, Sherry RM, Steinberg SM et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J. Clin. Oncol.21(16), 3127–3132 (2003).
  • Dudley ME, Wunderlich JR, Yang JC et al. A Phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J. Immunother.25(3), 243–251 (2002).
  • Ravaud A, Negrier S, Cany L et al. Subcutaneous low-dose recombinant interleukin 2 and α-interferon in patients with metastatic renal cell carcinoma. Br. J. Cancer69(6), 1111–1114 (1994).
  • Kiss TL, Spaner D, Daly AS et al. Complete remission of tumour with interleukin 2 therapy in a patient with non-Hodgkin's lymphoma post allogeneic bone marrow transplant associated with polyclonal T-cell bone marrow lymphocytosis. Br. J. Haematol.120(3), 523–525 (2003).
  • Yi Q, Desikan R, Barlogie B, Munshi N. Optimizing dendritic cell-based immunotherapy in multiple myeloma. Br. J. Haematol.117(2), 297–305 (2002).
  • Shimizu K, Fields RC, Giedlin M, Mule JJ. Systemic administration of interleukin 2 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines. Proc. Natl Acad. Sci. USA96(5), 2268–2273 (1999).
  • Gluck WL, Hurst D, Yuen A et al. Phase I studies of interleukin (IL)-2 and rituximab in B-cell non-hodgkin's lymphoma: IL-2 mediated natural killer cell expansion correlations with clinical response. Clin. Cancer Res.10(7), 2253–2264 (2004)
  • Bollard CM, Savoldo B, Rooney CM, Heslop HE. Adoptive T-cell therapy for EBV-associated post-transplant lymphoproliferative disease. Acta Haematol.110(2–3), 139–148 (2003).
  • Gratwohl A, Hermans J, Goldman JM et al. Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Lancet352(9134), 1087–1092 (1998).
  • van Rhee F, Savage D, Blackwell J et al. Adoptive immunotherapy for relapse of chronic myeloid leukemia after allogeneic bone marrow transplant: equal efficacy of lymphocytes from sibling and matched unrelated donors. Bone Marrow Transplant.21(10), 1055–1061 (1998).
  • Hsu FJ, Caspar CB, Czerwinski D et al. Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma – long-term results of a clinical trial. Blood89(9), 3129–3135 (1997).
  • van Rhee F, Szmania SM, Zhan F et al. NY-ESO-1 is highly expressed in poor prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood105(10), 3939–3944 (2005).
  • Barratt-Boyes SM. Making the most of mucin: a novel target for tumor immunotherapy. Cancer Immunol. Immunother.43(3), 142–151 (1996).
  • Timmerman JM, Czerwinski DK, Davis TA et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood99(5), 1517–1526 (2002).
  • Kotera Y, Shimizu K, Mule JJ. Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Res.61(22), 8105–8109 (2001).
  • Hayashi T, Hideshima T, Akiyama M et al.Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes. Blood102(4), 1435–1442 (2003).
  • Milazzo C, Reichardt VL, Muller MR, Grunebach F, Brossart P. Induction of myeloma-specific cytotoxic T cells using dendritic cells transfected with tumor-derived RNA. Blood101(3), 977–982 (2003).
  • Elrick LJ, Jorgensen HG, Mountford JC, Holyoake TL. Punish the parent not the progeny. Blood105(5), 1862–1866 (2005).
  • Adams S, O’Neill DW, Bhardwaj N. Recent advances in dendritic cell biology. J. Clin. Immunol.25(3), 177–188 (2005).
  • Randolph GJ, Sanchez-Schmitz G, Angeli V. Factors and signals that govern the migration of dendritic cells via lymphatics: recent advances. Springer Semin. Immunopathol.26(3), 273–287 (2005).
  • Ghiringhelli F, Puig PE, Roux S et al. Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J. Exp. Med.202(7), 919–929 (2005).
  • Rosenberg SA, Yannelli JR, Yang JC et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J. Natl Cancer Inst.86(15), 1159–1166 (1994).
  • Rapoport AP, Stadtmauer EA, Aqui N et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat. Med.11(11), 1230–1237 (2005).
  • Thompson M, Wall DM, Hicks RJ, Prince HM. In vivo tracking for cell therapies. Quarterly J. Nucl. Med. Mol. Imag.49(4), 339–348 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.