433
Views
73
CrossRef citations to date
0
Altmetric
Review

Immune cells in colorectal cancer: prognostic relevance and therapeutic strategies

&
Pages 561-572 | Published online: 10 Jan 2014

References

  • Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol.24, 2137–2150 (2006).
  • Boyle P, Ferlay J. Cancer incidence and mortality in Europe, 2004. Ann. Oncol.16, 481–488 (2005).
  • Board RE, Valle JW. Metastatic colorectal cancer: current systemic treatment options. Drugs67, 1851–1867 (2007).
  • Titu LV, Monson JR, Greenman J. The role of CD8(+) T cells in immune responses to colorectal cancer. Cancer Immunol. Immunother.51, 235–247 (2002).
  • Pardoll D. Does the immune system see tumors as foreign or self? Annu. Rev. Immunol.21, 807–839 (2003).
  • Rivoltini L, Carrabba M, Huber V et al. Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol. Rev.188, 97–113 (2002).
  • Coussens LM Werb Z. Inflammatory cells and cancer: think different! J. Exp. Med.193, F23–F26 (2001).
  • Dalerba P, Maccalli C, Casati C, Castelli C, Parmiani G. Immunology and immunotherapy of colorectal cancer. Crit. Rev. Oncol. Hematol.46, 33–57 (2003).
  • Mocellin S, Rossi CR, Lise M, Nitti D. Colorectal cancer vaccines: principles, results, and perspectives. Gastroenterology127, 1821–1837 (2004).
  • Coussens LM, Werb Z. Inflammation and cancer. Nature420, 860–867 (2002).
  • Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet357, 539–545 (2001).
  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol.3, 991–998 (2002).
  • Ehrlich P. Ueber den jetzigen Stand der Karzinomforschung. Ned.Tijdschr. Geneeskd5, 273–290 (1909).
  • Hagemann T, Balkwill F, Lawrence T. Inflammation and cancer: a double-edged sword. Cancer Cell12, 300–301 (2007).
  • Lashner BA, Brzezinski A. Cancer mortality rates in ulcerative colitis surveillance programs. Gastroenterology106, 278–279 (1994).
  • Chan AT. Can aspirin prevent colorectal cancer? Lancet369, 1577–1578 (2007).
  • Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer4, 71–78 (2004).
  • Etoh T, Shibuta K, Barnard GF, Kitano S, Mori M. Angiogenin expression in human colorectal cancer: the role of focal macrophage infiltration. Clin. Cancer Res.6, 3545–3551 (2000).
  • Khorana AA, Ryan CK, Cox C, Eberly S, Sahasrabudhe DM. Vascular endothelial growth factor, CD68, and epidermal growth factor receptor expression and survival in patients with stage II and stage III colon carcinoma: a role for the host response in prognosis. Cancer97, 960–968 (2003).
  • Funada Y, Noguchi T, Kikuchi R, Takeno S, Uchida Y, Gabbert HE. Prognostic significance of CD8+ T cell and macrophage peritumoral infiltration in colorectal cancer. Oncol. Rep.10, 309–313 (2003).
  • Hakansson L, Adell G, Boeryd B, Sjogren F, Sjodahl R. Infiltration of mononuclear inflammatory cells into primary colorectal carcinomas: an immunohistological analysis. Br. J. Cancer75, 374–380 (1997).
  • Nakayama Y, Nagashima N, Minagawa N et al. Relationships between tumor-associated macrophages and clinicopathological factors in patients with colorectal cancer. Anticancer Res.22, 4291–4296 (2002).
  • Forssell J, Oberg A, Henriksson ML, Stenling R, Jung A, Palmqvist R. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin. Cancer Res.13, 1472–1479 (2007).
  • Shankaran V, Ikeda H, Bruce AT et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature410, 1107–1111 (2001).
  • Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat. Rev. Immunol.6, 715–727 (2006).
  • Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J. Natl Cancer Inst.87, 982–990 (1995).
  • Stagg J, Johnstone RW, Smyth MJ. From cancer immunosurveillance to cancer immunotherapy. Immunol. Rev.220, 82–101 (2007).
  • Waldner M, Schimanski CC, Neurath MF. Colon cancer and the immune system: the role of tumor invading T cells. World J. Gastroenterol.12, 7233–7238 (2006).
  • Graham DM, Appelman HD. Crohn’s-like lymphoid reaction and colorectal carcinoma: a potential histologic prognosticator. Mod. Pathol.3, 332–335 (1990).
  • Harrison JC, Dean PJ, el-Zeky F, Vander Zwaag R. Impact of the Crohn’s-like lymphoid reaction on staging of right-sided colon cancer: results of multivariate analysis. Hum. Pathol.26, 31–38 (1995).
  • Ropponen K, Eskelinen M, Kosma VM, Lipponen P, Paakkinen P, Alhava E. Comparison of classic and quantitative prognostic factors in colorectal cancer. Anticancer Res.16, 3875–3882 (1996).
  • Naito Y, Saito K, Shiiba K et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res.58, 3491–3494 (1998).
  • Galon J, Costes A, Sanchez-Cabo F et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science313, 1960–1964 (2006).
  • Pages F, Berger A, Camus M et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med.353, 2654–2666 (2005).
  • Atreya I, Schimanski CC, Becker C et al. The T-box transcription factor eomesodermin controls CD8 T cell activity and lymph node metastasis in human colorectal cancer. Gut56, 1572–1578 (2007).
  • Pearce EL, Mullen AC, Martins GA et al. Control of effector CD8+ T cell function by the transcription factor eomesodermin. Science302, 1041–1043 (2003).
  • Intlekofer AM, Takemoto N, Wherry EJ et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol.6, 1236–1244 (2005).
  • Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol.22, 633–640 (2001).
  • Tartter PI, Steinberg B, Barron DM, Martinelli G. The prognostic significance of natural killer cytotoxicity in patients with colorectal cancer. Arch. Surg.122, 1264–1268 (1987).
  • Coca S, Perez-Piqueras J, Martinez D et al. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer79, 2320–2328 (1997).
  • Boland CR, Thibodeau SN, Hamilton SR et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res.58, 5248–5257 (1998).
  • Wright CM, Dent OF, Barker M et al. Prognostic significance of extensive microsatellite instability in sporadic clinicopathological stage C colorectal cancer. Br. J. Surg.87, 1197–1202 (2000).
  • Michael-Robinson JM, Biemer-Huttmann A, Purdie DM et al. Tumour infiltrating lymphocytes and apoptosis are independent features in colorectal cancer stratified according to microsatellite instability status. Gut48, 360–366 (2001).
  • Ishikawa T, Fujita T, Suzuki Y et al. Tumor-specific immunological recognition of frameshift-mutated peptides in colon cancer with microsatellite instability. Cancer Res.63, 5564–5572 (2003).
  • Banerjea A, Ahmed S, Hands RE et al. Colorectal cancers with microsatellite instability display mRNA expression signatures characteristic of increased immunogenicity. Mol. Cancer3, 21 (2004).
  • Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol.6, 295–307 (2006).
  • Ling KL, Pratap SE, Bates GJ et al. Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immun.7, 7 (2007).
  • Clarke SL, Betts GJ, Plant A et al. CD4+CD25+FOXP3+ regulatory T cells suppress anti-tumor immune responses in patients with colorectal cancer. PLoS ONE1, E129 (2006).
  • Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin. Cancer Res.9, 606–612 (2003).
  • Loddenkemper C, Schernus M, Noutsias M, Stein H, Thiel E, Nagorsen D. In situ analysis of FOXP3+ regulatory T cells in human colorectal cancer. J. Transl. Med.4, 52 (2006).
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu. Rev. Immunol.21, 685–711 (2003).
  • Banchereau J, Briere F, Caux C et al. Immunobiology of dendritic cells. Annu. Rev. Immunol.18, 767–811 (2000).
  • Sandel MH, Dadabayev AR, Menon AG et al. Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin. Cancer Res.11, 2576–2582 (2005).
  • Suzuki A, Masuda A, Nagata H et al. Mature dendritic cells make clusters with T cells in the invasive margin of colorectal carcinoma. J. Pathol.196, 37–43 (2002).
  • Dadabayev AR, Sandel MH, Menon AG et al. Dendritic cells in colorectal cancer correlate with other tumor-infiltrating immune cells. Cancer Immunol. Immunother.53, 978–986 (2004).
  • Ambe K, Mori M, Enjoji M. S-100 protein-positive dendritic cells in colorectal adenocarcinomas. Distribution and relation to the clinical prognosis. Cancer63, 496–503 (1989).
  • Nagorsen D, Voigt S, Berg E, Stein H, Thiel E, Loddenkemper C. Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J. Transl. Med.5, 62 (2007).
  • Chaux P, Favre N, Martin M, Martin F. Tumor-infiltrating dendritic cells are defective in their antigen-presenting function and inducible B7 expression in rats. Int. J. Cancer72, 619–624 (1997).
  • Della Porta M, Danova M, Rigolin GM et al. Dendritic cells and vascular endothelial growth factor in colorectal cancer: correlations with clinicobiological findings. Oncology68, 276–284 (2005).
  • Figueredo A, Rumble RB, Maroun J et al. Follow-up of patients with curatively resected colorectal cancer: a practice guideline. BMC Cancer3, 26 (2003).
  • Gardini A, Ercolani G, Riccobon A et al. Adjuvant, adoptive immunotherapy with tumor infiltrating lymphocytes plus interleukin-2 after radical hepatic resection for colorectal liver metastases: 5-year analysis. J. Surg. Oncol.87, 46–52 (2004).
  • Nakamori M, Iwahashi M, Nakamura M, Ueda K, Zhang X, Yamaue H. Intensification of antitumor effect by T helper 1-dominant adoptive immunogene therapy for advanced orthotopic colon cancer. Clin. Cancer Res.9, 2357–2365 (2003).
  • Hisada M, Kamiya S, Fujita K et al. Potent antitumor activity of interleukin-27. Cancer Res.64, 1152–1156 (2004).
  • Morishima N, Owaki T, Asakawa M, Kamiya S, Mizuguchi J, Yoshimoto T. Augmentation of effector CD8+ T cell generation with enhanced granzyme B expression by IL-27. J. Immunol.175, 1686–1693 (2005).
  • Berinstein NL. Enhancing cancer vaccines with immunomodulators. Vaccine25(Suppl. 2), B72–B88 (2007).
  • Oppenheim JJ, Murphy WJ, Chertox O, Schirrmacher V, Wang JM. Prospects for cytokine and chemokine biotherapy. Clin. Cancer Res.3, 2682–2686 (1997).
  • Dezfouli S, Hatzinisiriou I, Ralph SJ. Use of cytokines in cancer vaccines/immunotherapy: recent developments improve survival rates for patients with metastatic malignancy. Curr. Pharm. Des.11, 3511–3530 (2005).
  • Chang CC, Campoli M, Ferrone S. HLA class I defects in malignant lesions: what have we learned? Keio J. Med.52, 220–229 (2003).
  • Garcia-Lora A, Algarra I, Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J. Cell. Physiol.195, 346–355 (2003).
  • Cerwenka A, Lanier LL. Natural killer cells, viruses and cancer. Nat. Rev. Immunol.1, 41–49 (2001).
  • Suck G. Novel approaches using natural killer cells in cancer therapy. Semin. Cancer Biol.16, 412–418 (2006).
  • Pilla L, Squarcina P, Coppa J et al. Natural killer and NK-Like T-cell activation in colorectal carcinoma patients treated with autologous tumor-derived heat shock protein 96. Cancer Res.65, 3942–3949 (2005).
  • Hantschel M, Pfister K, Jordan A et al. Hsp70 plasma membrane expression on primary tumor biopsy material and bone marrow of leukemic patients. Cell Stress Chaperones5, 438–442 (2000).
  • Krause SW, Gastpar R, Andreesen R et al. Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical Phase I trial. Clin. Cancer Res.10, 3699–3707 (2004).
  • Multhoff G, Pfister K, Gehrmann M et al. A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones6, 337–344 (2001).
  • Multhoff G, Pfister K, Botzler C et al. Adoptive transfer of human natural killer cells in mice with severe combined immunodeficiency inhibits growth of Hsp70-expressing tumors. Int. J. Cancer88, 791–797 (2000).
  • Adams DO, Hamilton TA. The cell biology of macrophage activation. Annu. Rev. Immunol.2, 283–318 (1984).
  • Armstrong A, Eck SL. EpCAM: a new therapeutic target for an old cancer antigen. Cancer Biol. Ther.2, 320–326 (2003).
  • Punt CJ, Nagy A, Douillard JY et al. Edrecolomab alone or in combination with fluorouracil and folinic acid in the adjuvant treatment of stage III colon cancer: a randomised study. Lancet360, 671–677 (2002).
  • Abdullah N, Greenman J, Pimenidou A, Topping KP, Monson JR. The role of monocytes and natural killer cells in mediating antibody-dependent lysis of colorectal tumour cells. Cancer Immunol. Immunother.48, 517–524 (1999).
  • Liljefors M, Nilsson B, Hjelm Skog AL, Ragnhammar P, Mellstedt H, Frodin JE. Natural killer (NK) cell function is a strong prognostic factor in colorectal carcinoma patients treated with the monoclonal antibody 17–1A. Int. J. Cancer105, 717–723 (2003).
  • Green MC, Murray JL, Hortobagyi GN. Monoclonal antibody therapy for solid tumors. Cancer Treat. Rev.26, 269–286 (2000).
  • Okuse C, Itoh F. Current status of monoclonal antibodies as therapeutic agents for solid cancer. J. Gastroenterol.40, 1009–1011 (2005).
  • Xiong H, Li L, Liang QC et al. Recombinant chimeric antibody hCAb as a novel anti-human colorectal carcinoma agent. Mol. Med.12, 229–236 (2006).
  • Esche C, Stellato C, Beck LA. Chemokines: key players in innate and adaptive immunity. J. Invest. Dermatol .125, 615–628 (2005).
  • Ohta M, Tanaka F, Yamaguchi H, Sadanaga N, Inoue H, Mori M.The high expression of fractalkine results in a better prognosis for colorectal cancer patients. Int. J. Oncol.26, 41–47 (2005).
  • Hojo S, Koizumi K, Tsuneyama K et al. High-level expression of chemokine CXCL16 by tumor cells correlates with a good prognosis and increased tumor-infiltrating lymphocytes in colorectal cancer. Cancer Res.67, 4725–4731 (2007).
  • Koizumi K, Hojo S, Akashi T, Yasumoto K, Saiki I. Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response. Cancer Sci.98, 1652–1658 (2007).
  • Cook DN. The role of MIP-1 α in inflammation and hematopoiesis. J. Leukoc. Biol.59, 61–66 (1996).
  • Crittenden M, Gough M, Harrington K, Olivier K, Thompson J, Vile RG. Expression of inflammatory chemokines combined with local tumor destruction enhances tumor regression and long-term immunity. Cancer Res.63, 5505–5512 (2003).
  • Morisaki T, Matsumoto K, Onishi H et al. Dendritic cell-based combined immunotherapy with autologous tumor-pulsed dendritic cell vaccine and activated T cells for cancer patients: rationale, current progress, and perspectives. Hum. Cell.16, 175–182 (2003).
  • Indar A, Maxwell-Armstrong CA, Durrant LG, Carmichael J, Scholefield JH. Current concepts in immunotherapy for the treatment of colorectal cancer. J. R. Coll. Surg. Edinb.47, 458–474 (2002).
  • Engleman EG. Dendritic cell-based cancer immunotherapy. Semin. Oncol.30, 23–29 (2003).
  • Tanaka K, Ito A, Kobayashi T et al. Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int. J. Cancer116, 624–633 (2005).
  • Li B, Lalani AS, Harding TC et al. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin. Cancer Res.12, 6808–6816 (2006).
  • Mocellin S, Nitti D. Therapeutics targeting tumor immune escape: towards the development of new generation anticancer vaccines. Med. Res. Rev. (2007) (Epub ahead of print).
  • Yamaguchi S, Tatsumi T, Takehara T et al. Immunotherapy of murine colon cancer using receptor tyrosine kinase EphA2-derived peptide-pulsed dendritic cell vaccines. Cancer110, 1469–1477 (2007).
  • Fong L, Hou Y, Rivas A et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl Acad. Sci. USA98, 8809–8814 (2001).
  • Jonuleit H, Knop J, Enk AH. Cytokines and their effects on maturation, differentiation and migration of dendritic cells. Arch. Dermatol. Res.289, 1–8 (1996).
  • Oosterling SJ, Mels AK, Geijtenbeek TB et al. Preoperative granulocyte/macrophage colony-stimulating factor (GM-CSF) increases hepatic dendritic cell numbers and clustering with lymphocytes in colorectal cancer patients. Immunobiology211, 641–649 (2006).
  • Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol.5, 296–306 (2005).
  • Mosolits S, Nilsson B, Mellstedt H. Towards therapeutic vaccines for colorectal carcinoma: a review of clinical trials. Expert Rev. Vaccines4, 329–350 (2005).
  • Tamir A, Basagila E, Kagahzian A et al. Induction of tumor-specific T-cell responses by vaccination with tumor lysate-loaded dendritic cells in colorectal cancer patients with carcinoembryonic-antigen positive tumors. Cancer Immunol. Immunother.56, 2003–2016 (2007).
  • Babatz J, Rollig C, Lobel B et al. Induction of cellular immune responses against carcinoembryonic antigen in patients with metastatic tumors after vaccination with altered peptide ligand-loaded dendritic cells. Cancer Immunol. Immunother.55, 268–276 (2006).
  • Tacken PJ, de Vries IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol.7, 790–802 (2007).
  • Karanikas V, Hwang LA, Pearson J et al. Antibody and T cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J. Clin. Invest.100, 2783–2792 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.