1,102
Views
261
CrossRef citations to date
0
Altmetric
Drug Profile

Tariquidar (XR9576): a P-glycoprotein drug efflux pump inhibitor

&
Pages 447-459 | Published online: 10 Jan 2014

References

  • Gottesman MM. Mechanisms of cancer drug resistance. Annu. Rev. Med.53, 615–627 (2002).
  • Mattern J. Drug resistance in cancer: a multifactorial problem. Anticancer Res.23(2C), 1769–1772 (2003).
  • Yague E, Raguz S. Drug resistance in cancer. Br. J. Cancer93(9), 973–976 (2005).
  • Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res.11(7), 1156–1166 (2001).
  • Teodori E, Dei S, Martelli C, Scapecchi S, Gualtieri F. The functions and structure of ABC transporters: implications for the design of new inhibitors of Pgp and MRP1 to control multidrug resistance (MDR). Curr. Drug Targets7(7), 893–909 (2006).
  • Sarkadi B, Homolya L, Szakacs G, Varadi A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol. Rev.86(4), 1179–1236 (2006).
  • Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta455(1), 152–62 (1976).
  • Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc. Natl Acad. Sci. USA84(1), 265–269 (1987).
  • Linn SC, Pinedo HM, van Ark-Otte J et al. Expression of drug resistance proteins in breast cancer, in relation to chemotherapy. Int. J. Cancer71(5), 787–795 (1997).
  • Bates SE, Mickley LA, Chen YN et al. Expression of a drug resistance gene in human neuroblastoma cell lines: modulation by retinoic acid-induced differentiation. Mol. Cell. Biol.9(10), 4337–4344 (1989).
  • Sandor V, Wilson W, Fojo T, Bates SE. The role of MDR-1 in refractory lymphoma. Leuk. Lymphoma28(1–2), 23–31 (1997).
  • Joncourt F, Buser K, Altermatt H, Bacchi M, Oberli A, Cerny T. Multiple drug resistance parameter expression in ovarian cancer. Gynecol. Oncol.70(2), 176–182 (1998).
  • Coley HM, Verrill MW, Gregson SE, Odell DE, Fisher C, Judson IR. Incidence of P-glycoprotein overexpression and multidrug resistance (MDR) reversal in adult soft tissue sarcoma. Eur. J. Cancer36(7), 881–888 (2000).
  • Schaich M, Soucek S, Thiede C, Ehninger G, Illmer T. MDR1 and MRP1 gene expression are independent predictors for treatment outcome in adult acute myeloid leukaemia. Br. J. Haematol.128(3), 324–332 (2005).
  • Raspadori D, Damiani D, Michieli M et al. CD56 and PGP expression in acute myeloid leukemia: impact on clinical outcome. Haematologica87(11), 1135–1140 (2002).
  • Senent L, Jarque I, Martin G et al. P-glycoprotein expression and prognostic value in acute myeloid leukemia. Haematologica83(9), 783–787 (1998).
  • Hunault M, Zhou D, Delmer A et al. Multidrug resistance gene expression in acute myeloid leukemia: major prognosis significance for in vivo drug resistance to induction treatment. Ann. Hematol.74(2), 65–71 (1997).
  • van den Heuvel-Eibrink MM, van der Holt B, te Boekhorst PA et al. MDR 1 expression is an independent prognostic factor for response and survival in de novo acute myeloid leukaemia. Br. J. Haematol.99(1), 76–83 (1997).
  • van den Heuvel-Eibrink MM, Wiemer EA, de Boevere MJ et al. MDR1 gene-related clonal selection and P-glycoprotein function and expression in relapsed or refractory acute myeloid leukemia. Blood97(11), 3605–3611 (2001).
  • Wood P, Burgess R, MacGregor A, Yin JA. P-glycoprotein expression on acute myeloid leukaemia blast cells at diagnosis predicts response to chemotherapy and survival. Br. J. Haematol.87(3), 509–514 (1994).
  • Pallis M, Turzanski J, Higashi Y, Russell N. P-glycoprotein in acute myeloid leukaemia: therapeutic implications of its association with both a multidrug-resistant and an apoptosis-resistant phenotype. Leuk. Lymphoma43(6), 1221–1228 (2002).
  • List AF. Role of multidrug resistance and its pharmacological modulation in acute myeloid leukemia. Leukemia10(6), 937–942 (1996).
  • Ross DD. Novel mechanisms of drug resistance in leukemia. Leukemia14(3), 467–473 (2000).
  • Fojo T, Bates S. Strategies for reversing drug resistance. Oncogene22(47), 7512–7523 (2003).
  • Bates SF, Chen C, Robey R, Kang M, Figg WD, Fojo T. Reversal of multidrug resistance: lessons from clinical oncology. Novartis Found. Symp.243, 83–96; Discussion 102, 80–85 (2002).
  • Ford JM, Hait WN. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev.42(3), 155–199 (1990).
  • Wandel C, Kim RB, Kajiji S, Guengerich P, Wilkinson GR, Wood AJ. P-glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Res.59(16), 3944–3948 (1999).
  • Fischer V, Rodriguez-Gascon A, Heitz F et al. The multidrug resistance modulator valspodar (PSC 833) is metabolized by human cytochrome P450 3A. Implications for drug–drug interactions and pharmacological activity of the main metabolite. Drug Metab. Dispos.26(8), 802–811 (1998).
  • Boote DJ, Dennis IF, Twentyman PR et al. Phase I study of etoposide with SDZ PSC 833 as a modulator of multidrug resistance in patients with cancer. J. Clin. Oncol.14(2), 610–618 (1996).
  • Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control10(2), 159–165 (2003).
  • Martin C, Berridge G, Mistry P, Higgins C, Charlton P, Callaghan R. The molecular interaction of the high affinity reversal agent XR9576 with P-glycoprotein. Br. J. Pharmacol.128(2), 403–411 (1999).
  • Roe M, Folkes A, Ashworth P et al. Reversal of P-glycoprotein mediated multidrug resistance by novel anthranilamide derivatives. Bioorg. Med. Chem. Lett.9(4), 595–600 (1999).
  • Globisch C, Pajeva IK, Wiese M. Structure–activity relationships of a series of tariquidar analogs as multidrug resistance modulators. Bioorg. Med. Chem.14(5), 1588–1598 (2006).
  • Mistry P, Stewart AJ, Dangerfield W et al. In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576. Cancer Res.61(2), 749–758 (2001).
  • Walker J, Martin C, Callaghan R. Inhibition of P-glycoprotein function by XR9576 in a solid tumour model can restore anticancer drug efficacy. Eur. J. Cancer40(4), 594–605 (2004).
  • Robey RW, Steadman K, Polgar O et al. Pheophorbide A is a specific probe for ABCG2 function and inhibition. Cancer Res.64(4), 1242–1246 (2004).
  • Robey R, Bakke S, Stein W et al. Efflux of rhodamine from CD56+ cells as a surrogate marker for reversal of P-glycoprotein-mediated drug efflux by PSC 833. Blood93(1), 306–314 (1999).
  • Stewart A, Steiner J, Mellows G, Laguda B, Norris D, Bevan P. Phase I trial of XR9576 in healthy volunteers demonstrates modulation of P-glycoprotein in CD56+ lymphocytes after oral and intravenous administration. Clin. Cancer Res.6(11), 4186–4191 (2000).
  • Abraham J, Edgerly M, Wilson R et al. Phase I study of the novel P-glycoprotein antagonist, XR9576, in combination with vinorelbine. Proc. Am. Soc. Clin. Oncol.20, 73A (2001) (Abstract 287).
  • Fox E, Widemann BC, Chen CC et al. Pediatric Phase I trial and pharmcokinetic study of the P-glycoprotien inhibitor, tariquidar, in combination with doxorubicin, vinorelbine, or docetaxel. Proc. Am. Soc. Clin. Oncol.22(Suppl. 14), S809 (2004) (Abstract 8541).
  • Pinwnica-Worms D. Functional identification of multidrug resistance gene expression in vivo. Lippincott Williams & Wilkins, LA, USA (2000).
  • Agrawal M, Abraham J, Balis FM et al. Increased 99mTc-sestamibi accumulation in normal liver and drug-resistant tumors after the administration of the glycoprotein inhibitor, XR9576. Clin. Cancer Res.9(2), 650–656 (2003).
  • Boniface G, Ferry D, Atsmon J et al. XR9576 (tariquidar) a potent and specific P-glycoprotien inhibitor has minimal effects on the pharmacokinetics of paclitaxel, doxorubicin, and vinorelbine, and can be administered with full-dose chemotherapy in patients with cancer. Proc. Am. Soc. Clin. Oncol.21, 90B (2002) (Abstract 2173).
  • Pusztal L, Wagner P, Ibrahim N et al. Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer104(4), 682–691 (2005).
  • Nobili S, Landini I, Giglioni B, Mini E. Pharmacological strategies for overcoming multidrug resistance. Curr. Drug Targets7(7), 861–879 (2006).
  • van Zuylen L, Sparreboom A, van der Gaast A et al. The orally administered P-glycoprotein inhibitor R101933 does not alter the plasma pharmacokinetics of docetaxel. Clin. Cancer Res.6(4), 1365–1371 (2000).
  • Bardelmeijer HA, Ouwehand M, Beijnen JH, Schellens JH, van Tellingen O. Efficacy of novel P-glycoprotein inhibitors to increase the oral uptake of paclitaxel in mice. Invest. New Drugs22(3), 219–229 (2004).
  • Kuppens IE, Bosch TM, van Maanen MJ et al. Oral bioavailability of docetaxel in combination with OC144–093 (ONT-093). Cancer Chemother. Pharmacol.55(1), 72–78 (2005).
  • Bardelmeijer HA, Ouwehand M, Buckle T et al. Low systemic exposure of oral docetaxel in mice resulting from extensive first-pass metabolism is boosted by ritonavir. Cancer Res.62(21), 6158–6164 (2002).
  • Sandler A, Gordon M, De Alwis DP et al. A Phase I trial of a potent P-glycoprotein inhibitor, zosuquidar trihydrochloride (LY335979), administered intravenously in combination with doxorubicin in patients with advanced malignancy. Clin. Cancer Res.10(10), 3265–3272 (2004).
  • Bates S, Kang M, Meadows B et al. A Phase I study of infusional vinblastine in combination with the P-glycoprotein antagonist PSC 833 (valspodar). Cancer92(6), 1577–1590 (2001).
  • Visani G, Milligan D, Leoni F et al. Combined action of PSC 833 (Valspodar), a novel MDR reversing agent, with mitoxantrone, etoposide and cytarabine in poor-prognosis acute myeloid leukemia. Leukemia15(5), 764–771 (2001).
  • Advani R, Lum BL, Fisher GA et al. A Phase I trial of liposomal doxorubicin, paclitaxel and valspodar (PSC-833), an inhibitor of multidrug resistance. Ann. Oncol.16(12), 1968–1973 (2005).
  • Fracasso PM, Blum KA, Ma MK et al. Phase I study of pegylated liposomal doxorubicin and the multidrug-resistance modulator, valspodar. Br. J. Cancer93(1), 46–53 (2005).
  • Chen J, Balmaceda C, Bruce JN et al. Tamoxifen paradoxically decreases paclitaxel deposition into cerebrospinal fluid of brain tumor patients. J. Neurooncol.76(1), 85–92 (2006).
  • Nuessler V, Scheulen ME, Oberneder R et al. Phase I and pharmacokinetic study of the P-glycoprotein modulator dexniguldipine-HCL. Eur. J. Med. Res.2(2), 55–61 (1997).
  • Rubin EH, de Alwis DP, Pouliquen I et al. A Phase I trial of a potent P-glycoprotein inhibitor, Zosuquidar.3HCl trihydrochloride (LY335979), administered orally in combination with doxorubicin in patients with advanced malignancies. Clin. Cancer Res.8(12), 3710–3717 (2002).
  • Le LH, Moore MJ, Siu LL et al. Phase I study of the multidrug resistance inhibitor zosuquidar administered in combination with vinorelbine in patients with advanced solid tumours. Cancer Chemother. Pharmacol.56(2), 154–160 (2005).
  • Gerrand G, Payne E, Baker RJ et al. Clinical effects and P-glycoprotein inhibition in patients with acute myeloid leukemia treated with zosuquidar trihydrochloride, daunorubicin, and cytarabine. Haematologica89, 782–790 (2004).
  • Greenberg PL, Lee SJ, Advani R et al. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a Phase III trial (E2995). J. Clin. Oncol.22(6), 1078–1086 (2004).
  • Chico I, Kang MH, Bergan R et al. Phase I study of infusional paclitaxel in combination with the P-glycoprotein antagonist PSC 833. J. Clin. Oncol.19(3), 832–842 (2001).
  • Fracasso PM, Brady MF, Moore DH et al. Phase II study of paclitaxel and valspodar (PSC 833) in refractory ovarian carcinoma: a gynecologic oncology group study. J. Clin. Oncol.19(12), 2975–2982 (2001).
  • Volm M, Koomagi R, Mattern J, Efferth T. Protein expression profiles indicative for drug resistance of non-small cell lung cancer. Br. J. Cancer87(3), 251–257 (2002).
  • Berger W, Setinek U, Hollaus P et al. Multidrug resistance markers P-glycoprotein, multidrug resistance protein 1, and lung resistance protein in non-small cell lung cancer: prognostic implications. J. Cancer Res. Clin. Oncol.131(6), 355–363 (2005).
  • Oka M, Fukuda M, Sakamoto A et al. The clinical role of MDR1 gene expression in human lung cancer. Anticancer Res.17(1B), 721–724 (1997).
  • Shin HJ, Lee JS, Hong WK, Shin DM. Study of multidrug resistance (Mdr1) gene in non-small-cell lung cancer. Anticancer Res.12(2), 367–370 (1992).
  • Wishart GC, Bissett D, Paul J et al. Quinidine as a resistance modulator of epirubicin in advanced breast cancer: mature results of a placebo-controlled randomized trial. J. Clin. Oncol.12(9), 1771–1777 (1994).
  • Wattel E, Solary E, Hecquet B et al. Quinine improves the results of intensive chemotherapy in myelodysplastic syndromes expressing P glycoprotein: results of a randomized study. Br. J. Haematol.102(4), 1015–1024 (1998).
  • Wattel E, Solary E, Hecquet B et al. Quinine improves results of intensive chemotherapy (IC) in myelodysplastic syndromes (MDS) expressing P-glycoprotein (PGP). Updated results of a randomized study. Groupe Francais des Myelodysplasies (GFM) and Groupe GOELAMS. Adv. Exp. Med. Biol.457, 35–46 (1999).
  • Solary E, Witz B, Caillot D et al. Combination of quinine as a potential reversing agent with mitoxantrone and cytarabine for the treatment of acute leukemias: a randomized multicenter study. Blood88(4), 1198–1205 (1996).
  • Solary E, Drenou B, Campos L et al. Quinine as a multidrug resistance inhibitor: a Phase 3 multicentric randomized study in adult de novo acute myelogenous leukemia. Blood102(4), 1202–1210 (2003).
  • Wood L. Results of a Phase III double blind placebo controlled trial of megestrol acetate modulation of P-glycoprotein mediated drug resistance in the first line management of small cell lung carcinoma. Br. J. Cancer77, 627–631 (1998).
  • Millward MJ, Cantwell BM, Munro NC, Robinson A, Corris PA, Harris AL. Oral verapamil with chemotherapy for advanced non-small cell lung cancer: a randomised study. Br. J. Cancer67(5), 1031–1035 (1993).
  • Milroy R. A randomised clinical study of verapamil in addition to combination chemotherapy in small cell lung cancer. West of Scotland Lung Cancer Research Group, and the Aberdeen Oncology Group. Br. J. Cancer68(4), 813–818 (1993).
  • Dalton WS, Crowley JJ, Salmon SS et al. A Phase III randomized study of oral verapamil as a chemosensitizer to reverse drug resistance in patients with refractory myeloma. A Southwest Oncology Group study. Cancer75(3), 815–820 (1995).
  • Belpomme D, Gauthier S, Pujade-Lauraine E et al. Verapamil increases the survival of patients with anthracycline-resistant metastatic breast carcinoma. Ann. Oncol.11(11), 1471–1476 (2000).
  • Liu Yin JA, Wheatley K, Rees JK, Burnett AK. Comparison of ‘sequential’ versus ‘standard’ chemotherapy as re-induction treatment, with or without cyclosporine, in refractory/relapsed acute myeloid leukaemia (AML): results of the UK Medical Research Council AML-R trial. Br. J. Haematol.113(3), 713–726 (2001).
  • List AF, Kopecky KJ, Willman CL et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood98(12), 3212–3220 (2001).
  • Baldus C, Fietz T, Rieder H, Schwartz S, Thiel E, Knauf W. MDR-1 expression and deletions of chromosomes 7 and 5(Q) separately indicate adverse prognosis in AML. Leuk. Lymphoma40(5–6), 613–623 (2001).
  • van der Holt B, Lowenberg B, Burnett AK et al. The value of the MDR1 reversal agent PSC-833 in addition to daunorubicin and cytarabine in the treatment of elderly patients with previously untreated acute myeloid leukemia (AML), in relation to MDR1 status at diagnosis. Blood106(8), 2646–2654 (2005).
  • Baer MR, George SL, Dodge RK et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood100(4), 1224–1232 (2002).
  • Kolitz JE, George SL, Dodge RK et al. Dose escalation studies of cytarabine, daunorubicin, and etoposide with and without multidrug resistance modulation with PSC-833 in untreated adults with acute myeloid leukemia younger than 60 years: final induction results of Cancer and Leukemia Group B Study 9621. J. Clin. Oncol.22(21), 4290–4301 (2004).
  • Joly F et al. A Phase 3 study of PSC833 in combination with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary cancer of the peritoneum. Proc. Am. Soc. Clin. Oncol.21, (2002) (Abstract 806).
  • Robert J. MS-209 Schering. Curr. Opin. Investig. Drugs5(12), 1340–1347 (2004).
  • Abraham J, Bakke S, Rutt A et al. A Phase II trial of combination chemotherapy and surgical resection for the treatment of metastatic adrenocortical carcinoma: continuous infusion doxorubicin, vincristine, and etoposide with daily mitotane as a P-glycoprotein antagonist. Cancer94(9), 2333–2343 (2002).
  • Kemper EM, van Zandbergen AE, Cleypool C et al. Increased penetration of paclitaxel into the brain by inhibition of P-Glycoprotein. Clin. Cancer Res.9(7), 2849–2855 (2003).
  • Kemper EM, Cleypool C, Boogerd W, Beijnen JH, van Tellingen O. The influence of the P-glycoprotein inhibitor zosuquidar trihydrochloride (LY335979) on the brain penetration of paclitaxel in mice. Cancer Chemother. Pharmacol.53(2), 173–178 (2004).
  • Drion N, Lemaire M, Lefauconnier JM, Scherrmann JM. Role of P-glycoprotein in the blood-brain transport of colchicine and vinblastine. J. Neurochem.67(4), 1688–1693 (1996).
  • Warren KE, Patel MC, McCully CM, Montuenga LM, Balis FM. Effect of P-glycoprotein modulation with cyclosporin A on cerebrospinal fluid penetration of doxorubicin in non-human primates. Cancer Chemother. Pharmacol.45(3), 207–212 (2000).
  • Hughes CS, Vaden SL, Manaugh CA, Price GS, Hudson LC. Modulation of doxorubicin concentration by cyclosporin A in brain and testicular barrier tissues expressing P-glycoprotein in rats. J. Neurooncol.37(1), 45–54 (1998).
  • Loscher W, Potschka H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J. Pharmacol. Exp. Ther.301(1), 7–14 (2002).
  • Potschka H, Fedrowitz M, Loscher W. P-glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood–brain barrier: evidence from microdialysis experiments in rats. Neurosci. Lett.327(3), 173–176 (2002).
  • Potschka H, Loscher W. A comparison of extracellular levels of phenytoin in amygdala and hippocampus of kindled and non-kindled rats. Neuroreport13(1), 167–171 (2002).
  • van Vliet EA, van Schaik R, Edelbroek PM et al. Inhibition of the multidrug transporter P-glycoprotein improves seizure control in phenytoin-treated chronic epileptic rats. Epilepsia47(4), 672–680 (2006).
  • Brandt C, Bethmann K, Gastens AM, Loscher W. The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol. Dis.24(1), 202–211 (2006).
  • Choo EF, Leake B, Wandel C et al. Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab. Dispos.28(6), 655–660 (2000).
  • Imbert F, Jardin M, Fernandez C et al. Effect of efflux inhibition on brain uptake of itraconazole in mice infected with Cryptococcus neoformans.Drug Metab. Dispos.31(3), 319–325 (2003).
  • Edwards JE, Brouwer KR, McNamara PJ. GF120918, a P-glycoprotein modulator, increases the concentration of unbound amprenavir in the central nervous system in rats. Antimicrob. Agents Chemother.46(7), 2284–2286 (2002).
  • Savolainen J, Edwards JE, Morgan ME, McNamara PJ, Anderson BD. Effects of a P-glycoprotein inhibitor on brain and plasma concentrations of anti-human immunodeficiency virus drugs administered in combination in rats. Drug Metab. Dispos.30(5), 479–482 (2002).
  • Sadeque AJ, Wandel C, He H, Shah S, Wood AJ. Increased drug delivery to the brain by P-glycoprotein inhibition. Clin. Pharmacol. Ther.68(3), 231–237 (2000).
  • Choo EF, Kurnik D, Muszkat M et al. Differential in vivo sensitivity to inhibition of P-glycoprotein located in lymphocytes, testes, and the blood–brain barrier. J. Pharmacol. Exp. Ther.317(3), 1012–1018 (2006).
  • Lotsch J, Schmidt R, Vetter G et al. Increased CNS uptake and enhanced antinociception of morphine-6-glucuronide in rats after inhibition of P-glycoprotein. J. Neurochem.83(2), 241–248 (2002).
  • Mayer U, Wagenaar E, Dorobek B, Beijnen JH, Borst P, Schinkel AH. Full blockade of intestinal P-glycoprotein and extensive inhibition of blood–brain barrier P-glycoprotein by oral treatment of mice with PSC833. J. Clin. Invest.100(10), 2430–2436 (1997).
  • Karssen AM, Meijer OC, van der Sandt IC, De Boer AG, De Lange EC, De Kloet ER. The role of the efflux transporter P-glycoprotein in brain penetration of prednisolone. J. Endocrinol.175(1), 251–260 (2002).
  • Karssen AM, Meijer OC, van der Sandt IC et al. Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology142(6), 2686–2694 (2001).
  • Marchi N, Guiso G, Caccia S et al. Determinants of drug brain uptake in a rat model of seizure-associated malformations of cortical development. Neurobiol. Dis.24(3), 429–442 (2006).

Websites

  • www.clinicaltrials.gov/NCT00020514 Accessed November 10, 2006
  • www.clinicaltrials.gov/NCT00072202 Accessed November 10, 2006
  • www.clinicaltrials.gov/NCT00073996 Accessed November 10, 2006
  • www.clinicaltrials.gov\NCT00028873 Accessed November 10, 2006
  • www.clinicaltrials.gov Accessed November 10, 2006
  • www.clinicaltrials.gov/NCT00129168 Accessed November 10, 2006
  • www.clinicaltrials.gov/NCT00233909 Accessed November 10, 2006
  • www.clinicaltrials.gov/NCT00086853 Accessed November 10, 2006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.