149
Views
5
CrossRef citations to date
0
Altmetric
Review

Emerging role of new transgenic mouse models in glioma research

, &
Pages S7-S13 | Published online: 10 Jan 2014

References

  • Wikstrand C J, McLendon RE, Friedman AH, Bigner DD. Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII. Cancer Res.57(18), 4130–4140 (1997).
  • Heimberger AB, Hlatky R, Suki D et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin. Cancer Res.11(4), 1462–1466 (2005).
  • Finkelstein SD, Black P, Nowak TP, Hand CM, Christensen S, Finch PW. Histological characteristics and expression of acidic and basic fibroblast growth factor genes in intracerebral xenogeneic transplants of human glioma cells. Neurosurgery34(1), 136–143 (1994).
  • Gutmann DH, Donahoe J, Brown T, James CD, Perry A. Loss of neurofibromatosis 1 (NF1) gene expression in NF1-associated pilocytic astrocytomas. Neuropathol. Appl. Neurobiol.26(4), 361–367 (2000).
  • Lau N, Feldkamp MM, Roncari L et al. Loss of neurofibromin is associated with activation of RAS/MAPK and PI3-K/AKT signaling in a neurofibromatosis 1 astrocytoma. J. Neuropathol. Exp. Neurol.59(9), 759–767 (2000).
  • Li FP, Fraumeni JF Jr. Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. J. Natl Cancer Inst.43(6), 1365–1373 (1969).
  • Bogler O, Huang HJ, Cavenee WK. Loss of wild-type p53 bestows a growth advantage on primary cortical astrocytes and facilitates their in vitro transformation. Cancer Res.55(13), 2746–2751 (1995).
  • Bogler O, Nagane M, Gillis J, Huang HJ, Cavenee WK. Malignant transformation of p53-deficient astrocytes is modulated by environmental cues in vitro. Cell Growth Differ.10(2), 73–86 (1999).
  • Yahanda AM, Bruner JM, Donehower LA, Morrison RS. Astrocytes derived from p53-deficient mice provide a multistep in vitro model for development of malignant gliomas. Mol. Cell Biol.15(8), 4249–4259 (1995).
  • Bruner JM, Saya H, Moser RP. Immunocytochemical detection of p53 in human gliomas. Mod. Pathol.4(5), 671–674 (1991).
  • Frankel RH, Bayona W, Koslow M, Newcomb EW. p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation frequency. Cancer Res.52(6), 1427–1433 (1992).
  • Nister M, Libermann TA, Betsholtz C et al. Expression of messenger RNAs for platelet-derived growth factor and transforming growth factor-α and their receptors in human malignant glioma cell lines. Cancer Res.48(14), 3910–3918 (1988).
  • Westermark B, Heldin CH, Nister M. Platelet-derived growth factor in human glioma. Glia15(3), 257–263 (1995).
  • Smith JS, Wang XY, Qian J et al. Amplification of the platelet-derived growth factor receptor-A (PDGFRA) gene occurs in oligodendrogliomas with grade IV anaplastic features. J. Neuropathol. Exp. Neurol.59(6), 495–503 (2000).
  • Fleming TP, Saxena A, Clark WC et al. Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res.52(16), 4550–4553 (1992).
  • Morrison RS, Yamaguchi F, Saya H et al. Basic fibroblast growth factor and fibroblast growth factor receptor I are implicated in the growth of human astrocytomas. J. Neurooncol.18(3), 207–216 (1994).
  • Yamaguchi F, Saya H, Bruner JM, Morrison RS. Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas. Proc. Natl Acad. Sci. USA91(2), 484–488 (1994).
  • Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP. Genes for epidermal growth factor receptor, transforming growth factor α, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res.51(8), 2164–2172 (1991).
  • Bigner SH, Humphrey PA, Wong AJ et al. Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res.50(24), 8017–8122 (1990).
  • Humphrey PA, Wong AJ, Vogelstein B et al. Amplification and expression of the epidermal growth factor receptor gene in human glioma xenografts. Cancer Res.48(8), 2231–2238 (1988).
  • Libermann TA, Nusbaum HR, Razon N et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature313(5998), 144–147 (1985).
  • Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc. Natl Acad. Sci. USA84(19), 6899–6903 (1987).
  • Burns KL, Ueki K, Jhung SL, Koh J, Louis DN. Molecular genetic correlates of p16, cdk4, and pRb immunohistochemistry in glioblastomas. J. Neuropathol. Exp. Neurol.57(2), 122–130 (1998).
  • Henson JW, Schnitker BL, Correa KM et al. The retinoblastoma gene is involved in malignant progression of astrocytomas. Ann. Neurol.36(5), 714–721 (1994).
  • Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN. CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res.56(1), 150–153 (1996).
  • Nozaki M, Tada M, Kobayashi H et al. Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progression. Neuro-oncology1(2), 124–137 (1999).
  • He J, Olson JJ, James CD. Lack of p16INK4 or retinoblastoma protein (pRb), or amplification-associated overexpression of cdk4 is observed in distinct subsets of malignant glial tumors and cell lines. Cancer Res.55(21), 4833–4836 (1995).
  • Ichimura K, Schmidt EE, Goike HM, Collins VP. Human glioblastomas with no alterations of the CDKN2A (p16INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene13(5), 1065–1072 (1996).
  • Schmidt EE, Ichimura K, Reifenberger G, Collins VP. CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res.54(24), 6321–6324 (1994).
  • Ivanchuk SM, Mondal S, Dirks PB, Rutka JT. The INK4A/ARF locus: role in cell cycle control and apoptosis and implications for glioma growth. J. Neurooncol.51(3), 219–229 (2001).
  • Swenberg JA, Koestner A, Wechsler W. The induction of tumors of the nervous system with intravenous methylnitrosourea. Lab. Invest.26(1), 74–85 (1972).
  • Swenberg JA, Koestner A, Wechsler W. The induction of tumors of the nervous system in rats with intravenous methylnitrosourea (MNU). J. Neuropathol. Exp. Neurol.30(1), 122 (1971).
  • Kleihues P, Lanto, PL, Magee PN. Chemical carcinogenesis in the nervous system. Int. Rev. Exp. Pathol.15, 153–232 (1976).
  • Aguzzi A, Brandner S, Isenmann S, Steinbach JP, Sure U. Transgenic and gene disruption techniques in the study of neurocarcinogenesis. Glia15(3), 348–364 (1995).
  • Weissenberger J, Steinbach JP, Malin G, Spada S, Rulicke T, Aguzzi A. Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice. Oncogene14(17), 2005–2013 (1997).
  • Holland EC, Li Y, Celestino J et al. Astrocytes give rise to oligodendrogliomas and astrocytomas after gene transfer of polyoma virus middle T antigen in vivo. Am. J. Pathol.157(3), 1031–1037 (2000).
  • Jacks T, Remington L, Williams BO et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol.4(1), 1–7 (1994).
  • Zhu Y, Romero MI, Ghosh P et al. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev.15(7), 859–876 (2001).
  • Macleod KF, Jacks T. Insights into cancer from transgenic mouse models. J. Pathol.187(1), 43–60 (1999).
  • Sauer B. Inducible gene targeting in mice using the Cre/lox system. Methods14(4), 381–392 (1998).
  • Holland EC, Varmus HE. Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc. Natl Acad. Sci. USA95(3), 1218–1223 (1998).
  • Holland EC, Hively WP, DePinho RA, Varmus HE. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev.12(23), 3675–3685 (1998).
  • Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol.6(3), 217–223; discussion 223–224 (1996).
  • Yoon KS, Lee MC, Kang SS et al. p53 mutation and epidermal growth factor receptor overexpression in glioblastoma. J. Korean Med. Sci.16(4), 481–488 (2001).
  • Hayashi Y, Ueki K, Waha A, Wiestler OD, Louis DN, von Deimling A. Association of EGFR gene amplification and CDKN2 (p16/MTS1) gene deletion in glioblastoma multiforme. Brain Pathol.7(3), 871–875 (1997).
  • Bachoo RM, Maher EA, Ligon KL et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell1(3), 269–277 (2002).
  • Ding H, Shannon P, Lau N et al. Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res.63(5), 1106–1113 (2003).
  • Donehower LA, Harvey M, Slagle BL et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature356(6366), 215–221 (1992).
  • Zhu Y, Guignard F, Zhao D et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell8(2), 119–130 (2005).
  • Gomori E, Doczi T, Pajor L, Matolcsy A. Sporadic p53 mutations and absence of ras mutations in glioblastomas. Acta Neurochir. (Wien)141(6), 593–599 (1999).
  • Tsurushima H, Ohno T, Tsuboi K, Yoshii Y, Meguro K, Nose T. Low incidence of point mutation of N-rasonco gene in human gliomas. No Shinkei Geka23(7), 581–586 (1995).
  • Guha A, Feldkamp MM, Lau N, Boss G, Pawson A. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene15(23), 2755–2765 (1997).
  • Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat. Genet.25(1), 55–57 (2000).
  • Uhrbom L, Dai C, Celestino JC, Rosenblum MK, Fuller GN, Holland EC. Ink4–Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res.62(19), 5551–5558 (2002).
  • Uhrbom L, Kastemar M, Johansson FK, Westermark B, Holland EC. Cell type-specific tumor suppression by Ink4a and Arf in Kras-induced mouse gliomagenesis. Cancer Res.65(6), 2065–2069 (2005).
  • Ding H, Roncari L, Shannon P et al. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res.61(9), 3826–3836 (2001).
  • Ohgaki H, Dessen P, Jourde B et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res.64(19), 6892–6899 (2004).
  • Wang SI, Puc J, Li J et al. Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res.57(19), 4183–4186 (1997).
  • Haas-Kogan D, Shalev N, Wong M, Mills G, Yount G, Stokoe D. Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr. Biol.8(21), 1195–1198 (1998).
  • Fraser MM, Zhu X, Kwon CH, Uhlmann EJ, Gutmann DH, Baker SJ. Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res.64(21), 7773–7779 (2004).
  • Wei Q, Clarke L, Scheidenhelm DK et al. High-grade glioma formation results from postnatal pten loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model. Cancer Res.66(15), 7429–7437 (2006).
  • Xiao A, Wu H, Pandolfi PP, Louis DN, Van Dyke T. Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell1(2), 157–168 (2002).
  • Mellinghoff IK, Wang MY, Vivanco I et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med.353(19), 2012–2024 (2005).
  • Romer JT, Kimura H, Magdaleno S et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/-)p53(-/-) mice. Cancer Cell6(3), 229–240 (2004).
  • Xu S, Gade TP, Matei C et al. In vivo multiple-mouse imaging at 1.5 T. Magn. Reson. Med.49(3), 551–557 (2003).
  • Koutcher JA, Hu X, Xu S et al. MRI of mouse models for gliomas shows similarities to humans and can be used to identify mice for preclinical trials. Neoplasia4(6), 480–485 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.