136
Views
8
CrossRef citations to date
0
Altmetric
Review

Adult human sarcomas. II. Medical oncology

Pages 183-210 | Published online: 10 Jan 2014

References

  • Hajdu SI. Pathology of Soft Tissue Tumors. Lea & Febiger, Philadelphia, PA, USA. (1979).
  • Huvos AG. Bone Tumors. WB Sanders, Philadelphia, PA, USA (1979).
  • Sinkovics JG. Mesenchymal solid tumors. In: Medical Oncology an Advanced Course (2nd Edition) Volumes I & II. Marcel Dekker, NY, USA and Basel, Switzerland 296–411 (1986).
  • Bridge JA, Schwartz HS, Neff JR. Bone sarcomas. In: Clinical Oncology. Abeloff MD, Armitage JO, Lichter AS, Niederhuber JE (Eds). Churchill Livingstone, New York, NY, USA 1715–1797 (1995).
  • Pisters PWT, Brennan MF. Soft tissue sarcomas. In: Clinical Oncology. Abeloff MD, Armitage JO, Lichter AS, Niederhuber JE (Eds). Churchill Livingstone, New York, NY, USA 1799–1832 (1995).
  • Cordon-Cardo C. Molecular biology of sarcomas. In: Cancer: Principles & Practice of Oncology (5th Edition). DeVita VT, Hellman S, Rosenberg SA (Eds). Lippincott-Raven, Philadelphia, PA, USA, 1731–1738 (1997).
  • Brennan MF, Casper ES, Harrison LB. Soft tissue sarcoma. In: Cancer: Principles & Practice of Oncology (5th Edition). DeVita VT, Hellman S, Rosenberg SA (Eds). Lippincott-Raven, Philadelphia, PA, USA 1738–1788 (1997).
  • Malawer MM, Link MP, Donaldson SS. Sarcomas of bone. In: Cancer: Principles & Practice of Oncology (5th Edition). DeVita VT, Hellman S, Rosenberg SA (Eds). Lippincott-Raven, Philadelphia, PA, USA 1789–1852 (1997).
  • Antman KH, Pass HI, Schiff PB. Benign and malignant mesothelioma. In: Cancer: Principles & Practice of Oncology (5th Edition). DeVita VT, Hellman S, Rosenberg SA (Eds). Lippincott-Raven, Philadelphia, PA, USA 1853–1878 (1997).
  • Chahinian AP, Pass HI. Mesothelioma. In: Cancer Medicine (5th Edition). Bast RC, Kufe DW, Pollock RE, Weichselbaum RR, Holland JF, Frei E (Eds). BC Decker Inc., Hamilton, London, UK. 1293–1312 (2000).
  • Rosen G, Forscher CA, Mankin HJ, Selch MT. Bone tumors. In: Cancer Medicine (5th Edition). Bast RC, Kufe DW, Pollock RE, Weichselbaum RR, Holland JF, Frei E (Eds). BC Decker Inc., Hamilton, London, UK 1870–1902 (2000).
  • Pisters PWT, O’Sullivan BO, Demetri GD. Sarcomas of nonosseous tissues. In: Cancer Medicine (5th Edition). Bast RC, Kufe DW, Pollock RE, Weichselbaum RR, Holland JF, Frei E (Eds). BC Decker Inc., Hamilton, London, UK 1903–1930 (2000).
  • Benedetto P, Feun L. Clinical and Pharmacological Study of Chemotherapy in Soft Tissue Sarcoma. SCCC 89032 Protocol of the Sylvester Comprehensive Cancer Center. The University of Miami School of Medicine, Miami, FL, USA 1–13 (1991).
  • Van Roggen JFG, Hogendoorn PCW. Soft tissue tumors of the retroperitoneum. Sarcoma4, 17–26 (2000).
  • Cheifetz R, Catton CN, Kandel R, O’Sullivan B, Couture J, Swallow CJ. Recent progress in the management of retroperitoneal sarcoma. Sarcoma5(1), 17–26 (2001).
  • Mendenhall WM, Zlotecki RA, Hochwald SN, Hemming AW, Grobmyer SR, Cance WG. Retroperitoneal soft tissue sarcoma. Cancer104(4), 669–675 (2005).
  • Van Geel AN, Eggermont AMM, Hanssens PEJ, Schmitz PIM. Factors influencing prognosis after initial inadequate excision for soft tissue sarcoma. Sarcoma7(3/4), 159–165 (2003).
  • Figueredo A, Bramwell VHC, Bell R et al. Adjuvant chemotherapy following complete resection of soft tissue sarcoma in adults: a clinical practice guideline. Sarcoma6(1), 5–18 (2002).
  • Cormier JN, Pollock RE. Soft tissue sarcomas. CA Cancer J. Clin.54(2), 94–109 (2004).
  • Antman K, Crowley J, Balcerzak SP et al. An intergroup Phase III randomized study of doxorubicin and dacabazine with or without ifosfamide and mesna in advanced soft tissue and bone sarcomas. J. Clin. Oncol.11(7), 1276–1285 (1993).
  • Brodowicz T, Schwameis E, Widder J et al. Intensified adjuvant IFADIC chemotherapy for adult soft tissue sarcoma: a prospective randomized feasibility trial. Sarcoma4(4), 151–160 (2000).
  • Frustaci S, Gherlinzoni F, De Paoli A et al. Adjuvant chemotherapy for adult soft tissue sarcomas of the extremities and girdles: results of the Italian randomized cooperative trial. J. Clin. Oncol.19(5), 1238–1247 (2001).
  • Spira AI, Ettinger DS. The use of chemotherapy in soft tissue sarcomas. Oncologist7(4), 348–359 (2002).
  • Eilber FC, Eilber FR, Eckardt JJ et al. Impact of ifosfamide-based chemotherapy on survival in patients with primary extremity synovial sarcoma. Proceedings 40th Annual Meeting American Society Clinical Oncology. New Orleans, LA, USA 23, 818 (2004) (Abstract 9017).
  • Biron OP, Rolland F, Thyss A et al. OSAD 93: a multicentric prospective Phase II study of preoperative high dose ifosfamide and CDDP in adult patients with nonmetastatic osteosarcoma. Proceedings 40th Annual Meeting American Society Clinuical Oncology. New Orleans, LA, USA 23, 818 (2004) (Abstract 9019).
  • Raney RB, Naurer HM, Anderson JR et al. The Intergroup Rhabdomyosarcoma Study Group (IRSG): major lessons from the IRS-I through IRS-IV studies as background for the current IRS-V treatment protocols. Sarcoma5(1), 9–15 (2001).
  • Meyer WH, Spunt SL. Soft tissue sarcomas of childhood. Cancer Treat. Rev.30(3), 269–280 (2004).
  • Simon JH, Paulino AC, Ritchie JM, Mayr NA, Buatti JM. Presentation, prognostic factors and patterns of failure in adult rhabdomyosarcoma. Sarcoma7(1), 1–7 (2003).
  • Papadopoulos NEJ, Sinkovics JG, Plager C et al. Rhabdomyosarcoma in 99 adult patients. Proceedings 17th Annual Meeting American Society Clinical Oncology. Washington DC, USA 22, 525 (1981) (Abstract C754).
  • Edmonson JH, Petersen SR, Shives TC et al. Chemotherapy, irradiation, and surgery for function-preserving therapy of primary extremity soft tissue sarcomas: initial treatment with ifosfamide, mitomycin, doxorubicin, and cisplatin plus granulocyte macrophage-colony-stimulating factor. Cancer94(3), 786–792 (2002).
  • Gottlieb JA, Baker LH, Quagliana JM et al. Chemotherapy of sarcomas with a combination of adriamycin and dimethyl triazeno imidazole carboxamide. Cancer30(6), 1632–1638 (1972).
  • Gottlieb JA, Bodey GP, Sinkovics JG et al. An effective new 4-drug combination regimen (CY-VA-DIC) for metastatic sarcomas. Proceedings 10th Annual Meeting American Society Clinical Oncology. 10, 162 (1974) (Abstract 713).
  • Yap BS, Sinkovics JG, Benjamin RS et al. Survival and relapse patterns of complete responders in adults with advanced soft tissue sarcomas. Proceedings 15th Annual Meeting American Society Clinical Oncology. New Orleans, LA, USA 20, 352 (1979) (Abstract C250).
  • Yap BS, Baker LH, Sinkovics JG et al. Cyclophosphamide, vincristine, adriamycin, and DTIC (CYVADIC) combination chemotherapy for the treatment of advanced sarcomas. Cancer Treat. Rep.64(1), 93–98 (1980).
  • Sinkovics JG. Complete remissions lasting over three years in adult patients treated for metastatic sarcoma. In: The 6th Chicago Cancer Symposium: Tumor Progression. Crispen FG (Ed.). Elsevier, Amsterdam, The Netherlands 315–331 (1980).
  • Yap BS, Sinkovics JG, Benjamin R et al. The potential for cure of adult soft tissue sarcomas. Proceedings 13th International Cancer Congres. Seattle, Washington, USA, 416 (1982) (Abstract 2375).
  • Yap BS, Sinkovics JG, Burgess MA et al. The curability of soft tissue sarcomas in adults with chemotherapy. Proceedings 19th Annual Meeting American Society Clinical Oncolgy. San Diego, CA, USA 24, 239 (1983) (Abstract C937).
  • Poveda A, López-Pousa A, Martín J et al. Phase II clinical trial with pegylated liposomal doxorubicin (CAELYX®/ Doxil®) and quality of life (EORTC QLQ-C30) in adult patients with advanced soft tissue sarcoma. Sarcoma9(3/4), 127–132 (2005).
  • Nielsen OS, Dombernowsky P, Mouridsen H et al. Epirubicin is not superior to doxorubicin in the treatment of advanced soft tissue sarcomas. The experience of the EORTC soft tissue and bone sarcoma group. Sarcoma4(1–2), 31–35 (2000).
  • Patel SR, Vadhan-Raj S, Burgess MA et al. Results of two consecutive trials of dose-intensive chemotherapy with doxorubicin and ifosfamide in patients with sarcomas. Am. J. Clin. Oncol.21(3), 317–321 (1998).
  • Edmonson JH, Ryan LM, Falkson CI, Hicks DG, Blum RH. Phase II study of ifosfamide + doxorubicin in patients with advanced synovial sarcomas (E1793): a trial of the Eastern Cooperative Oncology Group. Sarcoma7(1), 9–11 (2003).
  • Gottlieb JA, Benjamin RS, Baker LH et al. Role of DTIC (NSC-45388) in the chemotherapy of sarcomas. Cancer Treat. Rep.60(2), 199–203 (1976).
  • De Pas T, Curigliano G, Masci G et al. Phase I study of twelve-day prolonged infusion of high dose ifosfamide and doxorubicin as a first-line chemotherapy in adult patients with advanced soft tissue sarcomas. Ann. Oncol.13, 161–166 (2002).
  • Patel SR, Papadopoulos N, Raymond AK et al. A Phase II study of cisplatin, doxorubicin, and ifosfamide with peripheral blood stem cell support in patients with skeletal osteosarcoma and variant bone tumors with poor prognosis. Cancer101(1), 156–163 (2004).
  • Fraser CJ, Weigel BJ, Perentesis JP et al. Autologous stem cell transplantation for high-risk Ewing’s sarcoma and other pediatric soft tumors. Bone Marrow Transplant.37(2), 175–181 (2006).
  • Sinkovics JG, Plager C, Ayala AG, Lindberg RD, Samuels ML. Ewing’s sarcoma: its course and treatment in fifty adult patients. Oncology37(2), 114–119 (1980).
  • Schwarzbach MH, Eisold S, Burguete T et al. Sensitization of sarcoma cells to doxorubicin treatment by concomitant wild-type adeno-associated virus type 2 (AAV-2) infection. Int. J. Oncol.20(6), 1211–1218 (2002).
  • Zelcer SM, Kellick M, Wexler LH et al. The Memorial Sloan-Kettering Cancer Center (MSKCC) experience with outpatient administration of high-dose methotrexate with leucovorin rescue. Proceedings 41st Annual Meeting American Society Clinical Oncology. Orlando, FL, USA. J. Clin. Oncol. Pt I 23(S16), S816 (2005) (Abstract 9003).
  • Goorin AM, Harris MB, Bernstein M et al. Phase II/III trial of etoposide and high-dose ifosfamide in newly diagnosed metastatic osteosarcoma: a pediatric oncology group trial. J. Clin. Oncol.20(2), 426–433 (2002).
  • Staddon AP, Lackman R, Robinson K, Shrager JB, Warhol M. Osteogenic sarcoma presenting with lung metastasis. Oncologist7(2), 144–153 (2002).
  • Ando T, Ichikawa J, Okamoto A, Tasaka K, Nakao A, Hamada Y. Gemcitabine inhibits viability, growth, and metastasis of osteosarcoma cell lines. J. Orthop. Res.23(4), 964–969 (2005).
  • Anderson PM, Wiseman GA, Erlandson L et al. Gemcitabine radiosensitization after high-dose samarium for osteoblastic osteosarcoma. Clin. Cancer Res.11(19 Pt 1), 6895–6900 (2005).
  • Chawla SP, Chua VS, Bauer P et al. Role of α-interferon in reducing risk of metastasis in patients with poor prognosis osteosarcoma. Proceedings 35th Annual Meeting American Society Clinical Oncology18, A550 (1999) (Abstract 2124).
  • McCarter MD, Lewis JJ, Antonescu CR, Brennan MF. Extraskeletal osteosarcoma: analysis of outcome of a rare neoplasm. Sarcoma4(3), 119–123 (2000).
  • Raut C. Sarcoma. Oral Abstract Presentations, American Society Clinical Oncology 2006 Annual Meeting Summaries. 42, 222–230 (2006).
  • Grobmyer SR, Maki R, Demetri GD, Riedel E, Brennan MF, Singer S. Neo-adjuvant chemotherapy for primary high grade extremitry soft tissue sarcoma: a matched case control study. Proceedings 39th Annual Meeting American Society Clinical Oncology. Chicago, IL, USA 22, 815 (2003) (Abstract 3277).
  • Hughes BGM, Woodward N, Lourigan KJ et al. Adjuvant chemotherapy for osteogenic sarcoma: long term follow-up from a single institution. Proceedings 41st Annual Meeting American Society Clinical Oncology, Orlando, FL, USA. J. Clin. Oncol.23(S16), S833 (2005) (Abstract 9071).
  • Jordan K, Kegel T, Mueller LP, Kinitz I, Schmoll HJ. Feasibility of a combination of high dose chemotherapy ifosfamide, carboplatin, etoposide (ICE) plus stem cells and bevacizumab in refractory sarcoma and germ cell tumors. Proceedings 41st Annual Meeting American Society Clinical Oncology. Orlando, FL, USA. J. Clin. Oncol.23(S16), S833 (2005) (Abstract 9070).
  • Valdes F, Doroshow HJ, Chow W et al. Tandem high-dose chemotherapy (HDCT) and peripheral stem cell rescue (PSCR) in patients (pts) with advanced soft tissue sarcomas (STS), Ewing’s/PNET (ES) and rhabdomyosarcoma (Rhabdo). Proceedings 41st Annual Meeting American Society Clinical Oncology. Orlando, FL, USA. J. Clin. Oncol.23(S16), S832 (2005) (Abstract 9065).
  • Bramwell VHC, Anderson D, Charette ML et al. Doxorubicin-based chemotherapy for the palliative treatment of adult patients with locally advanced or metastatic soft-tissue sarcoma: a meta-analysis and clinical practice guideline. Sarcoma4(3), 103–112 (2000).
  • Hartmann JT, Patel S. Recent developments in salvage chemotherapy for patients with metastatic soft tissue sarcoma. Drugs65(2), 167–178 (2005).
  • Ganem D. KSHV infection and the pathogenesis of Kaposi’s sarcoma. Annu. Rev. Pathol. Mech. Dis.1, 273–296 (2006).
  • Yarchoan R. Key role for a lytic cycle gene in Kaposi’s sarcoma. N. Engl. J. Med.355(13), 1383–1385 (2006).
  • Di Trolio R, Di Lorenzo G, Delfino M, De Placido S. Role of pegylated liposomal doxorubicin (PLD) in systemic Kaposi’s sarcoma. Int. J. Immunopathol. Pharmacol.19(2), 253–263 (2006).
  • Krygier G, Sosa A, Blanco A et al. ABV (doxorubicin [Adriamycin], bleomycin and vincristine) polychemotherapy regimen in HIV Kaposi’s sarcoma: Uruguaian 10-year experience. Proceedings 42nd Annual Meeting American Society Clinical Oncology. Atlanta, GA, USA. J. Clin. Oncol.24(S18), S534 (2006) (Abstract 9559).
  • Lebbe C, Euvrard S, Barrou B et al. Sirolimus conversion for patients with posttransplant Kaposi’s sarcoma. Am. J. Transplant.6(9), 2164–2168 (2006).
  • Dezube BJ, Sullivan R, Koon HB. Emerging targets and novel strategies in the treatment of AIDS-related Kaposi’s sarcoma: bidirectional translational science. Cell Physiol.209(3), 659–662 (2006).
  • Yang H, Bocchetta M, Kroczynska B et al. TNF-α inhibits asbestos-induced cytotoxicity via a NK-κB-dependent pathway, a possible mechanism for asbestosis-induced oncogenesis. Proc. Natl. Acad. Sci. USA103(27), 10397–10402 (2006).
  • Carbone M, Bedrossian CW. The pathogenesis of mesothelioma. Semin. Diagn. Pathol.23(1), 56–60 (2006).
  • Francart J, Legrand C, Sylvester R, Van Glabbeke M, van Mererbeeck JP, Robert A. Progression-free survival rate as primary end point for Phase II cancer clinical trials: application to mesothelioma − the EORTC Lung Cancer Group. J. Clin. Oncol.24(19), 3007–3012 (2006).
  • Ogura O, Noguchi T, Nagata K et al. A case of malignant mesothelioma successfully treated with carboplatin and paclitaxel. Gan To Kagaku Ryoho33(7), 1001–1004 (2006).
  • Korfee S, Sharma C, Cortes-Incio D et al. ZD6474 (ZACTIMATM), a novel inhibitor of VEGF receptor-2-tyrosine kinase, inhibits cellular growth of mesothelioma cell lines in vitro. Proceedings 97th Annual Meeting American Association Cancer Research. Washington, DC, USA 47, 1115–1116 (2006) (Abstract 4750).
  • Vandermeers F, Nigro A, Grigoriu B et al. Pro-apoptotic and anti-proliferative activity of HDAC inhibitors in malignant pleural mesothelioma. Proceedings 97th Annual Meeting American AssociationCancer Research. Washington, DC, USA 47, 319 (2006) (Abstract 1353).
  • Frizelle SP, Kratzke M, Kumar P et al. Matriptase is over-expressed in malignant pleural mesothelioma (MPM) and can be inhibited by the compound CJ-730. Proceedings 97th Annual Meeting American AssociationCancer Research Washington, DC, USA 47, 951 (2006) (Abstract 4035).
  • Sinkovics JG. New biological therapeutics: competitors or collaborators of viral therapy for human cancers. In: Viral Therapy of Human Cancers. Sinkovics JG, Horvath JC (Eds). Marcel Dekker, NY, USA, 266, 268, 338–339 (2005).
  • Flynn J, Berg RW, Wong T et al. Therapeutic potential of antisense oligonucleotides to down-regulate thymidylate synthase in mesothelioma. Mol. Cancer Ther.5(6), 1423–1433 (2006).
  • Casper ES, Waltzman RJ, Schwartz GK et al. Phase II trial of paclitaxel in patients with soft-tissue sarcoma. Cancer Invest.16(7), 442–446 (1998).
  • Fata F, O’Reilly E, Ilson D et al. Paclitaxel in the treatment of patients with angiosarcoma of the scalp or face. Cancer86(10), 2034–2037 (1999).
  • Skubitz KM, Haddad PA. Paclitaxel and pegylated liposomal doxorubicin are both active in angiosarcoma. Cancer104(2), 361–366 (2005).
  • Cai J, Zheng T, Massod R et al. Paclitaxel induces apoptosis in AIDS-related Kaposi’s sarcoma cells. Sarcoma4(1–2), 37–45 (2000).
  • Mano MS, Fraser G, Kerr J et al. Radiation-induced angiosarcoma of the breast shows major response to docetaxel after failure of anthracycline-based chemotherapy. Breast15(1), 117–118 (2006).
  • Anderson S, Aghajanian C, Sabbatini P et al. Second responses to gemcitabine-based therapy in uterine leiomyosarcoma. Proceedings 39th Annual Meeting American Society Clinical Oncology. Chicago, IL, USA 22, 460 (2003) (Abstract 1850).
  • Hensley ML, Anderson S, Soslow R et al. Activity of gemcitabine plus docetaxel in leiomyosarcoma (MS) and other histologies: report of an expanded Phase II trial. Proceedings 40th Annual Meeting American Society Clinical Oncology. New Orleans, LA, USA 23, 816 (2004) (Abstract 9010).
  • Bay JO, Ray-Coquard I, Fayette J et al. Docetaxel and gemcitabine combination in 133 advanced soft-tissue sarcomas: a retrospective analysis. Int. J. Cancer119(3), 706–711 (2006).
  • Sinkovics JG, Plager C, von Eschenbach A, Johnson DE. Sarcomas of the genitourinary tract: case histories. In: Cancer of the Genitourinary Tract. Johnson DE, Samuels ML (Eds). Raven Press, NY, USA 281–299 (1979).
  • Dinh TA, Oliva EA, Fuller AF Jr, Lee H, Goodman A. The treatment of uterine leiomyosarcoma. Results from a 10-year experience (1990–1999) at the Massachusetts General Hospital. Gynecol. Oncol.92(2), 648–652 (2004).
  • Long HJ, Blessing JA, Sorosky J. Phase II trial of dacarbazine, mitomycin, doxorubicin, and cisplatin with sargramostim in uterine leiomyosarcoma: a Gynecologic Oncology Group study. Gynecol. Oncol.99(2), 339–342 (2005).
  • Sutton G, Blessing J, Hanjani P, Kramer P. Gynecologic Oncology Group. Phase II evaluation of liposomal doxorubicin (Doxil) in recurrent or advanced leiomyosarcoma of the uterus: a Gynecologic Oncology Group study. Gynecol. Oncol.96(3), 749–752 (2005).
  • Britten CD, Rowinsky EK, Baker SD et al. A Phase I and pharmacokinetic study of temozolomide and cisplatin in patients with advanced solid malignancies. Clin. Cancer Res.5(7), 1629–1637 (1999).
  • Kudelka AP, Termrungruanglert W, Vadhan-Raj S et al. Remission of advanced uterine leiomyosarcoma with pulmonary metastases with carboplatin and paclitaxel. Anticancer Drugs7(8), 885–889 (1996).
  • Odunsi K, Moneke V, Tammela J et al. Efficacy of adjuvant CYVADIC chemotherapy in early-stage uterine sarcomas: results of long-term follow-up. Int. J. Gynecol. Cancer14(4), 659–664 (2004).
  • Wang L, Feix JC, Lee JL et al. The proto-oncogene c-kit is expressed in leiomyosarcomas of the uterus. Gynecol. Oncol.90(2), 402–406 (2003).
  • Raspollini MR, Amunni G, Villanucci A et al. c-Kit expression in patients with uterine leiomyosarcomas: a potential alternative therapeutic treatment. Clin. Cancer Res.10(10), 3500–3503; author reply: 4977–4980 (2004).
  • Merimsky O. Targeting metastatic leiomyosarcoma by rapamycin plus gemcitabine: an intriguing clinical observation. Int. J. Mol. Med.14(5), 931–935 (2004).
  • D’Amato GZ, Mohapatra S, Jove R et al. The effect of the PI3K/Akt pathway inhibition on leiomyosarcoma cells. Proceedings 40th Annual Meeting American Society Clinical Oncology. New Orleans, LA, USA. J. Clin Oncol.23, 814 (2004) (Abstract 9002).
  • D’Amato GZ, Windham TC, Keschman EA et al. The effect of the proteasome inhibitor, PS 341, on leiomyosarcoma cells. Proceedings 41st Annual Meeting American Society Clinical Oncology. Orlando, FL, USA. J. Clin. Oncol.23(S16), S826 (2005) (Abstract 9040).
  • Pappo AS, Lyden E, Breneman J et al. Up-front window trial of topotecan in previously untreated children and adolescents with metastatic rhabdomyosarcoma: an intergroup rhabdomyosarcoma study. J. Clin. Oncol.19(1), 213–219 (2001).
  • Perez-Martinez A, Contra T, Scaglione C, Diaz Perez MA, Madero Lopez L. Topotecan for pediatric patients with resistant and recurrent solid tumors. Ann. Pediatr. (Barcelona)59(2), 143–148 (2003).
  • Manning T, Rhodes E, Loftis R et al. ET743: chemical analysis of the sea squirt Ecteinascidia turbinata ecosystem. Nat. Prod. Res.20(5), 461–473 (2006).
  • Schöffski P, Huygh G, Clement P et al. Tumor control and objective responses: single-center experience with ecteinascidin-743 (ET-743), an active compound for the treatment of patients with advanced soft tissue and bone sarcomas. Proceedings 41st Annual Meeting American Society Clinical Oncology. Orlando, FL, USA. J. Clin. Oncol.23, S822 (2005) (Abstract 9027).
  • Maki RG. Future directions for immunotherapeutic intervention against sarcomas. Curr. Opin. Oncol.18(4), 363–368 (2006).
  • Takahashi N, Li WW, Banerjee D, Scotto KW, Bertino JR. Sequence-dependent enhancement of cytotoxicity produced by ecteinascidin 743 (ET-743) with doxorubicin or paclitaxel in soft tissue sarcoma cells. Clin. Cancer Res.7(10), 3251–3257 (2001).
  • Grosso F, Demetri GD, Blay Y et al. Patterns of tumor response to trabectedine (ET743) in myxoid liposarcomas. Proceedings 42nd Annual Meeting American Society Clinical Oncology. Atlanta, GA, USA. J. Clin Oncol.24(S18), S522 (2006) (Abstract 9511).
  • Dorfman DM, Bui MM, Tubbs RR et al. The CD117 immunochemistry tissue microarray survey for quality assurance and laboratory comparison: a College of American Pathologists Cell Markers Committee study. Arch. Pathol. Lab. Med.130(6), 779–782 (2006).
  • Cho S, Kitadai Y, Yoshida S et al. Deletion of the KIT gene is associated with liver metastasis and poor prognosis in patients with gastrointestinal stromal tumor in the stomach. Int. J. Oncol.28(6), 1361–1367 (2006).
  • Montella L, Florio T, Aiello C et al. Somatostatin receptor expression in stromal tumors of the gastrointestinal tract. Proceedings 41st Annual Meeting American Society Clinical Oncology. Orlando, FL, USA 23, S826 (2005) (Abstract 9042).
  • Borden EC, Jacobs B, Demetri G, Fletcher J. Induction of TRAIL and XAF-1 and inhibition of p-Akt and c-Kit expression by interferons (IFNs) is associated with apoptosis in GIST cells. Proceedings 40th Annual Meeting American Society Clinical Oncology. New Orleans, LA, USA 23, 820 (2004) (Abstract 9027).
  • Meza-Zepeda LA, Kresse SH, Barraga-Polania AH et al. Array comparative genomic hybridization reveals distinct DNA copy number differences between gastrointestinal stromal tumors and leiomyosarcomas. Cancer Res.66(18), 8984–8993 (2006).
  • Schurr P, Wolter S, Kaifi J et al. Microsatellite DNA alterations of gastrointestinal stromal tumors are predictive for outcome. Clin. Cancer Res.12(17), 5151–5157 (2006).
  • Kleinbaum EP, Chen LL, Lazar A et al. Familial gastrointestinal stromal tumor with homo-/hemizygous kit exon deletion: genotypic, histopathologic, radiographic, and therapeutic findings. Proceedings 42nd Annual Meeting American Society Clinical Oncology. Atlanta, GA, USA 24(S18), S526 (2006) (Abstract 9527).
  • Ryu M-H, Lee H, Kim TW et al. p53 mutations in gastrointestinal stromal tumor: pattern and prognostic significance. Proceedings 40th Annual Meeting American Society Clinical Oncology. New Orleans, LA, USA 23, 820 (2004) (Abstract 9026).
  • Artiagu Nieto E, Luna Aufroy A, Dalmau Portulas E et al. Gastrointestinal stromal tumors: experience in 49 patients. Clin. Transl. Oncol.8(8), 594–608 (2006).
  • Judson I, Leahy M, Whelan J et al. A guideline for the management of gastrointestinal stromal tumour (GIST). Sarcoma6(3), 83–87 (2002).
  • Scott LC, White JD, Reid R, Cowie F. Management of skin toxicity related to the use of imatinib mesylate (STI571, Glivec™) for advanced gastrointestinal tumours. Sarcoma9(3/4), 157–160 (2005).
  • Bauer S, Yu LK, Demetri GD, Fletcher JA. Heat shock protein 90 inhibition in imatinib-resistant gastrointestinal stromal tumor. Cancer Res.66(18), 9153–9161 (2006).
  • Weinberg RA. mTOR. In: The Biology of Cancer. Garland Science, Taylor & Francis Group, NY, USA 782–487 (2007).
  • Hosoi H, Dilling MB, Shikata T et al. Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res.59(4), 886–894 (1999).
  • Mateo-Lozano S, Tirado OM, Notario V. Rapamycin induces the fusion-type independent downregulation of the EWS/FLI-1 proteins and inhibits Ewing’s sarcoma cell proliferation. Oncogene22(58), 9282–9287 (2003).
  • Tirado OM, Mateo-Lozano S, Notario V. Rapamycin induces apoptosis of JN-DSRCT-1 cells by inceasing the Bax:Bcl-xL ratio through concurrent mechanisms dependent and idependent of its mTOR inhibitory activity. Oncogene24(20), 3348–3357 (2005).
  • Wan X, Shen N, Mendoza A, Khanna C, Helman LJ. CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1α VEGF signaling. Neoplasia8(5), 394–401 (2006).
  • Maki RG, Fletcher JA, Heinrich MC et al. Results from a continuation trial of SU11248 in patients with imatinib-resistant gastrointestinal stromal tumor (GIST). Proceedings 41st Annual Meeting American Society Clinical Oncology. Orlando, FL, USA. J. Clin. Oncol.23(S16), S818 (2005) (Abstract 9011).
  • Morgan JA, Garrett CR, Schutte HJ et al. Sunitinib for patients with advanced imatinib (IM)-refractory GIST: early results from a “treatment-use” trial. Proceedings 42nd Annual Meeting American Society Clinical Oncology. Atlanta, GA, USA. J. Clin. Oncol.24(S18), Pt I S529 (2006) (Abstract 9540).
  • Seandel M, Shia J, Linkov I, Maki RG, Antonescu C, Dupont J. Pharmacodynamic case study of sunitinib/SU11248 in a gastrointestinal stromal tumor patient: evidence toward a mechanism of effect. Proceedings 42nd Annual Meeting American Society Clinical Oncology. Atlanta, GA, USA. J. Clin. Oncol.24(S18), Pt I S526 (2006) (Abstract 9526).
  • Joensuu H, De Braud F, Coco P et al. A Phase II, open-label study of PTK787/ZK222584 in the treatment of metastatic gastrointestinal stromal tumors (GIST) resistant to imatinib mesylate. Proceedings 42nd Annual Meeting American Society Clinical Oncology. Atlanta, GA, USA. J. Clin. Oncol.24(S18), Pt I S527 (2006) (Abstract 9531).
  • Sambol EB, Ambrosini G, Geha RC et al. Flavopiridol targets c-Kit transcription and induces apoptosis in gastrointestinal stromal cell tumor cells. Cancer Res.66(11), 5858–5866 (2006).
  • Chawla SP, Tolcher AW, Staddon AP et al. Updated results of a Phase II trial of AP23573, a novel mTOR inhibitor, in patients with advanced soft tissue or bone sarcomas. Proceedings 42nd Annual Meeting American Society Clinical Oncology. Atlanta, GA, USA. J. Clin. Oncol.24(S18), Pt I S521 (2006) (Abstract 9505).
  • Shankala KK, Chawla SP, Iagaru A et al. Early response evaluation of therapy with AP23573 (an mTOR inhibitor) in sarcoma using [18F]2-fluoro-2-deoxy-FD-glucose (FDG) positron emission tomography (PET) scan. Proceedings 41st Annual Meeting American Society Clinical Oncology. Orlando, FL, USA. J. Clin. Oncol.23(S16), Pt I S823 (2005) (Abstract 9028).
  • Okuno SH, Mahoney MR, Bailey HH et al. A multicenter Phase 2 consortium (P2C) study of the mTOR inhibitor CCI-779 in advanced soft tissue sarcomas (STS). Proceedings 42nd Annual Meeting American Society Clinical Oncology. Atlanta, GA, USA. J. Clin. Oncol.24(S18), Pt I S521 (2006) (Abstract 9504).
  • Okuno S. Mammalian target of rapamycin inhibitors in sarcomas. Curr. Opin. Oncol.18(4), 360–362 (2006).
  • van Oosterom A, Reichardt P, Blay J-Y et al. A Phase I/II trial of the oral mTOR-inhibitor everolimus (E) and imatinib mesylate (IM) in patients with gastrointestinal stromal tumor (GIST) refractory to IM: study update. Proceedings 41st Annual Meeting American Society Clinical Oncology. Orlando, FL, USA. J. Clin. Oncol.23(S16), Pt I S824 (2005) (Abstract 9033).
  • Schuetze SM, Baker LH, Maki RG. Sirolimus reduced tumor-related morbidity and resulted in biochemical and radiographic responds in patients with progressive sarcoma. Proceedings 42nd Annual Meeting American Society Clinical Oncology. Atlanta, GA, USA. J. Cin. Oncol.24(S18), Pt I S520 (2006) (Abstract 9503).
  • Weenink JJ, Groeneveld JO, de Fijter CW. Sirolimus monotherapy for Kaposi’s sarcoma in an HIV-negative patient. Lancet Oncol.7(10), 875–876 (2006).
  • Kolhe N, Mamode N, Van der Walt J, Pattison J. Regression of post-transplant Kaposi’s sarcoma using sirolimus. Int. J. Clin. Pract.60(11), 1509–1512 (2006).
  • Weekes CD, Rubio-Viqueita B, Zhang X, Jimeno A, Maitra A, Hidalgo M. Stromal-derived factor-1α mediates resistance to mTOR inhibition by the preservation of hypoxia inducible factor-1α (HIFα) expression. Proceedings 97th Annual Meeting American Association Cancer Research. Washington, DC, USA 47, 553–554 (2006) (Abstract 2341).
  • Therasse P, Eisenhauer EA, Verweij J. RECIST revisited: a review of validation studies on tumour assessment. Eur. J. Cancer42(8), 1031–1039 (2006).
  • Benjamin RS, Choi H, Macapinlac HA et al. Response of gastrointestinal stromal tumors (GISTs) to imatinib by Choi criteria and response evaluation criteria in solid tumors (RECIST) as surrogates for survival and time to progression. Proceedings 42nd Annual Meeting American Society Clinical Oncology. Atlanta, GA, USA J. Clin. Oncol.24(S18), Pt I S521 (2006) (Abstract 9506).
  • van der Hul R, Seynaeve C, van Geel BN, Verweij J. Low dose methotrexate and vinblastine, given weekly to patients with desmoid tumors, is associated with major toxicity. Sarcoma7(3/4) 153–157 (2003)
  • Weiss AJ, Lackman RD. Therapy of desmoid tumors, fibromatosis, and related neoplasms. Int. J. Oncol.7, 773–776 (1995).
  • Janinis J, Patriki M, Vini L, Aravantinois G, Whelan JS. The pharmacological treatment of aggressive fibromatosis: a systemic review. Ann. Oncol.14, 181–190 (2003).
  • Baker LH, Wathen R, Chugh R et al. Activity of imatinib mesylate in desmoid tumors: interim analysis of a Sarcoma Alliance for Research through Collaboration (SARC) Phase II trial. Proceedings 40th Annual Meeting American Society Clinical Oncology. New Orleans, LA, USA 23, 817 (2004) (Abstract 9013).
  • Macapinlac M, Elrafei T, Cunningham I et al. Dermatofibrosarcoma protuberans: neoadjuvant therapy with imatinib mesylate and use of PDGF-B levels to monitor clinical response. Proceedings 40th Annual Meeting American Society Clinical Oncology. New Orleans, LA, USA 23, 826 (2004) (Abstract 9049).
  • Heinrich MC, McArthur GA, Demetri GD et al. Clinical and molecular studies of the effect of imatinib on advanced aggressive fibromatosis (desmoid tumor). J. Clin. Oncol.24(7), 1195–1203 (2006).
  • Sirvent N, Maire G, Pedeutour F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosome to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer37(1), 1–19 (2003).
  • Labropoulos SV, Fletcher JA, Oliviers AM, Papadopoulos S, Razis ED. Sustained complete remission of metastatic dermatofibrosarcoma protuberans with imatinib mesylate. Anticancer Drugs16(4), 461–466 (2005).
  • Kasper B, Lossignol D, Gil T, Flamen P, De Saint Aubain N, Awada A. Imatinib mesylate in a patient with metastatic disease originating from a dermatofibrosarcoma protuberans of the scalp. Anticancer Drugs17(10), 1223–1225 (2006).
  • Demetri GD, Fletcher CD, Mueller E et al. Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-γ ligand troglitazone in patients with liposarcoma. Proc. Natl Acad. Sci. USA96(7), 3951–3956 (1999).
  • Debrock G, Vanhentenrijk V, Sciot R, Debiec-Rychter M, Oyer R, Van Oosterom A. A Phase II trial with rosiglitazone in liposarcoma patients. Br. J. Cancer89(8) 1409–1412 (2003).
  • Schultze K, Bock B, Eckert A et al. Troglitazone sensitizes tumor cells to TRAIL-induced apoptosis via down-regulation of FLIP and survivin. Apoptosis11(9), 1503–1512 (2006).
  • Lee JH, Chan JL, Sourlas E, Raptopoulos V, Mantzoros CS. Recombinant methionyl human leptin therapy in replacement doses improves insulin resistance and metabolic profile in patients with lipoatrophy and metabolic syndrome induced by the highly active antiretroviral therapy. J. Endocrinol. Metab.91(7), 2605–2611 (2006).
  • Chow WA, Guo S, Valdes-Albini F. Nelfinavir induces liposarcoma apoptosis and cell cycle arrest by upregulating sterol regulatory element binding protein-1. Anticancer Drugs17(8), 891–903 (2006).
  • Pore N, Gupta AK, Cerniglia GJ et al. Nelfinavir down-regulates hypoxia-inducible factor 1α and VEGF expression and increases tumor oxygenation: implications for radiotherapy. Cancer Res.66(18), 9252–9259 (2006).
  • Driessen C, Kraus M, Müller H et al. The HIV protease inhibitor ritonavir and the proteasome inhibitor bortezomib induce synergistic cytotoxicity on soft tissue sarcoma cells in vitro. Proceedings 42nd Annual Meeting American Society Clinical Oncology. Atlanta, GA, USA J. Clin. Oncol.24(S18), Pt I S536 (2006) (Abstract 9566).
  • Zhang P, Zhang C, Hao J et al. Use of X-chromosome inactivation pattern to determine the clonal origins of uterine leiomyoma and leiomyosarcoma. Hum. Pathol.37(10), 1350–1356 (2006).
  • Diao XL, Su Q, Wang SF et al. X-chromosome inactivation patterns of different tumor nodules in multiple leiomyomas of uterus. Zhonghua Bing Li Xue Za Zhi32(4), 308–313 (2003).
  • Hu J, Rao UN, Jasani S, Khanna V, Yaw K, Surti U. Loss of DNA copy number of 10q is associated with aggressive behavior of leiomyosarcomas: a comparative genomic hybridization study. Cancer Genet. Cytogenet.161(1), 20–27 (2005).
  • Cho YL, Bae S, Koo MS et al. Array comparative genomic hybridization analysis of uterine leiomyosarcoma. Gynecol. Oncol.99(3), 545–551 (2005).
  • Svarvar C, Larramendy ML, Blomqvist C et al. Do DNA copy number changes differentiate uterine from non-uterine leiomyosarcomas and predict metastasis? Mod. Pathol.19(8), 1068–1082 (2006).
  • Larramendy ML, Kaur S, Svarvar C, Bohling T, Knuutila S. Gene copy number profiling of soft-tissue leiomyosarcomas by array-comparative genomic hybridization. Cancer Genet. Cytogenet.169(2), 94–101 (2006).
  • Matsunura N, Mandai M, Miyanishi M et al. Oncogenic property of acrogranin in human uterine leiomyosarcoma: direct evidence of genetic contribution in in vivo tumorigenesis. Clin. Cancer Res.12(5), 1402–1411 (2006).
  • Rushing RS, Shajahan S, Chendil D et al. Uterine sarcomas express KIT protein but lack mutation(s) in exon 11 or 17 of c-KIT. Gynecol. Oncol.91(1), 9–14 (2003).
  • Kawaguchi K, Oda Y, Saito T et al. Mechanism of inactivation of the p16INK4a gene in leiomyosarcoma of soft tissue: decreased p16 expression correlates with promoter methylation and poor prognosis. J. Pathol.201(3), 487–495 (2003).
  • Shmulevich I, Hunt K, El-Naggar A et al. Tumor specific gene expression profiles in human leiomyosarcoma: an evaluation of intratumor heterogeneity. Cancer94(7), 2069–2075 (2002).
  • Skubitz KM, Skubitz AP. Differential gene expression in leiomyosarcoma. Cancer98(5), 1029–1038 (2003).
  • Lee YF, John M, Falconer A et al. A gene expression signature associated with metastatic outcome in human leiomyosarcomas. Cancer Res.64(20), 7201–7204 (2004).
  • Niedermeier A, Talanin N, Chung EJ et al. Histone deacetylase inhibitors induce apoptosis with minimal viral reactivation in cells infected with Kaposi’s sarcoma-associated herpesvirus. J. Invest. Dermatol.126(11), 2516–2524 (2006).
  • Fujii H, Honoki K, Tsujiuchi T et al. Growth inhibition and induction of apoptosis by 2-methoxyestradiol and valproic acid in rat osteosarcoma and malignant fibrous histiocytoma cell lines. Proceedings 97th Annual Meeting American Association Cancer Research. Washington, DC, USA 47, 1100 (2006) (Abstract 4682).
  • Kwan W, Terry J, Liu S, Knowling MA, Nielsen T. Effect of depsipeptide (NSC 630176), a histone deacetylase inhibitor, on human synovial sarcoma in vitro. Proceedings 41st Annual Meeting American Society Clinical Oncology. Orlando, FL, USA. J. Clin. Oncol.23(S16), Pt I S825 (2005) (Abstract 9039).
  • Kutko MC, Glick RD, Butler LM, Coffey DC, Rifkind RA. Histone deacetylase inhibitors induce growth suppression and cell death in human rhabdomyosarcoma in vitro. Clin. Cancer Res.9(15), 5749–5755 (2003).
  • Sakimura R, Tanaka K, Nakatani F et al. Antitumor effects of histone deacetylase inhibitor on Ewing’s family tumors. Int. J. Cancer116(5), 784–792 (2005).
  • Ito T, Ouchida M, Morimoto Y et al. Significant growth suppression of synovial sarcomas by the histone deacetylase inhibitor FK228 in vitro and in vivo. Cancer Lett.224(2), 311–319 (2005).
  • Okada T, Tanaka K, Nakatani F et al. Involvement of P-glycoprotein and MRP1 in resistance to cyclic tetrapeptide subfamily of histone deacetylase inhibitors in the drug-resistant osteosarcoma and Ewing’s sarcoma cells. Int. J. Cancer118(1), 90–97 (2006).
  • Liang XJ, Aszalos A. Multidrug transporters as drug targets. Curr. Drug Targets7(8), 911–921 (2006).
  • Kim YK, Seo DW, Kang DW, Lee HY, Han JW, Kim SN. Involvement of HDACI and the PI3K/PKC signaling pathways in NK-κB activation by the HDAC inhibitor apicidin. Biochem. Biophys. Res. Commun.347(4), 1088–1093 (2006).
  • Kim SH, Ahn S, Han JW et al. Apicidin is a histone deacetylase inhibitor with anti-invasive and anti-angiogenic potentials. Biochem. Biophys. Res. Commun.315(4), 964–970 (2004).
  • Watanabe K, Okamoto K, Yonehara S. Sensitization of osteosarcoma cells to death receptor-mediated apoptosis by HDAC inhibitors through downregulation of cellular FLIP. Cell Death Differ.12(1), 10–18 (2005).
  • Roh MS, Kim CW, Park BS et al. Mechanism of histone deacetylase inhibitor trichostain A induced apoptosis in human osteosarcoma cells. Apoptosis9(5), 583–589 (2004).
  • Morris C, Thorpe J, Ambrosio L, Santin M. The soybean isoflavone genistein induces differentiation of MG63 human osteosarcoma osteoblasts. J. Nutr.136(5), 1166–1170 (2006).
  • Wu Y, Guo SW. Inhibition of proliferation of endometrial stromal cells by trichostatin A, RU486, CDB-2914, N-acetylcysteine, and ICI 182780. Gynecol. Obstet. Invest.62(4), 193–205 (2006).
  • Okamoto H, Fjioka Y, Takahashi A et al. Trichostain A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21(WAF1). Atheroscler. Thromb.13(4), 183–191 (2006).
  • Zhang X, Yashiro M, Ren J, Hirakawa K. Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncol. Rep.16(3), 563–568 (2006).
  • Chen J, Bai H, Wang C, Kang J. Trichostatin A improves the anticancer activity of low concentrations of curcumin in human leukemia cells. Pharmazie61(8), 710–716 (2006).
  • Shim JS, Kim DH, Kwon HJ. Plakoglobin is a new target gene of histone deacetylase in human fibrosarcoma HT1080 cells. Oncogene23(9), 1704–1711 (2004).
  • Wiltse J. Mode of action: inhibition of histone deacetylase, altering WNT-dependent gene expression, and regulation of β-catenin-developmental effects of valproic acid. Crit. Rev. Toxicol.35(8–9), 727–738 (2005).
  • Gastaldi T, Bonvini P, Sartori F, Marrone A, Iolascon A, Rosolen A. Plakoglobin is differentially expressed in alveolar and embryonal rhabdomyosarcoma and is regulated by DNA methylation and histone acetylation. Carcinogenesis27(9), 1758–1767 (2006).
  • Lynch CA, Tycko B, Bestor TH, Walsh CP. Reactivation of a silenced H19 gene in human rhabdomyosarcoma by demethylation of DNA but not by histone deacetylation. Mol. Cancer1, 2 (2002).
  • Jaboin J, Wild J, Hamidi H et al. MS-27–275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res.62(21), 6108–6115 (2002).
  • Dai Y, Rahmani M, Dent P, Grant S. Blockade of histone deacetylase inhibitor-induced RElA/p65 acetylation and NF-κB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation. Mol. Cell Biol.25(13), 5429–5444 (2005).
  • Cao XX, Mohuiddin I, Ece F, McConkey DJ, Smythe WR. Histone deacetylase inhibitor downregulation of bcl-xl gene expression leads to apoptotic cell death in mesothelioma. Am. J. Respir. Cell Mol. Biol.25(5), 562–568 (2001).
  • Neuzil J, Swettenham E, Gellert N. Sensitization of mesothelioma to TRAIL apoptosis by inhibition of histone deacetylase: role of Bcl-xl down-regulation. Biochem. Biophys. Res. Commun.314(1), 186–191 (2004).
  • Nguyen DM, Schrump WD, Chen GA et al. Abrogation of p21 expression by flavopiridol enhances depsipeptide-mediated apoptosis in malignant pleural mesothelioma cells. Clin. Cancer Res.19(5), 1813–1825 (2004).
  • Krug LM, Curley T, Schwartz L et al. Potential role of histone deacetylase inhibitors in mesothelioma: clinical experience with suberoylanilide hydroxamic acid. Clin. Lung Cancer7(4), 257–261 (2006).
  • Lundquist A, Abrams SI, Schrump DS et al. Bortezomib and depsipeptide sensitize tumors to tumor necrosis factor-related apoptosis-inducuing ligand: a novel method to potentiate natural killer cell tumor cytotoxicity. Cancer Res.66(14), 7317–7325 (2006).
  • Skov S, Pedersen MT, Andresen L, Straten PT, Woetmann A, Odum N. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase-3-dependent expression of MHC class I-related chain A and B. Cancer Res.65(23), 11136–11145 (2005).
  • Weiser TS, Guo ZS, Ohnmacht GA et al. Sequential 5-aza-2-deoxycytidine-depsipeptide FR901228 treatment induces apoptosis preferentially in cancer cells and facilitates their recognition by cytolytic T lymphocytes specific for NY-ESO-1. J. Immunother.24(2), 151–161 (2001).
  • Motoi T, Saito T, Ladanyi M. The hedgehog signaling pathway in synovial sarcoma: mutational and functional analysis. Proceedings 97th Annual Meeting American Association Cancer Research. Washington, DC, USA 47, 403 (2006) (Abstract 1711).
  • Pretto D, Barco R, Rivera J, Neel N, Gustavson MD, Eid JE. The synovial sarcoma translocation protein SYT-SSX2 recruits beta-catenin to the nucleus and associates with it in an active complex. Oncogene25(26), 3661–3669 (2006).
  • Lubieniecka JM, Kwan W, Terry J, Nielsen TO. Growth inhibition of synovial sarcoma cells by curcumin. Proceedings 96th Annual Meeting American Association Cancer Research Anaheim, CA, USA, 46, 152–153 (2005) (Abstract 646).
  • Ventura-Holman T, Hahn H, Subauste JS, Maher JF. The Fem1a gene is downregulated in rhabdomyosarcoma. Tumour Biol.26(6), 294–299 (2005).
  • Tostar U, Malm CJ, Meis-Kindblom JM, Kindblom LG, Toftgard R, Unden AB. Deregulation of the hedgehog signalling pathway: a possible role for the PTCH and SUFU genes in human rhabdomyoma and rhabdomyosarcoma development. J. Pathol.208(1), 17–25 (2006).
  • Bovee JV, van den Broek LJ, Cleton-Jansen AM, Hogendoorn PC. Up-regulation of PTHrP and Bcl-2 expression characterizes the progression of osteochondroma towards peripheral chondrosarcoma and is a late event is central chondrosarcoma. Lab. Invest.80(12), 1925–1934 (2000).
  • Hameetman L, Rozeman LB, Lombaerts M et al. Peripheral chondrosarcoma progression is accompanied by decreased Indian hedgehog signaling. J. Pathol.209(4), 501–511 (2006).
  • Purow BW, Sundaresan T, Burdick M, Fine HA. FKBP8 is a potential mediator of the pro-survival effects of Notch-1 in glioma cells. Proceedings 96th Annual Meeting American Association Cancer Research. Anaheim, CA, USA 46, 550 (2005) (Abstract 2343).
  • Liu Z-J, Xiao M, Qiu R-H, Balint K. Activated Notch-1 induces mitogen-independent melanoma cell proliferation. Proceedings 96th Annual Meeting American Association Cancer Research. Anaheim, CA, USA 46, 43–44 (2005) (Abstract 188).
  • Zhang P, Mobley AK, Yang Y, Lee KA, Zweidler-Mckay A, Hughes DP. Notch signaling pathway contributes to osteosarcoma growth, tumorigenesis and metastasis. Proceeding 97th Annual Meeting American Association Cancer Research. Washington, DC, USA 47, 633 (2006) (Abstract 2690).
  • Miele L, Miao H, Nickoloff BJ. Notch signaling as a novel cancer therapeutic agent. Curr. Cancer Drug Targets6(4), 313–323 (2006).
  • Hrzenjak A, Tippl M, Kremser ML et al. Inverse relation of secreted frizzled-related protein 4 and β-catenin expression in endometrial stromal sarcoma. J. Pathol.204(1), 19–27 (2004).
  • Hsieh JJ, Nofziger DE, Weinmaster G, Hayward SD. Epstein–Barr virus immortalization: Notch2 interacts with CBF1 and blocks differentiation. J. Virol.71(3), 1938–1945 (1997).
  • Lan K, Murakami M, Choudhuri T, Kuppers DA, Robertson ES. Intracellular-activated Notch 1 reactivate Kaposi’s sarcoma-associated herpesvirus from latency. Virology351(2), 393–403 (2006).
  • Lan K, Choudhuri T, Murakami M, Kuppers DA, Robertson ES. Intracellular activated Notch 1 is critical for proliferation of Kaposi’s sarcoma-associated herpesvirus-associated B-lymphoma cell lines in vitro. J. Virol.80(13), 6411–6419 (2006).
  • Curry CL, Reed LL, Golde TE, Miele L, Nickoloff BJ, Foreman KE. γ secretase inhibitor blocks Notch activation and induces apoptosis in Kaposi’s sarcoma tumor cells. Oncogene24(42), 6333–6344 (2005).
  • Weijzen S, Zlobin A, Braid M, Miele L, Kast WM. HPV16 E6 and E7 oncoproteins regulate Notch-1 expression and cooperate to induce transformation. J. Cell Physiol.194(3), 356–362 (2003).
  • Leiba M, Cahalon l, Shimoni A et al. Halofuginone inhibits NK-κB and p38 MAPK in activated T cells. J. Leukoc. Biol.80(2), 399–406 (2006).
  • Pinthus JH. Sheffer Y, Nagler A et al. Inhibition of Wilms tumor xenograft progression is accompanied by activation of WT-1 gene expression. J. Urol.174(4/2), 1527–1531 (2005).
  • Yee KO, Connolly CM, Pines M, Lawler J. Halofuginone inhibits tumor growth in the polyoma middle T antigen mouse via a thrombospondin-1 independent mechanism. Cancer Biol. Ther.5(2), 218–224 (2006).
  • de Jonge MJ, Dumez H, Verweij J et al. Phase I and pharmacokinetic study of halofuginone, an oral quinazolinone derivative in patients with advanced solid tumours. Eur. J. Cancer42(12), 1768–1774 (2005).
  • Hoekstra R, de Vos F, Eskens FA et al. Phase I study of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 with 5-fluorouracil and leucovorin: a safe combination. Eur. J. Cancer42(4), 467–472 (2006).
  • Baker LH, Demetri GD, Mendelson DS et al. A randomized Phase 2 study of the thrombospondin-mimetic peptide ABT-510 in patients with soft tissue sarcoma. Proceedings 41st Annual Meeting American Society Clinical Oncolgy. Orlando, FL, USA. J. Clin. Oncol.23(S16), Pt I S819 (2005) (Abstract 9013).
  • Vaira V, Lee CW, Goel HL, Bosari S, Languino LR, Altieri DC. Regulation of survivin expression by IGF-1/mTOR signaling. Oncogene DOI: 10.1038/sj.onc.1210094 (2006) (Epub ahead of print).
  • Aoki M, Vogt PK. Retroviral oncogenes and TOR. Curr. Top. Microbiol. Immunol.279, 321–338 (2004).
  • Sodhi A, Chaisuparat R, Hu J et al. The TSC2/mTOR pathway drives endothelial cell transformation induced by the Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell10(2), 133–143 (2006).
  • Beevers CS, Li F, Liu L, Huang S. Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int. J. Cancer119(4), 757–764 (2006).
  • Stroher R, Hunter E. Inhibition of Rous sarcoma virus replication by 2-deoxyglucose and tunicamycin: identification of an unglycosylated env gene product. J. Virol.32(2), 412–419 (1979).
  • Calle Y, Palomares T, Castro B, del Olmo M, Bilbao P, Alonso-Varona A. Tunicamycin treatment reduces intracellular glutathione levels: effect on the metastatic potential of the rhabdomyosarcoma cell line S4MH. Chemotherapy46(6), 408–428 (2000).
  • Wang M, Xie Y, Girnita L et al. Regulatory role of mevalonate and N-linked glycosylation in proliferation and expression of the EWS/FLI-1 fusion protein in Ewing’s sarcoma cells. Exp. Cell Res.246(1), 38–46 (1999).
  • George P, Bali P, Cohen P et al. Cotreatment with 17-allylamino-demethoxygeldanamycin and FLT-3 kinase inhibitor PKC412 is highly effective against human acute myelogenous leukemia cells with mutant FLT-3. Cancer Res.64(10), 3645–3652 (2004).
  • Bali P, George P, Cohen P et al. Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT-3. Clin. Cancer Res.10(15), 4991–4997 (2004).
  • George P, Bali P, Annavarapu S et al. Combination of the histone deacetylase inhibitor LBH589 and the hsp90m inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood105(4), 1768–1776 (2005).
  • Shen Y, Xie Q, Norbnerg M, Sausville E, Woude GV, Wenkert D. Geldanamycin derivative inhibition of HGF/SF-mediated Met tyrosine kinase receptor-dependent urokinase-plasminogen activation. Bioorg. Med. Chem.13(16), 4960–4971 (2005).
  • Hawkins LM, Narendram A. The geldanamycin derivative 17-AAG decreases VEGF secretion and leukemia and growth support by trisomy 8 myelodysplastic syndrome bone marrow cells. Pediatr. Hematol. Oncol.22(2), 115–125 (2005).
  • Kasdan LA, Lu G, Singha U, Lentzsch S, Roodman GD, Ghobrial IM. Combination of the mTOR inhibitor rapamycin and HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17AAG) inhibits proliferation and induces apoptosis in multiple myeloma. Proceedings 41st Annual Meeting American Society Clinical Oncology. Orlando, FL, USA. J. Clin. Oncol.23(S16) Pt I, S863 (2005) (Abstract 9609).
  • Guan H, Jia SF, Zhou Z, Stewart L, Kleinerman ES. Herceptin down-regulates HER-2/neu and vascular endothel growth factor expression and enhances taxol-induced cytotoxicity of human Ewing’s sarcoma cell in vitro and in vivo. Clin. Cancer Res.11(5), 2008–2017 (2005).
  • Moinfar F, Gogg-Kamerer M, Sommersacher A et al. Endometrial stromal sarcomas frequently express epidermal growth factor receptor (EGFR, HER1): potential basis for a new therapeutic approach. Am. J. Surg. Pathol.29(4), 485–489 (2005).
  • Raspollini MR, Mecacci F, Paglierani M, Marchionni M, Taddei GL. HER-2/neu oncogene in uterine carcinosarcoma on tamoxifen therapy. Pathol. Res. Pract.201(2), 141–144 (2005).
  • Olsen RJ, Lydiatt WM, Koepsell SA et al. C-erb-B2 (HER2/neu) expression in synovial sarcoma of the head and neck. Head Neck27(10), 883–892 (2005).
  • Azizi AA, Haberler C, Czech T et al. Vascular-endothelial-growth-factor (VEGF) expression and possible response to angiogenesis inhibitor bevacizumab in metastatic alveolar soft Pt sarcoma. Lancet Oncol.7(6), 521–523 (2006).
  • Mikami I, You L, He B et al. Efficacy of Wnt-1 monoclonal antibody in sarcoma cells. BMC Cancer5(1), 53 (2005).
  • Nagayama S, Fukukawa C, Katagiri T et al. Therapeutic potential of antibodies against FZD 10, a cell-surface protein, for synovial sarcomas. Oncogene24(41), 6201–6212 (2005).
  • Oikawa K, Ishida T, Imamura T et al. Generation of the novel monoclonal antibody against TLS/EWS-CHOP chimeric oncoprotein that is applicable to one of the most sensitive assays for myxoid and round cell liposarcomas. Am. J. Surg. Pathol.30(3), 351–356 (2006).
  • Deevi DS, Lariccia L, Wang S et al. Inhibition of human osteosarcoma xenograft growth by anti-platelet derived growth factor receptor α antibody, IMC-3G3, alone and in combination with chemotherapy. Proceedings 97th Annual Meeting American Association Cancer Research. Washington, DC, USA 47, 877 (2006) (Abstract 3729).
  • Kovar H, Bernard A. CD99-positive “Ewing’s sarcoma” from mouse bone marrow-derived mesenchymal progenitor cells? Cancer Res.66(19), 9786 (2006).
  • Riggi N, Suvá M-L, Stamenkovic I. Ewing’s sarcoma-like tumors originate from EWS-FLI-1-expressing mesenchymal progenitor cells. Cancer Res.66(19), 9786–9788 (2006).
  • Scotlandi K, Perdichizzi S, Bernard G et al. Targeting CD99 in association with doxorubicin: an effective combined treatment for Ewing’s sarcoma. Eur. J. Cancer42(1), 91–96 (2006).
  • Kovaleva M, Bussmeyer I, Rabe B et al. Abrogation of viral interleukin-6 (vIL-6) induced signaling by intracellular retention and neutralization of vIL-6 with an anti-vIL-6 single chain antibody selected by phage display. J. Virol.80(17), 8519–8520 (2006).
  • Olsen RJ, Tarantolo SR, Hinrichs SH. Molecular approaches to sarcoma therapy. Sarcoma6(1), 27–42 (2002).
  • Sinkovics JG, Horvath JC. Viral Therapy of Human Cancers. Sinkovics JG, Horvath JC (Eds). Marcel Dekker, New York, USA III–VII, IX–XIII 1–829 (2005).
  • Parat KA, Senger D, Forsyth PA, Bell JC. Recent progress in the battle between oncolytic viruses and tumours. Nat. Rev. Cancer5, 965–976 (2005).
  • Mayor HD. Defective parvoviruses may be good for your health! Progr. Med. Virol.40, 193–205 (1993).
  • Blair SL, Al-Refaie WB, Wang-Rodriguez J, Behling C, Ali MW, Moossa AR. Gastrointestinal stromal tumors express ras oncogene: a potential role for diagnosis and treatment. Arch. Surg.140(6), 543–547 (2005).
  • Cinatl J, Cinatl J, Michaelis M et al. Potent oncolytic activity of multimutated herpes simplex virus G207 in combination with vincristine against human rhabdomyosarcoma. Cancer Res.63(7), 1508–1514 (2003).
  • Sinkovics JG, Groves GF, Howe CD. Actions of interferon in tissue cultures harboring mouse leukemia virus. Experientia24(9), 927–928 (1968).
  • Sinkovics JG, Howe CD. Superinfection of tumors with viruses. Experientia25(7), 733–734 (1969).
  • Linardakis E, Bateman A, Phan V et al. Enhancing the efficacy of a weak allogeneic melanoma vaccine by viral fusogenic membrane glycoprotein-mediated tumor cell-tumor cell fusion. Cancer Res.62(19), 5495–5504 (2002).
  • Bateman A, Harrington KJ, Kottke T et al. Viral fusogenic membrane glycoproteins kill solid tumor cells by nonapoptotic mechanisms that promote cross presentation of tumor antigen by dendritic cells. Cancer Res.62(22), 6566–6578 (2002).
  • Errington F, Bateman A, Kottke T et al. Allogeneic tumor cells expressing fusogenic membrane glycoproteins as a platform for clinical cancer immunotherapy. Clin. Cancer Res.12(4), 1333–1341 (2006).
  • Simpson GR, Han Z, Liu B, Wang Y, Campbell G, Coffin RS. Combination of a fusogenic glycoprotein, prodrug activation, and oncolytic herpes simplex virus for enhanced local tumor control. Cancer Res.66(9), 4835–4842 (2006).
  • Zhang WE, Kolb E. Reolysin®, an unmodified reovirus, has significant anti-tumor activity in childhood sarcomas. Proceedings 97th Annual Meeting American Association Cancer Resarch. Washington, DC, USA 47, 1017 (2006) (Abstract 4331).
  • Kim M, Egan K, Lee PWK, Forsyth PAJ, Johnston RN. Acquired resistance to reoviral oncolysis. Proceedings 96 th Annual Meeting American Association Cancer Research. Anaheim, CA, USA 46, 797 (2005) (Abstract 3381).
  • Deguch T, Kasuya H. Oncolytic cancer therapy using lipofectamine-conjugated herpes simplex virus for the reduction of viral antigenicity. Proceedings 96th Annual Meeting American Association Cancer Resarch. Anaheim, CA, USA 46, 793 (2005) (Abstract 3367).
  • Cui K, Tailor P, Liu H, Chen X, Ozato K, Zhao K. The chromatin-remodeling BAF complex mediates cellular antiviral activities by promoter priming. Mol. Cell Biol.24(10), 4476–4486 (2004).
  • DeCristofaro MF, Betz BL, Wang W, Weissman BE. Alteration of hSNF5/INI1/BAF47 detected in rhabdoid cell lines and primary rhabdomyosarcomas but not Wilms’ tumors. Oncogene18(52), 7559–7565 (1999).
  • Sinkovics JG, Horvath JC. Evidence accumulating in support of cancer vaccines combined with chemotherapy: a pragmatic review of past and present efforts. Int. J. Oncol.29(4), 765–777 (2006).
  • Worley BS, van den Broeke LT, Goletz TJ et al. Antigenicity of fusion proteins from sarcoma-associated chromosomal translocations. Cancer Res.61(18), 6868–6875 (2001).
  • Dalerba P, Frascella E, Macino B et al. MAGE, BAGE and GAGE gene expressions in human rhabdomyosarcomas. Int. J. Cancer93(1), 85–90 (2001).
  • Lee SY, Obata Y, Yoshida M et al. Immunomic analysis of human sarcoma. Proc. Natl. Acad. Sci. USA100(5), 2651–2656 (2003).
  • Dagher R, Long LM, Read EJ et al. Pilot trial of tumor-specific peptide vaccination and continuous infusion of interleukin-2 in patients with recurrent Ewing’s sarcoma and alveolar rhabdomyosarcoma. Med. Pediatr. Oncol.38(3), 158–164 (2002).
  • Matsuzaki A, Suminoe A, Hattori H, Hoshina T, Hara T. Immunotherapy with autologous dendritic cells and tumor-specific peptides for synovial sarcoma. J. Pediatr. Hematol. Oncol.24(3), 220–223 (2002).
  • Kawaguchi S, Wada T, Ida K et al. Phase I vaccination trial of SYT-SSX junction peptide in patients with disseminated synovial sarcoma. J. Transl. Med.3, 1 (2005).
  • Pollock ER, Lang A, Luo J, El-Naggar AK, Yu D. Soft tissue sarcoma metastasis from clonal expansion of p53 mutated tumor cells. Oncogene12(9), 2035–2039 (1996).
  • Milas M, Yu D, Lang A et al. Adenovirus-mediated p53 gene therapy inhibits human sarcoma tumorigenicity. Cancer Gene Ther.7(3), 422–429 (2000).
  • Zhang L, Yu D, Hu M et al. Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. Cancer Res.60(13), 3655–3661 (2000).
  • Zhan M, Yu D, Lang A, Li L, Pollock RE. Wild type p53 senzitizes soft tissue sarcoma cells to doxorubicin by down-regulating multidrug resistance-1 expression. Cancer92(6), 1556–1566 (2001).
  • Nakase M, Inui M, Okumura K, Jameui T, Nakamura S, Tagawa T. p53 gene therapy of human osteosarcoma using a transferrin-modified cationic liposome. Mol. Cancer Ther.3(4), 625–631 (2005).
  • Ternovoi VV, Curiel DT, Smith BF, Siegal GP. Adenovirus-mediated p53 tumor suppressor gene therapy of osteosarcoma. Lab. Invest.86(80), 748–766 (2006).
  • Coley HM, Shotton CF, Patrikis MI, Thomas H. The cell cycle inhibitor CYC202 shows a differential effect in human leiomyosarcoma with deleted and wild type Rb when used in combination with doxorubicin. Proceedings 94th Annual Meeting American Association Cancer Research. Toronto, Canada, 44, 635 (2003) (Abstract 2782).
  • Vorburger SA, Hetrakul N, Xia W et al. Gene therapy with E2F-1 up-regulates the protein kinase PKR and inhibits growth of leiomyosarcoma in vivo. Mol. Cancer Ther.4(11), 1710–1716 (2005).
  • Ruochun H, Ying L, Cheng C et al. Connexin 43 suppresses human glioblastoma cell growth by down-regulation of monocyte chemotactic protein 1, as discovered using protein array technology. Cancer Res.62(10), 2806–2812 (2002).
  • Bianco R, Ciardello F, Tortora G. Chemosensitization by antisense oligonucleotides targeting MDM2. Curr. Cancer Drug Targets5(1), 51–56 (2005).
  • Dong YB, Yang HL, Elliott MJ, McMasters KM. Increased mdm-2 expression in a p53-independent manner blocks UV-induced cell cycle arrest and apoptosis in human osteosarcoma cells. Tumour Biol.24(3), 130–139 (2003).
  • Seto M, Wakabayashi H, Yamazaki T, Sonoda J, Shinto Y, Uchida A. Gene therapy of chondrosarcoma using retrovirus vectors encoding the herpes simplex virus thymidine kinase gene. Int. J. Oncol.14(6), 1137–1141 (1999).
  • Ketola A, Maatta AM, Pasanen T, Tulimaki K, Wahlfors J. Osteosarcoma and chondrosarcoma as targets for virus vectors and herpes simplex virus thymidine kinase/ganciclovir gene therapy. Int. J. Mol. Med.13(5), 705–710 (2004).
  • Massuda ES, Dunphy EJ, Redman RA et al. Regulated expression of the diphtheria toxin A chain by a tumor-specific chimeric transcription factor results in selective toxicity for alveolar rhabdomyosarcoma. Proc. Natl. Acad. Sci. USA94(26), 14701–14706 (1997).
  • Danks MK, Morton CL, Pawlik CA, Potter PM. Overexpression of a rabbit carboxylesterase sensitizes human tumor cells to CPT-11. Cancer Res.58(1), 20–22 (1998).
  • Okumura K, Nakase M, Nakamura S, Inui M, Hiramoto K, Tagawa T. Antitumor activity of cationic liposome-mediated Bax gene transfer in osteosarcoma cells: induction of apoptosis and caspase-independent cell death. Int. J. Oncol.27(2), 433–438 (2005).
  • Toyota H, Kondo S, Kyo S, Mizuguchi J. Enforced expression of a truncated form of Bax-α (tBAx) driven by human telomerase reverse transcriptase (hTERT) promoter sensitizes tumor cells to chemotherapeutic agents or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). AntiCancer Res.26(A1), 99–105 (2006).
  • Murofushi Y, Nagano S, Kamizono J et al. Cell cycle-specific changes in hTERT promoter activity in normal and cancerous cells in adenoviral gene therapy: a promising implication of telomerase-dependent targeted cancer gene therapy. Internat. J. Oncol.29(3), 681–688 (2006).
  • Li X, Jung C, Liu YH et al. Anti-tumor efficacy of a transcriptional replication-competent adenovirus, Ad-OC-E1a, for osteosarcoma pulmonary metastasis. J. Gene Med.8(6), 679–689 (2006).
  • Zhang L, Hannay JAF, Liu J et al. Vascular endothel growth factor overexpression by soft tissue sarcoma cells: implications for tumor growth, metastasis, and chemoresistance. Cancer Res.66(17), 8770–8778 (2006).
  • Pakos EE, Goussia AC, Tserekis PG, Papachristou DJ, Stefanou D, Agnantis NJ. Expression of vascular endothelial growth factor and its receptor, KDR/Flk-1, in soft tissue sarcomas. AntiCancer Res.25(5), 3591–3596 (2005).
  • Havrda MC, Johnson MJ, O’Neill CF, Liaw L. A novel mechanism of transcriptional repression of p27(kip1) through Notch/HRT2 signaling in vascular smooth muscle cells. Thromb. Haemost.96(3), 361–370 (2006).
  • Sinkovics JG. Oncogenes and growth factors. CRC Crit. Rev. Immunol.8(4), 217–298 (1988).
  • Albini A, Marchisone C, Del Gross F et al. Inhibition of angiogenesis and vascular tumor growth by interferon-producing cells: a gene therapy approach. Am. J. Pathol.156(4), 1381–1393 (2000).
  • Lucerna M, Pomyje J, Mechtcheriakova D et al. Sustained expression of early growth response protein-1 blocks angiogenesis and tumor growth. Cancer Res.66(13), 8708–6713 (2006).
  • Raulli R, Scuoppo C, Bersani F et al. Validation of met as a therapeutic target in alveolar and embryonal rhabdomyosarcoma. Cancer Res.66(9), 4742–4749 (2006).
  • Caldas H, Holloway MP, Hall BM, Qualman SJ, Altura RA. Survivin-directed RNA interference cocktail is a potent suppressor of tumour growth in vivo. J. Med. Genet.43(2), 119–128 (2006); Erratum 43(5), 418 (2006).
  • Lapra F, Röttinger E, Duboc V et al. RTK and TGF-β signaling pathways genes in the sea urchin genome. Dev. Biol. (2006) (Epub ahead of print).
  • Ye LV, Zhang H, Zhang L et al. Effects of RNAi-mediated Smad4 silencing on growth and apoptosis of human rhabdomyosarcoma cells. Int. J. Oncol.29(5), 1149–1157 (2006).
  • Morgenstern DA, Anderson, J. MYCN deregulation as a potential target for novel therapies in rhabdomyosarcoma. Expert Rev. Anticancer Ther.6(2), 217–224 (2006).
  • Marampon F, Ciccarelli C, Zani BM. Down-regulation of c-Myc following MEK/ERK inhibition halts the expression of malignant phenotype in rhabdomyosarcoma and in non muscle-derived human tumors. Mol. Cancer5, 31 (2006).
  • Wu Q, Yang SH, Ye SN, Wang RY. Therapeutic effects of RNA interference targeting HIF-1α gene on human osteosarcoma. Zhonghua Yi Xue Za Zhi85(6), 409–413 (2005).
  • Toub N, Bertrand JR, Tamaddon A et al. Efficacy of siRNA nanocapsules targeted against the EWS-Fli1 oncogene in Ewing’s sarcoma. Pharm. Res.23(5), 892–900 (2006).
  • Sanceau J, Truchet S, Bauvois B. Matrix metalloproteinase-9 silencing by RNA interference triggers the migratory-adhesive switch in Ewing’s sarcoma cells. J. Biol. Chem.278(38), 36537–36546 (2003).
  • Nozawa S, Ohno T, Banno Y et al. Inhibition of platelet-derived growth factor-induced cell growth signaling by a short interfering RNA for EWSW-Fli1 via down-regulation of phospholipase D2 in Ewing sarcoma cells. J. Biol. Chem.280(30), 27544–27551 (2005).
  • Lee SB, Kolquist KA, Nichols K et al. The EWS-WT1 translocation product induces PDGFA in desmoplastic small round cell tumour. Nat. Genet.17(3), 309–313 (1997).
  • Hu W-Y, Myers CP, Kilzer JM, Pfaff SL, Bushman FD. Inhibition of retroviral pathogenesis by RNA interference. Curr. Biol.12(15), 1301–1311 (2002).
  • Godfrey A, Laman H, Boshoff C. RNA interference: a potential tool against Kaposi’s sarcoma-associated herpesvirus. Curr. Opin. Infect. Dis.16(6), 593–600 (2003).
  • Gasperi-Campani A, Baiocdi D, Marti G, Rossi AML, Roncuzzi L. Caveolin-1 as a novel target of therapeutic activity of fenretidine in osteosarcoma and glioblastoma in vitro. Proceedings 97th Annual Meeting American Association Cancer Research. Washington, DC, USA 47, 1291 (2006) (Abstract 5490).
  • Tirado OM, Mateo-Lozano S, Villar J et al. Caveolin-1 is a target of EWS/FLI-1 and a key determinant of tumorigenicity and resistance to chemotherapy-induced apoptosis of Ewing’s sarcoma cells. Proceedings 97th Annual Meeting American Association Cancer Research. Washington, DC, USA 47, 1324 (2006) (Abstract 5636).
  • Alldinger I, Yang Q, Pilarsky C, Saeger HD, Knoefel WT, Peiper M. Retroperitoneal soft tissue sarcomas: prognosis and treatment of primary and recurrent disease in 117 patients. AntiCancer Res.26(B2) 1577–1581 (2006).
  • Raut CP, Pisters PW. Retroperitoneal sarcomas: combined modality treatment approaches. J. Surg. Oncol.94(1), 81–87 (2006).
  • Hrzenjak A, Moinfar F, Kremser ML et al. Valproate inhibition of histone deacetylase 2 affects differentiation and decreases proliferation of endometrial stromal sarcoma cells. Mol. Cancer. Ther.5(9), 2203–2210 (2006).
  • Upadhyay D, Panduri V, Kamp DW. Fibroblast growth factor-10 prevents asbestos-induced alveolar epithelial cell apoptosis by a mitogen-activated protein kinase-dependent mechanism. Am. J. Respir. Cell Mol. Biol.32(3), 232–238 (2005).
  • Baird K, Davis S, Antonescu CR et al. Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res.65(20), 9226–9235 (2005).
  • Morita S, Oka Y, Tsuboi A et al. A Phase I/II trial of a WT1 (Wilms’ tumor gene) peptide vaccine in patients with solid malignancy: safety assessment based on the Phase I data. Jpn. J. Clin. Oncol.36(4), 231–236 (2006).
  • Dutoit V, Taub RN, Papadopoulos KP et al. Multiepitope CD8+ T cell response to a NY-ESO-1 peptide vaccine results in imprecise tumor targeting. J. Clin. Invest.110(12), 1813–1822 (2002).
  • Ayyoub M, Taub RN, Keohan ML et al. The frequent expression of cancer/testis antigens provides opportunities for immunotherapeutic targeting of sarcoma. Cancer Immun.4, 7 (2004).
  • Karbach J, Pauligk C, Bender A et al. Identification of new NY-ESO-1 epitopes recognized by CD4+ T cells and presented by HLA-DQ B1 03011. Int. J. Cancer118(3), 668–674 (2006).
  • Mavroudis D, Bolonakis I, Cornet S et al. A Phase I study of the optimized cryptic peptide TERT(572y) in patients with advanced malignancies. Oncology70(4), 306–314 (2006).
  • Yu Z, Ma B, Zhou Y, Zhang M, Qiu X, Fan Q. Activation of antitumor cytotoxic T lymphocytes by fusion of patient-derived dendritic cells with autologous osteosarcoma. Exp. Oncol.27(4), 273–278 (2005).
  • Tsukahara T, Kawaguchi S, Ida K et al. HLA-restricted specific tumor cytolysis by autologous T-lymphocytes infiltrating metastatic bone malignant fibrous histiocytoma of lymph node. J. Orthop. Res.24(1), 94–101 (2006).
  • Mori K, Redini F, Gouin F, Cherrier B, Heymann D. Osteosarcoma: current status of immunotherapy and future trends. Oncol. Rep.15(3), 693–700 (2000).
  • McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop. J.26, 154–158 (2006).
  • Lu H, Ouyang W, Huang C. Inflammation, a key event in cancer development. Mol. Cancer Res.4(4), 221–233 (2006).
  • Yoshimura A. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci.97(6), 439–447 (2006).
  • Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu. Rev. Pathol. Mech. Dis.1, 119–150 (2006).
  • Herzog CE. Overview of sarcomas in the adolescent and young adult population. J. Pediatr. Hematol. Oncol.27(4), 215–218 (2005).
  • Zhang L, Yu D, Hicklin DJ, Hannay JAF, Ellis LM, Pollock RE. Combined anti-fetal liver kinase 1 monoclonal antibody and continuous low-dose doxorubicin inhibits angiogenesis and growth of human soft tissue sarcoma xenografts by induction of endothelial cell apoptosis. Cancer Res.62(7), 2034–2042 (2002).
  • Sinkovics JG, Horvath JC. The molecular biology and immunology of glioblastoma multiforme (GBM) with the presentation of an immunotherapy protocol for a clinical trial. Acta Microbiol. Immunol. Hungar.53(4), 367–429 (2006).
  • Westly HJ, Kleiss AJ, Kelley KW, Wong PK, Yuen PH. Newcastle disease virus-infected splenocytes express the proopiomelanocortin gene. J. Exp. Med.163(6), 1589–1594 (1986).
  • De Laurenzi V, Melino G, Knight RA, Pierotti RA, Cohen P. Modulation of POMC expression in human neuroectodermal cells. Biochem. Biophys. Res. Commun.197(3), 1402–1409 (1993).
  • Gabrilove JL, Anderson PJ, Halmi NS. Pituitary pro-opiomelanocortin-cell carcinoma occurring in conjunction with a glioblastoma in a patient with Cushing’s diseasae and subsequent Nelson’s syndrome. Clin. Endocrinol.25(2), 117–126 (1986).
  • Catania A, Colombo G, Carlin A et al. Autocrine inhibitory influences of α-melanocyte-stimulating hormone in malignant mesothelioma. J. Leukoc. Biol.75(2), 253–259 (2004).
  • Westphal M, Li CH. β-endorphin: characterization of binding sites specific for the human glioblastoma SF126 cells. Proc. Natl Acad. Sci USA.81(9), 2921–2923 (1984).
  • Savarese A, Annicchiarico-Petrucelli M, Citro G et al. Characterization of a glioblastoma cell line (LI) expressing hypothalamic and pituitary hormones. Exp. Brain Res.89(2), 408–414 (1992).
  • Csatary LK, Bakacs T. Use of Newcastle disease virus vaccine (MTH-68/H) in a patient with high-grade glioblastoma. JAMA281(17), 1588–1589 (1999); Erratum 283(16), 2107 (2000).
  • Schneider T, Gerhards R, Kirches E, Firsching R. Preliminary results of active immunization with modified tumor cell vaccine in glioblastoma multiforme. J. Neurooncol.53(1), 39–46 (2001).
  • Steiner HH, Bonsanto MM, Beckhove P et al. Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit. J. Clin. Oncol.22(21), 4272–4281 (2004).
  • Freeman AI, Zakay-Rones Z, Gomori JM et al. Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol. Ther.13(1), 221–228 (2006).
  • Wagner S, Csatary CM, Gosztonyi G et al. Combined treatment of pediatric high-grade glioma with the oncolytic viral strain MTH-68/H and oral valproic acid. Acta Pathol. Microbiol. Immunol. Scand.114, 731–743 (2006).
  • Marsden PA. RNA interference as potential therapy − not so fast. N. Engl. J. Med.355(9), 953–954 (2006).
  • Abbott A. Youthful duo snags a swift Nobel for RNA control of genes. Nature443(7111), 488 (2006).
  • Sinkovics JG, Cabiness JR, Shullenberger CC. In vitro cytotoxicity of lymphocytes to human sarcoma cells. Bibliotheca Haematologica39, 846–851 (1973).
  • Sinkovics JG, Horvath JC. Virological and immunological connotations of apoptotic and anti-apoptotic forces in neoplasia. Int. J. Oncol.19(3), 473–488 (2001).
  • Delaney TF, Spira IJ, Suit HD et al. Neoadjuvant chemotherapy and radiotherapy for large extremity soft-tissue sarcomas. Int. J. Rad. Oncol. Biol. Phys.56, 1117–1127; Editorial 56(4), 915–916 (2003).
  • Shinomiya N, Gao CF, Xie Q et al. RNA interference reveals that ligand-independent Met activity is required for tumor cell signaling and survival Cancer Res.64, 7962–7970 (2004).
  • Kappler M, Taubert H, Bartel F et al. Radiosensitization, after a combined treatment of survivin siRNA and irradiation, is correlated with the activation of caspases 3 and 7 in a wt-p53 sarcoma cell line, but not in a mt-p53 sarcoma cell line. Oncol. Rep.13, 167–172 (2005).
  • Lee CF, Chang SY, Hsieh DS, Yu DS. Treatment of bladder carcinomas using recombinant BCG DNA vaccines and electroporative gene immunotherapy. Cancer Gene Ther.11, 186–193 (2004).
  • Kosciolek BA, Kalantidis K, Tabler M, Rowley PT. Inhibition of telomerase activity in human cancer cells by RNA interference. Mol. Cancer Ther.2, 209–216 (2003).
  • Croci S, Landuzzi L, Astolfi A et al. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells Cancer Res.64, 1730–1736 (2004).
  • Nagayama S, Iiizumi M, Katagiri T, Toguchida J, Nakamura Y. Identification of PDZK4, a novel human gene with PDZ domains, that is upregulated in synovial sarcomas. Oncogene23, 5551–5557 (2004).
  • Yuan J, Dutton CM, Scully SP. RNAi mediated MMP-1 silencing inhibits human chondrosarcoma invasion. J. Orthop. Res.23, 1467–1474 (2005).
  • Jiang X, Dutton CM, Qi W, Block JA, Garamszegi N, Scully SP. siRNA mediated inhibition of MMP-1 reduces invasive potential of a human chondrosarcoma cell line. J. Cell Physiol.202, 723–730 (2005).
  • Wang D, Luo M, Kelley MR. Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition. Mol. Cancer Ther.3, 679–686 (2004).
  • Chansky HA, Barahmand-pour F, Mei Q et al. Targeting of EWS/FLI-1 by RNA interference attenuates the tumor phenotype of Ewing’s sarcoma cells in vitro. J. Orthop. Res.22, 910–917 (2005).
  • Kovar H, Ban J, Pospisilova S. Potentials for RNAi in sarcoma research and therapy: Ewing’s sarcoma as a model. Semin. Cancer Biol.13, 275–281 (2003).
  • Matsunobu T, Tanaka K, Nakamura T et al. The possible role of EWS-Fli1 in evasion of senescence in Ewing family tumors. Cancer Res.66, 803–811 (2006).
  • Dohjima T, Lee NS, Li H, Ohno T, Rossi JJ et al. Small interfering RNAs expressed from a Pol III promoter suppress the EWS/Fli-1 transcript in an Ewing sarcoma cell line Mol. Ther.7, 811–816 (2003).
  • Guan H, Zhou Z, Wang H et al. A small interfering RNA targeting vascular endothelial growth factor inhibits Ewing’s sarcoma growth in a xenograft mouse model. Clin. Cancer Res.11, 2662–2669 (2005).
  • Massod R, Xia GD, Smith L et al. Ephrin B2 expression in Kaposi sarcoma is induced by human herpesvirus type 8: phenotype switch from venous to arterial endothelium. Blood105, 1310–1318 (2005).
  • De Vita VT. Current Clinical Trials Oncology. NCI, Bethesda, MD, USA 13(6) I193–I200 (2006).

Websites

  • P\S\L Research www.pslgroup.com/dg18dff6.htm
  • Gene-expression profiling of human sarcomas http://watson.nhgri.nih.gov/sarcoma

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.