25
Views
12
CrossRef citations to date
0
Altmetric
Review

Emerging role of intensity-modulated radiation therapy in anorectal cancer

, &
Pages 585-593 | Published online: 10 Jan 2014

References

  • No authors listed. Randomised trial of surgery alone versus radiotherapy followed by surgery for potentially operable locally advanced rectal cancer. Medical Research Council Rectal Cancer Working Party. Lancet348, 1605–1610 (1996).
  • Fisher B, Wolmark N, Rockette H et al. Postoperative adjuvant chemotherapy or radiation therapy for rectal cancer: results from NSABP protocol R-01. J. Natl Cancer Inst.80, 21–29 (1988).
  • Gastrointestinal Tumor Study Group. Prolongation of the disease-free interval in surgically treated rectal carcinoma. N. Engl. J. Med.312, 1465–1472 (1985).
  • Krook JE, Moertel CG, Gunderson LL et al. Effective surgical adjuvant therapy for high-risk rectal carcinoma. N. Engl. J. Med.324, 709–715 (1991).
  • Nigro N, Vaitkevicius V, Considine B Jr. Combined therapy for cancer of the anal canal: a preliminary report. Dis. Colon Rectum17, 354–356 (1974).
  • Flam M, John M, Pajak TF et al. Role of mitomycin in combination with fluorouracil and radiotherapy, and of salvage chemoradiation in the definitive nonsurgical treatment of epidermoid carcinoma of the anal canal: results of a Phase III randomized intergroup study. J. Clin. Oncol.14, 2527–2539 (1996).
  • Bartelink H, Roelofsen F, Eschwege F et al. Concomitant radiotherapy and chemotherapy is superior to radiotherapy alone in the treatment of locally advanced anal cancer: results of a Phase III randomized trial of the European Organization for Research and Treatment of Cancer Radiotherapy and Gastrointestinal Cooperative Groups. J. Clin. Oncol.15, 2040–2049 (1997).
  • Epidermoid anal cancer: results from the UKCCCR randomised trial of radiotherapy alone versus radiotherapy, 5-fluorouracil, and mitomycin. Lancet14, 2527–2539 (1996).
  • Ajani J, Winter K, Gunderson L et al. Intergroup RTOG 98–11: a Phase III randomized study of 5-fluorouracil (5-FU), mitomycin, and radiotherapy versus 5-fluorouracil, cisplatin, and radiotherapy in carcinoma of the anal canal. Proc. Am. Soc. Clin. Oncol.24, S18 (2006).
  • Bortfeld T, Boyer AL, Schlegel W et al. Realization and verification of three-dimensional conformal radiotherapy with modulated fields. Int. J. Radiat. Oncol. Biol. Phys.30, 899–908 (1994).
  • Burman C, Chui CS, Kutcher G et al. Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: a strategy for large-scale implementation for the treatment of carcinoma of the prostate. Int. J. Radiat. Oncol. Biol. Phys.39, 863–873 (1997).
  • Stein J, Bortfeld T, Dorschel B et al. Dynamic x-ray compensation for conformal radiotherapy by means of multi-leaf collimation. Radiother. Oncol.32, 163–173 (1994).
  • Trautmann TG, Zuger JH. Positron emission tomography for pretreatment staging and posttreatment evaluation in cancer of the anal canal. Mol. Imaging Biol.7, 309–313 (2005).
  • Cotter SE, Grigsby PW, Siegel BA et al. FDG-PET/CT in the evaluation of anal carcinoma. Int. J. Radiat. Oncol. Biol. Phys.65, 720–725 (2006).
  • Anderson C, Koshy M, Staley C et al. PET-CT fusion in radiation management of patients with anorectal tumors. Int. J. Radiat. Oncol. Biol. Phys.69, 155–162 (2007).
  • Letourneau D, Martinez AA, Lockman D et al. Assessment of residual error for online cone-beam CT-guided treatment of prostate cancer patients. Int. J. Radiat. Oncol. Biol. Phys.62, 1239–1246 (2005).
  • Godfrey DJ, Yin FF, Oldham M et al. Digital tomosynthesis with an on-board kilovoltage imaging device. Int. J. Radiat. Oncol. Biol. Phys.65, 8–15 (2006).
  • Gao S, Zhang L, Wang H et al. A deformable image registration method to handle distended rectums in prostate cancer radiotherapy. Med. Phys.33, 3304–3312 (2006).
  • de Crevoisier R, Melancon AD, Kuban DA et al. Changes in the pelvic anatomy after an IMRT treatment fraction of prostate cancer. Int. J. Radiat. Oncol. Biol. Phys.68, 1529–1536 (2007).
  • Nuyttens JJ, Robertson JM, Yan D et al. The variability of the clinical target volume for rectal cancer due to internal organ motion during adjuvant treatment. Int. J. Radiat. Oncol. Biol. Phys.53, 497–503 (2002).
  • Kupelian PA, Langen KM, Zeidan OA et al. Daily variations in delivered doses in patients treated with radiotherapy for localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys.66, 876–882 (2006).
  • Yin FF, Das S, Kirkpatrick J et al. Physics and imaging for targeting of oligometastases. Semin. Radiat. Oncol.16, 85–101 (2006).
  • Yan D, Lockman D, Martinez A et al. Computed tomography guided management of interfractional patient variation. Semin. Radiat. Oncol.15, 168–179 (2005).
  • Hartley A, Ho KF, McConkey C et al. Pathological complete response following pre-operative chemoradiotherapy in rectal cancer: analysis of Phase II/III trials. Br. J. Radiol.78, 934–938 (2005).
  • Sauer R, Becker H, Hohenberger W et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N. Engl. J. Med.351, 1731–1740 (2004).
  • Habr-Gama A, Perez RO, Proscurshim I et al. Patterns of failure and survival for nonoperative treatment of stage c0 distal rectal cancer following neoadjuvant chemoradiation therapy. J. Gastrointest. Surg.10, 1319–1328 (2006).
  • Wiltshire KL, Ward IG, Swallow C et al. Preoperative radiation with concurrent chemotherapy for resectable rectal cancer: effect of dose escalation on pathologic complete response, local recurrence-free survival, disease-free survival, and overall survival. Int. J. Radiat. Oncol. Biol. Phys.64, 709–716 (2006).
  • Mohiuddin M, Regine WF, John WJ et al. Preoperative chemoradiation in fixed distal rectal cancer: dose time factors for pathological complete response. Int. J. Radiat. Oncol. Biol. Phys.46, 883–888 (2000).
  • Overgaard M, Overgaard J, Sell A. Dose-response relationship for radiation therapy of recurrent, residual, and primarily inoperable colorectal cancer. Radiother. Oncol.1, 217–225 (1984).
  • Papillon J, Montbarbon JF, Gerard JP et al. Interstitial curietherapy in the conservative treatment of anal and rectal cancers. Int. J. Radiat. Oncol. Biol. Phys.17, 1161–1169 (1989).
  • John M, Pajak T, Flam M et al. Dose escalation in chemoradiation for anal cancer: preliminary results of RTOG 92–08. Cancer J. Sci. Am.2, 205–211 (1996).
  • Constantinou EC, Daly W, Fung CY et al. Time-dose considerations in the treatment of anal cancer. Int. J. Radiat. Oncol. Biol. Phys.39, 651–657 (1997).
  • Huang K, Haas-Kogan D, Weinberg V et al. Higher radiation dose with a shorter treatment duration improves outcome for locally advanced carcinoma of anal canal. World J. Gastroenterol.13, 895–900 (2007).
  • Deniaud-Alexandre E, Touboul E, Tiret E et al. Results of definitive irradiation in a series of 305 epidermoid carcinomas of the anal canal. Int. J. Radiat. Oncol. Biol. Phys.56, 1259–1273 (2003).
  • Chapet O, Gerard JP, Riche B et al. Prognostic value of tumor regression evaluated after first course of radiotherapy for anal canal cancer. Int. J. Radiat. Oncol. Biol. Phys.63, 1316–1324 (2005).
  • Nguyen NP, Antoine JE, Dutta S et al. Current concepts in radiation enteritis and implications for future clinical trials. Cancer95, 1151–1163 (2002).
  • Eifel PJ, Levenback C, Wharton JT et al. Time course and incidence of late complications in patients treated with radiation therapy for FIGO stage IB carcinoma of the uterine cervix. Int. J. Radiat. Oncol. Biol. Phys.32, 1289–1300 (1995).
  • Potish RA, Jones TK Jr, Levitt SH. Factors predisposing to radiation-related small-bowel damage. Radiology132, 479–482 (1979).
  • Rotman M, Moon S, John M et al. Extended field para-aortic radiation in cervical carcinoma: the case for prophylactic treatment. Int. J. Radiat. Oncol. Biol. Phys.4, 795–799 (1978).
  • Baglan KL, Frazier RC, Yan D et al. The dose–volume relationship of acute small bowel toxicity from concurrent 5-FU-based chemotherapy and radiation therapy for rectal cancer. Int. J. Radiat. Oncol. Biol. Phys.52, 176–183 (2002).
  • Tho LM, Glegg M, Paterson J et al. Acute small bowel toxicity and preoperative chemoradiotherapy for rectal cancer: investigating dose-volume relationships and role for inverse planning. Int. J. Radiat. Oncol. Biol. Phys.66, 505–513 (2006).
  • Gunnlaugsson A, Kjellen E, Nilsson P et al. Dose-volume relationships between enteritis and irradiated bowel volumes during 5-fluorouracil and oxaliplatin based chemoradiotherapy in locally advanced rectal cancer. Acta Oncol.46, 937–944 (2007).
  • Ryan DP, Niedzwiecki D, Hollis D et al. Phase I/II study of preoperative oxaliplatin, fluorouracil, and external-beam radiation therapy in patients with locally advanced rectal cancer: Cancer and Leukemia Group B 89901. J. Clin. Oncol.24, 2557–2562 (2006).
  • Mohiuddin M, Winter K, Mitchell E et al. Randomized Phase II study of neoadjuvant combined-modality chemoradiation for distal rectal cancer: Radiation Therapy Oncology Group Trial 0012. J. Clin. Oncol.24, 650–655 (2006).
  • Czito BG, Willett CG, Bendell JC et al. Increased toxicity with gefitinib, capecitabine, and radiation therapy in pancreatic and rectal cancer: Phase I trial results. J. Clin. Oncol.24, 656–662 (2006).
  • Ashman JB, Zelefsky MJ, Hunt MS et al. Whole pelvic radiotherapy for prostate cancer using 3D conformal and intensity-modulated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.63, 765–771 (2005).
  • Mundt AJ, Mell LK, Roeske JC. Preliminary analysis of chronic gastrointestinal toxicity in gynecology patients treated with intensity-modulated whole pelvic radiation therapy. Int. J. Radiat. Oncol. Biol. Phys.56, 1354–1360 (2003).
  • Guerrero Urbano MT, Henrys AJ, Adams EJ et al. Intensity-modulated radiotherapy in patients with locally advanced rectal cancer reduces volume of bowel treated to high dose levels. Int. J. Radiat. Oncol. Biol. Phys.65, 907–916 (2006).
  • Duthoy W, De Gersem W, Vergote K et al. Clinical implementation of intensity-modulated arc therapy (IMAT) for rectal cancer. Int. J. Radiat. Oncol. Biol. Phys.60, 794–806 (2004).
  • Salama JK, Mell LK, Schomas DA et al. Concurrent chemotherapy and intensity-modulated radiation therapy for anal canal cancer patients: a multicenter experience. J. Clin. Oncol.25, 4581–4586 (2007).
  • Miller CW. Survival and ambulation following hip fracture. J. Bone Joint Surg. Am.60, 930–934 (1978).
  • Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet359, 1761–1767 (2002).
  • Martenson JA Jr, Gunderson LL. External radiation therapy without chemotherapy in the management of anal cancer. Cancer71, 1736–1740 (1993).
  • Baxter NN, Habermann EB, Tepper JE et al. Risk of pelvic fractures in older women following pelvic irradiation. JAMA294, 2587–2593 (2005).
  • Chen YJ, Liu A, Tsai PT et al. Organ sparing by conformal avoidance intensity-modulated radiation therapy for anal cancer: dosimetric evaluation of coverage of pelvis and inguinal/femoral nodes. Int. J. Radiat. Oncol. Biol. Phys.63, 274–281 (2005).
  • Emami B, Lyman J, Brown A et al. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys.21, 109–122 (1991).
  • Zelefsky MJ, Fuks Z, Hunt M et al. High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int. J. Radiat. Oncol. Biol. Phys.53, 1111–1116 (2002).
  • Mell LK, Schomas DA, Salama JK et al. Associated between bone marrow dosimetric parameters and acute hematologic toxicity in anal cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. (2007) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.