52
Views
17
CrossRef citations to date
0
Altmetric
Review

Biology of testicular germ cell tumors

, , , &
Pages 1659-1673 | Published online: 10 Jan 2014

References

  • Looijenga LH, Oosterhuis JW. Pathogenesis of testicular germ cell tumours. Rev. Reprod.4, 90–100 (1999).
  • Einhorn LH. Treatment of testicular cancer: a new and improved model. J. Clin. Oncol.8, 1777–1781 (1990).
  • Huyghe E, Matsuda T, Thonneau P. Increasing incidence of testicular cancer worldwide: a review. J. Urol.170, 5–11 (2003).
  • Adami HO, Bergström R, Möhner M et al. Testicular cancer in nine northern European countries. Int. J. Cancer59, 33–38 (1994).
  • Bergström R, Adami HO, Möhner M et al. Increase in testicular cancer incidence in six European countries: a birth cohort phenomenon. J. Natl Cancer Inst.88, 727–733 (1996).
  • Moul JW, Schanne FJ, Thompson IM et al. Testicular cancer in blacks: a multicenter experience. Cancer73, 388–393 (1994).
  • Richiardi L, Pettersson A, Akre O. Genetic and environmental risk factors for testicular cancer. Int. J. Androl.30, 230–241 (2007).
  • Hemminki K, Li X. Cancer risks in Nordic immigrants and their offspring in Sweden. Eur. J. Cancer38, 2428–2434 (2002).
  • Ekbom A, Richiardi L, Akre O, Montgomery SM, Sparén P. Age at immigration and duration of stay in relation to risk for testicular cancer among Finnish immigrants in Sweden. J. Natl Cancer Inst.95, 1238–1240 (2003).
  • Hemminki K, Li X. Familial risk in testicular cancer as a clue to a heritable and environmental aetiology. Br. J. Cancer90, 1765–1770 (2004).
  • Heimdal K, Olsson H, Tretli S, Flodgren P, Børresen AL, Fossa SD. Familial testicular cancer in Norway and southern Sweden. Br. J. Cancer73, 964–969 (1996).
  • Forman D, Oliver RT, Brett AR et al. Familial testicular cancer: a report of the UK family register, estimation of risk and an HLA class 1 sib-pair analysis. Br. J. Cancer65, 255–262 (1992).
  • Wanderås EH, Fosså SD, Tretli S. Risk of second germ cell cancer after treatment of a primary germ cell cancer in 2201 Norwegian male patients. Eur. J. Cancer33, 244–252 (1997).
  • Osterlind A, Berthelsen JG, Abildgaard N et al. Risk of bilateral testicular germ cell cancer in Denmark: 1960–1984. J. Natl Cancer Inst.83, 1391–1395 (1991).
  • United Kingdom Testicular Cancer Study Group. Aetiology of testicular cancer: association with congenital abnormalities, age at puberty, infertility, and exercise. BMJ308, 1393–1399 (1994).
  • Pottern LM, Brown LM, Hoover RN et al. Testicular cancer risk among young men: role of cryptorchidism and inguinal hernia. J. Natl Cancer Inst.74, 377–381 (1985).
  • Pettersson A, Richiardi L, Nordenskjold A et al. Age at surgery for undescended testis and risk of testicular cancer. N. Engl. J. Med.356, 1835–1841 (2007).
  • Nichols CR, Heerema NA, Palmer C et al. Klinefelter’s syndrome associated with mediastinal germ cell neoplasms. J. Clin. Oncol.5, 1290–1294 (1987).
  • Levin HS. Tumors of the testis in intersex syndromes. Urol. Clin. North Am.27, 543–551 (2000).
  • Satgé D, Sasco AJ, Curé H et al. An excess of testicular germ cell tumors in Down’s syndrome: three cases and a review of the literature. Cancer80, 929–935 (1997).
  • Skakkebaek NE. Possible carcinoma-in situ of the testis. Lancet2, 516–517 (1972).
  • Skakkebaek NE. Carcinoma in situ of the testis: frequency and relationship to invasive germ cell tumours in infertile men. Histopathology2, 157–170 (1978).
  • Jacobsen GK, Henriksen OB, von der Maase H. Carcinoma in situ of testicular tissue adjacent to malignant germ cell tumors: a study of 105 cases. Cancer47, 2660–2662 (1981).
  • Skakkebaek NE, Berthelsen JG, Giwercman A, Müller J. Carcinoma-in situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. Int. J. Androl.10, 19–28 (1987).
  • Nielsen H, Nielsen M, Skakkebaek NE. The fine structure of possible carcinoma-in situ in the seminiferous tubules in the testes of four infertile men. Acta Pathol. Microbiol. Scand. A82, 235–248 (1974).
  • Rajpert-De Meyts E, Bartkova J, Samson M et al. The emerging phenotype of the testicular carcinoma in situ germ cell. APMIS111, 267–278 (2003).
  • Koide O, Iwai S, Baba K, Iri H. Identification of testicular atypical germ cells by an immunohistochemical technique for placental alkaline phosphatase. Cancer60, 1325–1330 (1987).
  • Giwercman A, Cantell L, Marks A. Placental-like alkaline phosphatase as a marker of carcinoma in situ of the testis. Comparison with monoclonal antibodies M2A and 43–9F. APMIS99, 586–594 (1991).
  • Jorgensen N, Rajpert-De Meyts E, Graem N, Müller J, Giwercman A, Skakkebaek NE. Expression of immunohistochemical markers for testicular carcinoma in situ by normal human fetal germ cells. Lab. Invest.72, 223–231 (1995).
  • Rajpert-De Meyts E, Hanstein R, Jorgensen N, Graem N, Vogt PH, Skakkebaek NE. Developmental expression of POU5F1 (OCT3/4) in normal and dysgenetic human gonads. Hum. Reprod.19, 1338–1344 (2004).
  • Hoei-Hansen CE, Nielsen JE, Almstrup K et al. Transcription factor AP-2γ is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin. Cancer Res.10, 8521–8530 (2004).
  • van Gurp RJ, Oosterhuis JW, Kalscheuer V, Mariman EC, Looijenga LH. Biallelic expression of the H19 and IGF2 genes in human testicular germ cell tumors. J. Natl Cancer Inst.86, 1070–1075 (1994).
  • Hoei-Hansen CE, Nielsen JE, Almstrup K et al. Identification of genes differentially expressed in testes containing carcinoma in situ. Mol. Hum. Reprod.10, 423–431 (2004).
  • Almstrup K, Hoei-Hansen CE, Wirkner U et al. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling. Cancer Res.64, 4736–4743 (2004).
  • Skotheim RI, Lind GE, Monni O et al. Differentiation of human embryonal carcinomas in vitro and in vivo reveals expression profiles relevant to normal development. Cancer Res.65, 5588–5598 (2005)
  • Almstrup K, Leffers H, Lothe RA et al. Improved gene expression signature of testicular carcinoma in situ. Int. J. Androl.30, 292–303 (2007).
  • Rajpert-De Meyts E, Jørgensen N, Brøndum-Nielsen K, Müller J, Skakkebaek NE. Developmental arrest of germ cells in the pathogenesis of germ cell neoplasia. APMIS106, 198–204 (1998).
  • Rajpert-De Meyts E, Skakkebaek NE. The possible role of sex hormones in the development of testicular cancer. Eur. Urol.23, 54–59 (1993).
  • Chaganti RSK, Houldsworth J. Genetics and biology of adult human male germ cell tumors. Cancer Res.60, 1475–1482 (2000).
  • Dieckmann KP, Skakkebaek NE. Carcinoma in situ of the testis: review of biological and clinical features. Int. J. Cancer83, 815–822 (1999).
  • Von der Maase H, Rørth M, Walbom?Jørgensen S et al. Carcinoma in situ of contralateral testis in patients with testicular germ cell cancer: study of 27 cases in 500 patients. Br. Med. J.293, 1398–1401 (1986).
  • Giwercman A, von der Maase H, Berthelsen JG, Rørth M, Bertelsen A, Skakkebaek NE. Localized irradiation of testes with carcinoma in situ: effects on Leydig cell function and eradication of malignant germ cells in 20 patients. J. Clin. Endocrinol. Metab.73, 596–603 (1991).
  • Dieckmann KP, Besserer A, Loy V. Low-dose radiation therapy of testicular intraepithelial neoplasia. J. Cancer Res. Clin. Oncol.119, 355–359 (1993).
  • Giwercman A, Berthelsen JG, Müller J, von der Maase H, Skakkebaek NE. Screening for carcinoma-in situ of the testis. Int. J. Androl.10, 173–180 (1987).
  • Hoei-Hansen CE, Rajpert-De Meyts E, Daugaard G, Skakkebaek NE. Carcinoma in situ testis, the progenitor of testicular germ cell tumours: a clinical review. Ann. Oncol.16, 863–868 (2005).
  • Daugaard G, Giwercman S, Skakkebaek NE. Should the other testis be biopsied? Semin. Urol. Oncol.14, 8–12 (1996).
  • Dieckmann KP, Loy V. Prevalence of contralateral testicular intraepithelial neoplasia in patients with testicular germ cell neoplasms. J. Clin. Oncol.14, 3126–3132 (1996).
  • Dieckmann KP, Loy V. The value of the biopsy of the contralateral testis in patients with testicular germ cell cancer: the recent German experience. APMIS106, 13–20 (1998).
  • Dieckmann KP, Loy V. Management of contralateral testicular intraepithelial neoplasia in patients with testicular germ-cell tumor. World J. Urol.12, 131–135 (1994).
  • Heidenreich A, Moul JW. Contralateral testicular biopsy procedure in patients with unilateral testis cancer: is it indicated? Semin. Urol. Oncol.20, 234–238 (2002).
  • Jones RH, Vasey PA. Part I: testicular cancer – management of early disease. Lancet Oncol.4, 730–737 (2003).
  • Krege S, Beyer J, Souchon R et al. European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus group (EGCCCG): part I. Eur. Urol.53, 478–496 (2008).
  • Herr HW, Sheinfeld J. Is biopsy of the contralateral testis necessary in patients with germ cell tumors? J. Urol.158, 1331–1334 (1997).
  • Fosså SD, Chen J, Schonfeld SJ et al. Risk of contralateral testicular cancer: a population-based study of 29515 U.S. men. J. Natl Cancer Inst.97, 1056–1066 (2005).
  • de Gouveia Brazao CA, Pierik FH, Oosterhuis JW, Dohle GR, Looijenga LH, Weber RF. Bilateral testicular microlithiasis predicts the presence of the precursor of testicular germ cell tumors in subfertile men. J. Urol.171, 158–160 (2004).
  • Harland SJ, Rapley EA, Nicholson PW. Do all patients with bilateral testis cancer have a hereditary predisposition? Int. J. Androl.30, 251–255 (2007).
  • Swerdlow AJ, De Stavola BL, Swanwick MA, Maconochie NES. Risks of breast and testicular cancers in young adult twins in England and Wales: evidence on prenatal and genetic aetiology. Lancet350, 1723–1728 (1997).
  • Hemminki K, Chen B. Are twins at risk of cancer: results from the Swedish family-cancer database. Twin Res. Hum. Genet.8, 509–514 (2005).
  • Lutke Holzik MF, Rapley EA, Hoekstra HJ, Sleijfer DT, Nolte IM, Sijmons RH. Genetic predisposition to testicular germ-cell tumours. Lancet Oncol.5, 363–371 (2004).
  • The International Testicular Cancer Linkage Consortium. Candidate regions for testicular cancer susceptibility genes. APMIS106, 64–70 (1998).
  • Crockford GP, Linger R, Hockley S et al. Genome-wide linkage screen for testicular germ cell tumour susceptibility loci. Hum. Mol. Genet.15, 443–451 (2006).
  • Oosterhuis JW, Castedo SM, de Jong B et al. Ploidy of primary germ cell tumors of the testis. Pathogenetic and clinical relevance. Lab. Invest.60, 14–21 (1989).
  • El-Naggar AK, Ro JY, McLemore D, Ayala AG, Batsakis JG. DNA ploidy in testicular germ cell neoplasms. Histogenetic and clinical implications. Am. J. Surg. Pathol.16, 611–618 (1992).
  • De Graaf WE, Oosterhuis JW, de Jong B et al. Ploidy of testicular carcinoma in situ. Lab. Invest.66, 166–168 (1992).
  • Atkin NB, Baker MC. Specific chromosome change, i(12p), in testicular tumours? Lancet11, 1349 (1982).
  • Suijkerbuijk RF,Sinke RJ, Meloni AM et al. Overrepresentation of chromosome 12p sequences and karyotypic evolution in i(12p)-negative testicular germ-cell tumors revealed by fluorescence in situ hybridization. Cancer Genet. Cytogenet.70, 85–93 (1993).
  • Rodriguez E, Houldsworth J, Reuter VE et al. Molecular cytogenetic analysis of i(12p)-negative human male germ cell tumors. Genes Chromosomes Cancer8, 230–236 (1993).
  • Mostert MMC, van de Pol M, Olde Weghuis D et al. Comparative genomic hybridization of germ cell tumors of the adult testis: confirmation of karyotypic findings and identification of a 12p amplicon. Cancer Genet. Cytogenet.89, 146–152 (1996).
  • Korn MW, Olde Weghuis DEM, Suijkerbuijk RF et al. Detection of chromosomal DNA gains and losses in testicular germ cell tumors by comparative genomic hybridization. Genes Chromosomes Cancer17, 78–87 (1996).
  • Suijkerbuijk RF, Sinke RJ, Olde Weghuis DEM et al. Amplification of chromosome subregion 12p11.2–12.1 in a metastasis of an i(12p)-negative seminoma: relationship to tumor progression? Cancer Genet. Cytogenet.78, 145–152 (1994).
  • Mostert MC, Verkerk AJMH, van de Pol M et al. Identification of the critical region of 12p over-representation in testicular germ cell tumors of adolescents and adults. Oncogene16, 2617–2627 (1998).
  • Roelofs H, Mostert MC, Pompe K et al. Restricted 12p amplification and RAS mutation in human germ cell tumors of the adult testis. Am. J. Pathol.57, 1155–1166 (2000).
  • Kraggerud SM, Skotheim RI, Szymanska J et al. Genome profiles of familial/bilateral and sporadic testicular germ cell tumors. Genes Chromosomes Cancer34, 168–174 (2002).
  • Henegariu O, Heerema NA, Thurston V, Jung SH, Pera M, Vance GH. Characterization of gains, losses, and regional amplification in testicular germ cell tumor cell lines by comparative genomic hybridization. Cancer Genet. Cytogenet.148, 14–20 (2004).
  • Houldsorth J, Reuter V, Bosl GJ, Chaganti RSK. Aberrant expression of cyclin D2 is an early event in human male germ cell tumorigenesis.Cell Growth Differ.8, 293–299 (1997).
  • Zafarana G, Gillis AJM, van Gurp RJHLM et al. Coamplification of DAD-R, SOX5 and EKI1 in human testicular seminomas, with specific overexpression of DAD-R, correlates with reduced levels of apoptosis and earlier clinical manifestation. Cancer Res.62, 1822–1831 (2002).
  • Rodriguez S, Jafer O, Goker H et al. Expression profile of genes from 12p in testicular germ cell tumors of adolescents and adults associated with i(12p) and amplification at 12p1.2–p12.1. Oncogene22, 1880–1891 (2003).
  • Bourdon V, Naef F, Rao PH et al. Genomic and expression analysis of the 12p11–p12 amplicon using EST arrays identifies two novel amplified and overexpressed genes. Cancer Res.62, 6218–6223 (2002).
  • Ezeh UI, Turek PJ, Reijo RA, Clark AT. Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer104, 2255–2265 (2005).
  • Korkola JE, Houldsworth J, Chadalavada RSV et al. Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res.66, 820–827 (2006).
  • Vos A, Oosterhuis J, de Jong B, Buist J, Schraffordt Koops H. Cytogenetics of carcinoma in situ of the testis. Cancer Genet. Cytogenet.46, 75–81 (1990).
  • van Echten J, van Gurp RJHLM, Stoepker M, Looijenga LHJ, de Jong B, Oosterhuis JW. Cytogenetic evidence that carcinoma in situ is the precursor lesion for invasive testicular germ cell tumors. Cancer Genet. Cytogenet.85, 133–137 (1995).
  • Geurts van Kessel A, van Drunen E, de Jong B, Oosterhuis JW, Langeveld A, Mulder MP. Chromosome 12q heterozygosity is retained in i(12p)-positive testicular germ cell tumor cells. Cancer Genet. Cytogenet.40, 129–134 (1989).
  • Looijenga LHJ, Rosenberg C, van Gurp RJHLM et al. Comparative genomic hybridization of microdissected samples from different stages in the development of a seminoma and a non-seminoma. J. Pathol.191, 187–192 (2000).
  • Rosenberg C, van Gurp RJHLM, Geelen E, Oosterhuis JW, Looijenga LHJ. Overrepresentation of the short arm of chromosome 12 is related to invasive growth of human testicular seminomas and nonseminomas. Oncogene19, 5858–5862 (2000).
  • Summersgill B, Osin P, Lu YJ, Huddart R, Shipley J. Chromosomal imbalances associated with carcinoma in situ and associated testicular germ cell tumours of adolescents and adults. Br. J. Cancer85, 213–219 (2001).
  • Ottesen AM, Skakkebaek NE, Lundsteen C, Leffers H, Larsen J, Rajpert-De Meyts E. High-resolution comparative genomic hybridization detects extra chromosome arm 12p material in most cases of carcinoma in situ adjacent to overt germ cell tumors, but not before the invasive tumor development. Genes Chromosomes Cancer38, 117–125 (2003).
  • Skotheim RI, Monni O, Mousses S et al. New insights into testicular germ cell tumorigenesis from gene expression profiling. Cancer Res.62, 2359–2364 (2002).
  • McIntyre A, Summersgill B, Jafar O et al. Defining minimum genomic regions of imbalance involved in testicular germ cell tumors of adolescents and adults through genome wide microarray analysis of cDNA clones. Oncogene23, 9142–9147 (2004).
  • Skotheim RI, Autio R, Lind GE et al. Novel genomic aberrations in testicular germ cell tumors by array-CGH, and associated gene expression change. Cell Oncol.28, 315–326 (2006).
  • Bignell G, Smith R, Hunter C et al. Sequence analysis of the protein kinase gene family in human testicular germ-cell tumors of adolescents and adults. Genes Chromosomes Cancer45, 42–46 (2006).
  • Peng HQ, Hogg D, Malkin D et al. Mutations of the p53 gene do not occur in testis cancer. Cancer Res.53, 3574–3578 (1993).
  • Heimdal K, Lothe RA, Lystad S, Holm R, Fosså SD, Børresen AL. No germline TP53 mutations detected in familial and bilateral testicular cancer. Genes Chromosomes Cancer6, 92–97 (1993).
  • Hatta Y, Hirama T, Takeuchi S et al. Alterations of the p16 (MTS1) gene in testicular, ovarian, and endometrial malignancies. J. Urol.154, 1954–1957 (1995).
  • Mauduit C, Hamamah S, Benahmed M. Stem cell factor/c-kit system in spermatogenesis. Hum. Reprod. Update5, 535–545 (1999).
  • Tian Q, Frierson HF Jr, Krystal GW, Moskaluk CA. Activating c-kit gene mutations in human germ cell tumors. Am. J. Pathol.154, 1643–1647 (1999).
  • Kemmer K, Corless CL, Fletcher JA et al. KIT mutations are common in testicular seminomas. Am. J. Pathol.164, 305–313 (2004).
  • Rapley EA, Hockley S, Warren W et al. Somatic mutations of KIT in familial testicular germ cell tumours. Br. J. Cancer90, 2397–2401 (2004).
  • McIntyre A, Summersgill B, Grygalewicz B et al. Amplification and overexpression of the KIT gene is associated with progression in the seminoma subtype of testicular germ cell tumors of adolescents and adults. Cancer Res.65, 8085–8089 (2005).
  • Coffey J, Linger R, Pugh J et al. Somatic KIT mutations occur predominantly in seminoma germ cell tumors and are not predictive of bilateral disease: report of 220 tumors and review of literature. Genes Chromosomes Cancer47, 34–42 (2008).
  • Biermann K, Göke F, Nettersheim D et al. c-KIT is frequently mutated in bilateral germ cell tumours and down-regulated during progression from intratubular germ cell neoplasia to seminoma. J. Pathol.213, 311–318 (2007).
  • Forbes S, Clements J, Dawson E et al. COSMIC 2005. Br. J. Cancer94, 318–322 (2006).
  • Rajpert-De Meyts E, Skakkebaek NE. Expression of the c-kit protein product in carcinoma-in situ and invasive testicular germ cell tumours. Int. J. Androl.12, 85–92 (1994).
  • Strohmeyer T, Reese D, Press M, Ackermann R, Hartmann M, Slamon D. Expression of the c-kit proto-oncogene and its ligand stem cell factor (SCF) in normal and malignant human testicular tissue. J. Urol.153, 511–515 (1995).
  • Bokemeyer C, Kuczyk MA, Dunn T et al. Expression of stem-cell factor and its receptor c-kit protein in normal testicular tissue and malignant germ-cell tumours. J. Cancer Res. Clin. Oncol.122, 301–306 (1996).
  • Looijenga LHJ, de Leeuw H, van Oorschot M et al. Stem cell factor receptor (c-KIT) codon 816 mutations predict development of bilateral testicular germ-cell tumors. Cancer Res.63, 7674–7678 (2003).
  • Einhorn LH, Brames MJ, Heinrich MC, Corless CL, Madani A. Phase II study of imatinib mesylate in chemotherapy refractory germ cell tumours expressing KIT. Am. J. Clin. Oncol.29, 12–13 (2006).
  • Voorhoeve PM, Le Sage C, Schrier M et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell124, 1169–1181 (2006).
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004).
  • Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat. Rev. Cancer6, 857–866 (2006).
  • Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet.3, 415–428 (2002).
  • Smiraglia DJ, Szymanska J, Kraggerud SM, Lothe RA, Peltomaki P, Plass C. Distinct epigenetic phenotypes in seminomatous and nonseminomatous testicular germ cell tumors. Oncogene21, 3909–3916 (2002).
  • Koul S, Houldsworth J, Mansukhani MM et al. Characteristic promoter hypermethylation signatures in male germ cell tumors. Mol. Cancer1, 8 (2002).
  • Smith-Sørensen B, Lind GE, Skotheim RI et al. Frequent promoter hypermethylation of the O6-mMethylguanine-DNA methyltransferase (MGMT) gene in testicular cancer. Oncogene21, 8878–8887 (2002).
  • Honorio S, Agathanggelou A, Wernet N, Rothe N, Maher ER, Latif F. Frequent epigenetic inactivation of the RASSF1A tumour suppressor gene in testicular tumours and distinct methylation profiles of seminoma and nonseminoma germ cell tumours. Oncogene22, 461–466 (2003).
  • Lind GE, Skotheim RI, Fraga MF, Abeler VM, Esteller M, Lothe RA. Novel epigenetically deregulated genes in testicular cancer include homeobox genes and SCGB3A1 (HIN-1). J. Pathol.210, 441–449 (2006).
  • Almstrup K, Hoei-Hansen CE, Nielsen JE et al. Genome-wide gene expression profiling of testicular carcinoma in situ progression into overt tumours. Br. J. Cancer92, 1934–1941 (2005).
  • Port M, Schmelz HU, Stockinger M et al. Gene expression profiling in seminoma and nonseminoma. J. Clin. Oncol.23, 58–69 (2005).
  • Okada K, Katagiri T, Tsunoda T et al. Analysis of gene-expression profiles in testicular seminomas using a genome-wide cDNA microarray. Int. J. Oncol.23, 1615–1635 (2003).
  • Korkola JE, Houldsworth J, Dobrzynski D et al. Gene expression-based classification of nonseminomatous male germ cell tumors. Oncogene24, 5101–5107 (2005).
  • Juric D, Sale S, Hromas RA et al. Gene expression profiling differentiates germ cell tumors from other cancers and defines subtype-specific signatures. Proc. Natl Acad. Sci. USA102, 17763–17768 (2005).
  • Hofer MD, Browne TJ, He L, Skotheim RI, Lothe RA, Rubin MA. Identification of two molecular groups of seminomas by using expression and tissue microarrays. Clin. Cancer Res.11, 5722–5729 (2005).
  • Sugimura J, Foster RS, Cummings OW et al. Gene expression profiling of early- and late-relapse nonseminomatous germ cell tumor and primitive neuroectodermal tumor of the testis. Clin. Cancer Res.10, 2368–2378 (2004).
  • Korkola J, Houldsworth J, Feldman DR et al. Outcome prediction in adult male germ cell tumor patients through expression profiling. J. Clin. Oncol.20(20 Suppl.), (2008) (Abstract 5084).
  • Gillis AJ, Stoop HJ, Hermus R et al. High-throughput microRNAome analysis in human germ cell tumours. J. Pathol.213, 319–328 (2006).
  • Aladjem MI, Spike BT, Rodewald LW et al. ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damge. Curr. Biol.8, 145–155 (1998).
  • Hong Y, Stambrook PJ. Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc. Natl Acad. Sci. USA101, 14443–14448 (2004).
  • Oosterhuis JW, Andrews PW, Knowles BB, Damjanov I. Effects of cis-platinum on embryonal cancer cell lines in vitro. Int. J. Cancer34, 133–139 (1984).
  • Walker MC, Parris CN, Masters JR. Differential sensitivities to chemotherapeutic drugs between testicular and bladder cancer cells. J. Natl Cancer Inst.79, 213–216 (1987).
  • Fry AM, Chresta CM, Davies SM et al. Relationship between topoisomerase II level and chemosensitivity in human tumor cell lines. Cancer Res.51, 6592–6595 (1991).
  • Masters JR, Osborne EJ, Walker MC, Parris CN. Hypersensitivity of human testis-tumour cell lines to chemotherapeutic drugs. Int. J. Cancer53, 340–346 (1993).
  • Parris CN, Arlett CF, Lehmann AR, Green MH, Masters JR. Differential sensitivities to gamma radiation of human bladder and testicular tumour cell lines. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.53, 599–608 (1988).
  • Masters JR, Köberle B. Curing metastatic cancer: lessons from testicular germ-cell tumours. Nat. Rev. Cancer3, 517–525 (2003).
  • Kersemaekers AM, Mayer F, Molier M et al. Role of P53 and MDM2 in treatment response of human germ cell tumors. J. Clin. Oncol.20, 1551–1561 (2002).
  • Rogel A, Popliker M, Webb CG, Oren M. p53 cellular tumor antigen. analysis of mRNA levels in normal adult tisses, embryos, and tumors. Mol. Cell Biol.5, 2851–2855 (1985).
  • Chresta CM, Masters JR, Hickman JA. Hypersensitivity of human testicular tumors to etoposide-induced apoptosis is associated with functional p53 and a high Bax:Bcl-2 ratio. Cancer Res.56, 1834–1841 (1996).
  • Arriola EL, Rodriguez-Lopez AM, Hickman JA, Chresta CM. Bcl-2 overexpression results in reciprocal downregulation of Bcl-XL and sensitises human testicular germ cell tumours to chemotherapy-induced apoptosis. Oncogene18, 1457–1464 (1998).
  • Burger H, Nooter K, Boersma AW, Kortland CJ, Stoter G. Expression of p53, Bcl-2 and Bax in cisplatin-induced apoptosis in testicular germ cell tumour cell lines. Br. J. Cancer77, 1562–1567 (1998).
  • Mayer F, Stoop H, Scheffer GL et al. Molecular determinants of treatment response in human germ cell tumors. Clin. Cancer Res.9, 767–773 (2003).
  • Fichtinger-Schepman AM, van der Veer JL, den Hartog JH, Lohman PH, Reedijk J. Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry24, 707–713 (1985).
  • Zamble DB, Mu D, Reardon JT, Sancar A, Lippard SJ. Repair of cisplatin–DNA adducts by the mammalian excision nuclease. Biochemistry35, 10004–10013 (1996)
  • Köberle B, Grimaldi KA, Sunters A, Hartley JA, Kelland LR, Masters JR. DNA repair capacity and cisplatin sensitivity of human testis tumour cells. Int. J. Cancer70, 551–555 (1997).
  • Bedford P, Fichtinger-Schepman AM, Shellard SA, Walker MC, Masters JR, Hill BT. Differential repair of platinum-DNA adducts in human bladder and testicular tumor continuous cell lines. Cancer Res.48, 3019–3024 (1988).
  • Köberle B, Payne J, Grimaldi KA, Hartley JA, Masters JR. DNA repair in cisplatin-sensitive and resistant human cell lines measured in specific genes by quantitative polymerase chain reaction. Biochem. Pharmacol.52, 1729–1734 (1996).
  • Köberle B, Masters JR, Hartley JA, Wood RD. Defective repair of ?cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours. Curr. Biol.9, 273–276 (1999).
  • Welsh C, Day R, McGurk C, Masters JR, Wood RD, Köberle B. Reduced levels of XPA, ERRC1 and XPF DNA repair proteins in testis tumor cell lines. Int. J. Cancer110, 352–361 (2004).
  • Ohndorf UM, Rould MA, He Q, Pabo CO, Lippard SJ. Basis for the recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature399, 708–712 (1999).
  • Billings PC, Engelsberg BN, Hughes EN. Proteins binding to cisplatin-damaged DNA in human cell lines. Cancer Invest.12, 597–604 (1994).
  • Huang JC, Zamble DB, Reardon JT, Lippard SJ, Sancar A. HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc. Natl Acad. Sci. USA91, 10394–10398 (1994).
  • Zamble DB, Mikata Y, Eng CE, Sandman KE, Lippard SJ. Testis-specific HMG-domain protein alters the response of cells to cisplatin. J. Inorg. Biochem.91, 451–462 (2002).
  • Ohndorf UM, Whitehead JP, Raju NL, Lippard SJ. Binding to tsHMG, a mouse testis-specific HMG-domain protein, to cisplatin-DNA adducts. Biochemistry36, 14807–14815 (1997).
  • Trimer EE, Zamble DB, Lippard SJ, Essigmann JM. Human testis-determining factor SRY binds to the major DNA adduct of cisplatin and a putative target sequence with comparable affinities. Biochemistry37, 352–362 (1998).
  • Safaei R, Howell SB. Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs. Crit. Rev. Oncol. Hematol.53, 13–23 (2005).
  • Kuo MT, Chen HH, Song IS, Savaraj N, Ishikawa T. The roles of copper transporters in cisplatin resistance. Cancer Metastasis Rev.26, 71–83 (2007).
  • Song IS, Savaraj N, Siddik ZH et al. Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells. Mol. Cancer Ther.3, 1543–1549 (2004).
  • Komatsu M, Sumizawa T, Mutoh M et al. Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Res.60, 1312–1316 (2000).
  • Samimi G, Safaei R, Katano K et al. Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin. Cancer Res.10, 4661–4669 (2004).
  • Katano K, Safaei R, Samimi G, Holzer A, Rochdi M, Howell SB. The copper export pump ATP7B modulates the cellular pharmacology of carboplatin in ovarian carcinoma cells. Mol. Pharmacol.64, 466–473 (2003).
  • Nakayama K, Kanzaki A, Terada K et al. Prognostic value of the Cu-transporting ATPase in ovarian carcinoma patients reeiving cisplatin-based chemotherapy. Clin. Cancer Res.10, 2804–2811 (2004).
  • Ohbu M, Ogawa K, Konno S et al. Copper-transporting P-type adenosine triphosphate (ATP7B) is expressed in human gastric carcinoma. Cancer Lett.189, 33–38 (2003).
  • Samimi G, Varki NM, Wilczynski S, Safaei R, Alberts D, Howell SB. Increase in expression of the copper transporter ATP7A during platinum drug-based treatment is associated with poor survival in ovarian cancer patients. Clin. Cancer Res.9, 5853–5859 (2003).
  • Zurita AJ, Diestra JE, Condom E et al. Lung resistance-related protein as a predictor of clinical outcome in advanced testicular germ-cell tumours. Br. J. Cancer88, 879–886 (2003).
  • Masters JR, Thomas R, Hall AG et al. Sensitivity of testis tumour cells to chemotherapeutic drugs: role of detoxifying pathways. Eur. J. Cancer32A, 1248–1253 (1996).
  • Koropatnick J, Kloth DM, Kadhim S, Chin JL, Cherian MG. Metallothionein expression and resistance to cisplatin in a human germ cell tumor cell line. J. Pharmacol. Exp. Ther.275, 1681–1687 (1995).
  • Meijer C, Timmer A, De Vries EG et al. Role of metallothionein in cisplatin sensitivity of germ cell tumours. Int. J. Cancer85, 777–781 (2000).
  • Fink D, Nebel S, Aebi S et al. The role of DNA mismatch repair in platinum drug resistance. Cancer Res.56, 4881–4889 (1990).
  • Mayer F, Gillis AJ, Dinjens W et al. Microsatellite instability of germ cell tumors is associated with resistance to systemic treatment. Cancer Res.62, 2758–2760 (2002).
  • Aebi S, Kurdi-Haidar B, Gordon R et al. Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res.56, 3087–3090 (1996).
  • Fink D, Zheng H, Nebel S et al.In vitro and in vivo resistance to cisplatin in cells that have lost DNA mismatch repair. Cancer Res.57, 1841–1845 (1997).
  • Olasz J, Mándoky L, Géczi L, Bodrogi I, Csuka O, Bak O. Influence of hMLH1 methylation, mismatch repair deficiency and microsatellite instability on chemoresistance of testicular germ-cell tumours. Anticancer Res.25, 4319–4324 (2005).
  • Velasco A, Riquelme E, Schultz M et al. Microsatellite instability and loss of heterozygosity have distinct prognostic value for testicular germ cell tumor recurrence. Cancer Biol. Ther.3, 1152–1158 (2004).
  • Velasco A, Corvalan A, Wistuba II et al. Mismatch repair expression in testicular cancer predicts recurrence and survival. Int. J. Cancer122, 1774–1777 (2008).
  • Houldsworth J, Xiao H, Murty VV et al. Human male germ cell tumor resistance to cisplatin is linked to TP53 gene mutation. Oncogene16, 2345–2349 (1998).
  • Burger H, Nooter K, Boersma AW et al. Distinct p53-independent apoptotic cell death signalling pathways in testicular germ cell tumour cell lines. Int. J. Cancer81, 620–628 (1999).
  • Spierings DC, de Vries EG, Vellenga E, de Jong S. Loss of drug-induced activation of the CD95 apoptotic pathway in a cisplatin-resistant testicular germ cell tumour cell line. Cell Death Differ.10, 808–822 (2003).
  • Schweyer S, Soruri A, Meschter O et al. Cisplatin-induced apoptosis in human malignant testicular germ cell lines depends on MEK/ERK activation. Br. J. Cancer91, 589–598 (2004).
  • Mueller T, Vogt W, Simon H et al. Failure of activation of caspase-9 induces a higher threshold for apoptosis and cisplatin resistance in testicular cancer. Cancer Res.63, 513–521 (2003).
  • Rao PH, Houldsworth J, Palanisamy N et al. Chromosomal amplification is associated with cisplatin resistance of human germ cell tumors. Cancer Res.58, 4260–4263 (1998).
  • Wilson C, Yang J, Streffod JC et al. Overexpression of genes on 16q associated with cisplatin resistance of testicular germ cell tumor cell lines. Genes Chromosomes Cancer43, 211–216 (2005).
  • Duale N, Lindeman B, Komada M et al. Molecular portrait of cisplatin induced response in human testis cancer cell lines based on gene expression profiles. Mol. Cancer6, 53 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.