129
Views
19
CrossRef citations to date
0
Altmetric
Review

Targeting the PI3K–Akt pathway in kidney cancer

, &
Pages 863-870 | Published online: 10 Jan 2014

References

  • Weiss RH, Lin P-Y. Kidney cancer: identification of novel targets for therapy. Kidney Int.69, 224–232 (2006).
  • Tuma RS. Three molecularly targeted drugs tested in kidney cancer clinical trials. J. Natl Cancer Inst.96, 1270–1271 (2004).
  • Nanus DM, Garino A, Milowsky MI, Larkin M, Dutcher JP. Active chemotherapy for sarcomatoid and rapidly progressing renal cell carcinoma. Cancer101, 1545–1551 (2004).
  • Vuky J, Motzer RJ. Cytokine therapy in renal cell cancer. Urol. Oncol.5, 249–257 (2000).
  • Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Fyfe G. High-dose aldesleukin in renal cell carcinoma: long-term survival update. Cancer J. Sci. Am.3(Suppl. 1), S70–S72 (1997).
  • Escudier B, Eisen T, Stadler WM et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med.356, 125–134 (2007).
  • Chabner BA, Roberts TG Jr. Timeline: chemotherapy and the war on cancer. Nat. Rev. Cancer5, 65–72 (2005).
  • Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal.14, 381–395 (2002).
  • Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKT – a major therapeutic target. Biochim. Biophys. Acta1697, 3–16 (2004).
  • Horiguchi A, Oya M, Uchida A, Marumo K, Murai M. Elevated Akt activation and its impact on clinicopathological features of renal cell carcinoma. J. Urol.169, 710–713 (2003).
  • Sourbier C, Lindner V, Lang H et al. The phosphoinositide 3-kinase/Akt pathway: a new target in human renal cell carcinoma therapy. Cancer Res.66, 5130–5142 (2006).
  • Lee JS, Kim HS, Kim YB, Lee MC, Park CS. Expression of PTEN in renal cell carcinoma and its relation to tumor behavior and growth. J. Surg. Oncol.84, 166–172 (2003).
  • Hara S, Oya M, Mizuno R, Horiguchi A, Marumo K, Murai M. Akt activation in renal cell carcinoma: contribution of a decreased PTEN expression and the induction of apoptosis by an Akt inhibitor. Ann. Oncol.16, 928–933 (2005).
  • Brenner W, Farber G, Herget T, Lehr HA, Hengstler JG, Thuroff JW. Loss of tumor suppressor protein PTEN during renal carcinogenesis. Int. J. Cancer99, 53–57 (2002).
  • Alimov A, Li C, Gizatullin R et al. Somatic mutation and homozygous deletion of PTEN/MMAC1 gene of 10q23 in renal cell carcinoma. Anticancer Res.19, 3841–3846 (1999).
  • Sukosd F, Digon B, Fischer J, Pietsch T, Kovacs G. Allelic loss at 10q23.3 but lack of mutation of PTEN/MMAC1 in chromophobe renal cell carcinoma. Cancer Genet. Cytogenet.128, 161–163 (2001).
  • Figlin RA, Seligson D, Wu H et al. Characterization of the mTOR pathway in renal cell carcinoma and its use in predicting patient selection for agents targeting this pathway. J. Clin. Oncol.23(16 Suppl.) (2005) (Abstract 4539).
  • Eng C. PTEN: one gene, many syndromes. Hum. Mutat.22, 183–198 (2003).
  • Osaki M, Oshimura M, Ito H. PI3K–Akt pathway: its functions and alterations in human cancer. Apoptosis9, 667–676 (2004).
  • Wymann MP, Pirola L. Structure and function of phosphoinositide 3-kinases. Biochim. Biophys. Acta1436, 127–150 (1998).
  • Yang JC, Haworth L, Sherry RM et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med.349, 427–434 (2003).
  • Elaraj DM, White DE, Steinberg SM, Haworth L, Rosenberg SA, Yang JC. A pilot study of antiangiogenic therapy with bevacizumab and thalidomide in patients with metastatic renal cell carcinoma. J. Immunother.27, 259–264 (2004).
  • Hurwitz H, Fehrenbacher L, Novotny W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med.350, 2335–2342 (2004).
  • Rini BI, Halabi S, Taylor J, Small EJ, Schilsky RL. Cancer and Leukemia Group B 90206: a randomized Phase III trial of interferon-α or interferon-α plus anti-vascular endothelial growth factor antibody (bevacizumab) in metastatic renal cell carcinoma. Clin. Cancer Res.10, 2584–2586 (2004).
  • Motzer RJ, Rini BI, Bukowski RM et al. Sunitinib in patients with metastatic renal cell carcinoma. JAMA295, 2516–2524 (2006).
  • Motzer RJ, Hutson TE, Tomczak P et al. Sunitinib versus interferon-α in metastatic renal-cell carcinoma. N. Engl. J. Med.356, 115–124 (2007).
  • Flaherty KT. Sorafenib in renal cell carcinoma. Clin. Cancer Res.13, S747–S752 (2007).
  • Wiesinger D, Gubler HU, Haefliger W, Hauser D. Antiinflammatory activity of the new mould metabolite 11-desacetoxy-wortmannin and of some of its derivatives. Experientia30, 135–136 (1974).
  • Wymann MP, Bulgarelli-Leva G, Zvelebil MJ et al. Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol. Cell Biol.16, 1722–1733 (1996).
  • Wetzker R, Rommel C. Phosphoinositide 3-kinases as targets for therapeutic intervention. Curr. Pharm. Des.10, 1915–1922 (2004).
  • Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J.351, 95–105 (2000).
  • Ng SSW, Tsao MS, Chow S, Hedley DW. Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells. Cancer Res.60, 5451–5455 (2000).
  • Ng SS, Tsao MS, Nicklee T, Hedley DW. Wortmannin inhibits PKB/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice. Clin. Cancer Res.7, 3269–3275 (2001).
  • Gupta AK, Cerniglia GJ, Mick R et al. Radiation sensitization of human cancer cells in vivo by inhibiting the activity of PI3K using LY294002. Int. J. Radiat. Oncol. Biol. Phys.56, 846–853 (2003).
  • Yu K, Lucas J, Zhu T et al. PWT-458, a novel pegylated-17-hydroxywortmannin, inhibits phosphatidylinositol 3-kinase signaling and suppresses growth of solid tumors. Cancer Biol. Ther.4, 538–545 (2005).
  • Breitenlechner CB, Wegge T, Berillon L et al. Structure-based optimization of novel azepane derivatives as PKB inhibitors. J. Med. Chem.47, 1375–1390 (2004).
  • Chijiwa T, Mishima A, Hagiwara M et al. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J. Biol. Chem.265, 5267–5272 (1990).
  • Redaelli C, Granucci F, De Gioia L, Cipolla L. Synthesis and biological activity of Akt/PI3K inhibitors. Mini. Rev. Med. Chem.6, 1127–1136 (2006).
  • Gills JJ, Holbeck S, Hollingshead M, Hewitt SM, Kozikowski AP, Dennis PA. Spectrum of activity and molecular correlates of response to phosphatidylinositol ether lipid analogues, novel lipid-based inhibitors of Akt. Mol. Cancer Ther.5, 713–722 (2006).
  • Maffucci T, Piccolo E, Cumashi A et al. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway by inositol pentakisphosphate results in antiangiogenic and antitumor effects. Cancer Res.65, 8339–8349 (2005).
  • Piccolo E, Vignati S, Maffucci T et al. Inositol pentakisphosphate promotes apoptosis through the PI3-K/Akt pathway. Oncogene23, 1754–1765 (2004).
  • Claerhout S, Decraene D, Van Laethem A, Van Kelst S, Agostinis P, Garmyn M. AKT delays the early-activated apoptotic pathway in UVB-irradiated keratinocytes via BAD translocation. J. Invest Dermatol.127, 429–438 (2007).
  • Liou JY, Ghelani D, Yeh S, Wu KK. Nonsteroidal anti-inflammatory drugs induce colorectal cancer cell apoptosis by suppressing 14-3-3ε. Cancer Res.67, 3185–3191 (2007).
  • Kubo S, Doe I, Kurokawa Y, Nishikawa H, Kawabata A. Direct inhibition of endothelial nitric oxide synthase by hydrogen sulfide: contribution to dual modulation of vascular tension. Toxicology232, 138–146 (2007).
  • Wiederrecht GJ, Sabers CJ, Brunn GJ, Martin MM, Dumont FJ, Abraham RT. Mechanism of action of rapamycin: new insights into the regulation of G1-phase progression in eukaryotic cells. Prog. Cell Cycle Res.1, 53–71 (1995).
  • Lin PY, Fosmire SP, Park SH et al. Attenuation of PTEN increases p21 stability and cytosolic localization in kidney cancer cells: a potential mechanism of apoptosis resistance. Mol. Cancer6, 16 (2007).
  • Luan FL, Ding R, Sharma VK, Chon WJ, Lagman M, Suthanthiran M. Rapamycin is an effective inhibitor of human renal cancer metastasis. Kidney Int.63, 917–926 (2003).
  • Atkins MB, Hidalgo M, Stadler WM et al. Randomized Phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol.22, 909–918 (2004).
  • Hudes G, Carducci M, Tomczak P et al. A Phase 3, randomized, 3-arm study of temsirolimus (TEMSR) or interferon-α (IFN) or the combination of TEMSR + IFN in the treatment of first-line, poor-risk patients with advanced renal cell carcinoma. Proc. Ann. Meet. Am. Soc. Clin. Oncol.24(Suppl.) S18 (2006).
  • Beuvink I, Boulay A, Fumagalli S et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damage-induced apoptosis through inhibition of p21 translation. Cell120, 747–759 (2005).
  • Weiss RH. p21Waf1/Cip1 as a therapeutic target in breast and other cancers. Cancer Cell4, 425–429 (2003).

Website

  • US National Institutes of Health: National Cancer Institute, Survellience Epidemiology and End Results. www.seer.cancer.gov

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.