111
Views
19
CrossRef citations to date
0
Altmetric
Perspective

Chemokines as therapeutic targets in renal cell carcinoma

, &
Pages 887-893 | Published online: 10 Jan 2014

References

  • Motzer RJ, Hutson TE, Tomczak P et al. Sunitinib versus interferon α in metastatic renal-cell carcinoma. N. Engl. J. Med.356, 115–124 (2007).
  • Escudier B, Eisen T, Stadler WM et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med.356, 125–134 (2007).
  • Escudier B, Pluzanska A, Koralewski P et al. Bevacizumab plus interferon α-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind Phase III trial. Lancet370, 2103–2111 (2007).
  • Hudes G, Carducci M, Tomczak P et al. Temsirolimus, interferon α, or both for advanced renal-cell carcinoma. N. Engl. J. Med.356, 2271–2281 (2007).
  • Rini BI, Halabi S, Rosenberg JE et al. CALGB 90206: a Phase III trial of bevacizumab plus interferon-α versus interferon-α monotherapy in metastatic renal cell carcinoma. 2008 Genitourniary Cancers Symp. (2008) (Abstract 350).
  • Atkins MB, Ernstoff MS, Figlin RA et al. Innovations and challenges in renal cell carcinoma: summary statement from the Second Cambridge Conference. Clin. Cancer Res.13, S667–S670 (2007).
  • Balkwill F. Cancer and the chemokine network. Nat. Rev. Cancer4, 540–550 (2004).
  • Spring H, Schuler T, Arnold B, Hammerling GJ, Ganss R. Chemokines direct endothelial progenitors into tumor neovessels. Proc. Natl Acad. Sci. USA102, 18111–18116 (2005).
  • Gupta SK, Lysko PG, Pillarisetti K, Ohlstein E, Stadel JM. Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. J. Biol. Chem.273, 4282–4287 (1998).
  • Muller A, Homey B, Soto H et al. Involvement of chemokine receptors in breast cancer metastasis. Nature410, 50–56 (2001).
  • Scotton CJ, Wilson JL, Scott K et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res.62, 5930–5938 (2002).
  • Coussens LM, Werb Z. Inflammation and cancer. Nature420, 860–867 (2002).
  • Locati M, Deuschle U, Massardi ML et al. Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. J. Immunol.168, 3557–3562 (2002).
  • Roda JM, Parihar R, Magro C, Nuovo GJ, Tridandapani S, Carson WE III. Natural killer cells produce T cell-recruiting chemokines in response to antibody-coated tumor cells. Cancer Res.66, 517–526 (2006).
  • Bukowski RM, Rayman P, Molto L et al. Interferon-gamma and CXC chemokine induction by interleukin 12 in renal cell carcinoma. Clin. Cancer Res.5, 2780–2789 (1999).
  • Mestas J, Burdick MD, Reckamp K, Pantuck A, Figlin RA, Strieter RM. The role of CXCR2/CXCR2 ligand biological axis in renal cell carcinoma. J. Immunol.175, 5351–5357 (2005).
  • Guha S, Eibl G, Kisfalvi K et al. Broad-spectrum G protein-coupled receptor antagonist, [D-Arg1,D-Trp5,7,9,Leu11]SP: a dual inhibitor of growth and angiogenesis in pancreatic cancer. Cancer Res.65, 2738–2745 (2005).
  • Wang B, Hendricks DT, Wamunyokoli F, Parker MI. A growth-related oncogene/CXC chemokine receptor 2 autocrine loop contributes to cellular proliferation in esophageal cancer. Cancer Res.66, 3071–3077 (2006).
  • Donzella GA, Schols D, Lin SW et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat. Med.4, 72–77 (1998).
  • Martinez MA, Gutierrez A, Armand-Ugon M et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. Aids16, 2385–2390 (2002).
  • Zhang WB, Navenot JM, Haribabu B et al. A point mutation that confers constitutive activity to CXCR4 reveals that T140 is an inverse agonist and that AMD3100 and ALX40–4C are weak partial agonists. J. Biol. Chem.277, 24515–24521 (2002).
  • Kakinuma T, Hwang ST. Chemokines, chemokine receptors, and cancer metastasis. J. Leukoc. Biol.79, 639–651 (2006).
  • Gnarra JR, Tory K, Weng Y et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet.7, 85–90 (1994).
  • Herman JG, Latif F, Weng Y et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl Acad. Sci. USA91, 9700–9704 (1994).
  • Strieter RM, Polverini PJ, Kunkel SL et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem.270, 27348–27357 (1995).
  • Wente MN, Keane MP, Burdick MD et al. Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Lett.241, 221–227 (2006).
  • Strieter RM, Belperio JA, Arenberg DA, Smith MI, Burdick MD, Keane MP. CXC chemokines in angiogenesis. In: Universes in Delicate Balance: Chemokines and the Nervous System. Ransohoff RM, Suzuki K, Proudfoot AEI, Hickey WF (Eds). Elsevier Science BV, Amsterdam, The Netherlands, 129 (2002).
  • Belperio JA, Burdick MD, Keane MP et al. The role of the CC chemokine, RANTES, in acute lung allograft rejection. J. Immunol.165, 461–472 (2002).
  • Johrer K, Zelle-Rieser C, Perathoner A et al. Up-regulation of functional chemokine receptor CCR3 in human renal cell carcinoma. Clin. Cancer Res.11, 2459–2465 (2005).
  • Suyama T, Furuya M, Nishiyama M et al. Up-regulation of the interferon γ (IFN-γ)-inducible chemokines IFN-inducible T-cell α chemoattractant and monokine induced by IFN-γ and of their receptor CXC receptor 3 in human renal cell carcinoma. Cancer103, 258–267 (2005).
  • Kondo T, Nakazawa H, Ito F et al. Favorable prognosis of renal cell carcinoma with increased expression of chemokines associated with a Th1-type immune response. Cancer Sci.97, 780–786 (2006).
  • Klatte T, Seligson DB, Leppert JT et al. The chemokine receptor CXCR3 is an independent prognostic factor in patients with localized clear cell renal cell carcinoma. J. Urol.179, 61–66 (2008).
  • Tannenbaum CS, Tubbs R, Armstrong D, Finke JH, Bukowski RM, Hamilton TA. The CXC chemokines IP-10 and Mig are necessary for IL-12-mediated regression of the mouse RENCA tumor. J. Immunol.161, 927–932 (1998).
  • Ravaud A, Trufflandier N, Ferriere JM et al. Subcutaneous interleukin-2, interferon α-2b and 5-fluorouracil in metastatic renal cell carcinoma as second-line treatment after failure of previous immunotherapy: a Phase II trial. Br. J. Cancer89, 2213–2218 (2003).
  • Negrier S, Escudier B, Lasset C et al. Recombinant human interleukin-2, recombinant human interferon α-2a, or both in metastatic renal-cell carcinoma. Groupe Francais d’Immunotherapie. N. Engl. J. Med.338, 1272–1278 (1998).
  • McDermott DF, Regan MM, Clark JI et al. Randomized Phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J. Clin. Oncol.23, 133–141 (2005).
  • Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol.13, 688–696 (1995).
  • Yang JC, Sherry RM, Steinberg SM et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J. Clin. Oncol.21, 3127–3132 (2003).
  • Reckamp KL, Figlin RA, Moldawer N et al. Expression of CXCR3 on mononuclear cells and CXCR3 ligands in patients with metastatic renal cell carcinoma in response to systemic IL-2 therapy. J. Immunother.30(4), 417–24 (2007).
  • Strieter RM. Chemokines: not just leukocyte chemoattractants in the promotion of cancer. Nat. Immunol.2, 285–286 (2001).
  • Pan J, Burdick MD, Belperio JA et al. CXCR3/CXCR3 ligand biological axis impairs RENCA tumor growth by a mechanism of immunoangiostasis. J. Immunol.176, 1456–1464 (2006).
  • Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin. Cancer Biol.4, 171–179 (2004).
  • Kucia M, Jankowski K, Reca R et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J. Mol. Histol.35, 233–245 (2004).
  • Phillips RJ, Burdick MD, Lutz M, Belperio JA, Keane MP, Strieter RM. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am. J. Respir. Crit. Care Med.167, 1676–1686 (2003).
  • Zlotnik A. Chemokines in neoplastic progression. Semin. Cancer Biol.14, 181–185 (2004).
  • Balkwill F. Chemokine biology in cancer. Semin. Immunol.15, 49–55 (2003).
  • Murphy PM. Chemokines and the molecular basis of cancer metastasis. N. Engl. J. Med.345, 833–835 (2001).
  • Horuk R. Chemokine receptors. Cytokine Growth Factor Rev.12, 313–335 (2001).
  • Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood107, 1761–1767 (2006).
  • Pan J, Mestas J, Burdick MD et al. Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol. Cancer5, 56 (2006).
  • Hu J, Deng X, Bian X et al. The expression of functional chemokine receptor CXCR4 is associated with the metastatic potential of human nasopharyngeal carcinoma. Clin. Cancer Res.11, 4658–4665 (2005).
  • Schimanski CC, Schwald S, Simiantonaki N et al. Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin. Cancer Res.11, 1743–1750 (2005).
  • Cabioglu N, Yazici MS, Arun B et al. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin. Cancer Res.11, 5686–5693 (2005).
  • Yasumoto K, Koizumi K, Kawashima A et al. Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer. Cancer Res.66, 2181–2187 (2006).
  • Schrader AJ, Lechner O, Templin M et al. CXCR4/CXCL12 expression and signalling in kidney cancer. Br. J. Cancer86, 1250–1256 (2002).
  • Yao M, Yoshida M, Kishida T et al. VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear-cell renal carcinoma. J. Natl. Cancer Inst.94, 1569–1575 (2002).
  • Banks RE, Tirukonda P, Taylor C et al. Genetic and epigenetic analysis of von Hippel-Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Res.66, 2000–2011 (2006).
  • Smits KM, Schouten LJ, van Dijk BA et al. Genetic and epigenetic alterations in the von Hippel-Lindau gene: the influence on renal cancer prognosis. Clin. Cancer Res.14, 782–787 (2008).
  • Klatte T, Seligson DB, Riggs SB et al. Hypoxia-inducible factor 1 α in clear cell renal cell carcinoma. Clin. Cancer Res.13, 7388–7393 (2007).
  • Schioppa T, Uranchimeg B, Saccani A et al. Regulation of the chemokine receptor CXCR4 by hypoxia chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. J. Exp. Med.198, 1391–1402 (2003).
  • Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature425, 307–311 (2003).
  • Pantuck AJ, Zeng G, Belldegrun AS, Figlin RA. Pathobiology, prognosis, and targeted therapy for renal cell carcinoma: exploiting the hypoxia-induced pathway. Clin. Cancer Res.9, 4641–4652 (2003).
  • Ceradini DJ, Kulkarni AR, Callaghan MJ et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med.10, 858–864 (2004).
  • Schioppa T, Uranchimeg B, Saccani A et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J. Exp. Med.198, 1391–1402 (2003).
  • Zagzag D, Krishnamachary B, Yee H et al. Stromal cell-derived factor-1α and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res.65, 6178–6188 (2005).
  • Caruz A, Samsom M, Alonso JM et al. Genomic organization and promoter characterization of human CXCR4 gene. FEBS Lett.426, 271–278 (1998).
  • Phillips RJ, Mestas J, Gharaee-Kermani M et al. EGF and hypoxia-induced expression of CXCR4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/ PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1α. J. Biol. Chem.280, 22473–22481 (2005).
  • Kukreja P, Abdel-Mageed AB, Mondal D, Liu K, Agrawal KC. Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1α (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-κB activation. Cancer Res.65, 9891–9898 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.