71
Views
8
CrossRef citations to date
0
Altmetric
Review

Molecular pathology and potential therapeutic targets in soft-tissue sarcoma

&
Pages 939-948 | Published online: 10 Jan 2014

References

  • CancerStats Monograph 2004. Toms JR (Ed.). Cancer Research UK, London, UK (2004).
  • World Health Organisation Classification of Tumours: Pathology and Genetics of Tumours of Soft Tissue and Bone. Fletcher CDM, Unni KK, Mertens F (Eds). IARC Press, Lyon, France (2002).
  • Trojani M, Contesso G, Coindre JM et al. Soft-tissue sarcomas of adults; study of pathological prognostic variables and definition of a histopathological grading system. Int. J. Cancer33, 37–42 (1984).
  • Coindre JM, Trojani M, Contesso G et al. Reproducibility of a histopathologic grading system for adult soft tissue sarcoma. Cancer58(2), 306–309 (1986).
  • Guillou L, Coindre JM, Bonichon F et al. Comparative study of the National Cancer Institute and French Federation of Cancer Centers Sarcoma Group grading systems in a population of 410 adult patients with soft tissue sarcoma. J. Clin. Oncol.15(1), 350–362 (1997).
  • Delaney TF, Yang JC, Glatstein E. Adjuvant therapy for adult patients with soft tissue sarcomas. Oncology5, 105–118 (1991).
  • Clasby R, Tilling K, Smith MA, Fletcher CDM. Variable management of soft tissue sarcomas: regional audit with implications for specialist care. Br. J. Surg.84, 1692–1696 (1997).
  • Rosenberg SA, Tepper J, Glatstein E et al. The treatment of soft tissue sarcomas of the extremities: prospective randomised evaluations of (1) limb-sparing surgery plus radiation therapy compared with amputation and (2) the role of adjuvant chemotherapy. Ann. Surg.196, 305–315 (1982).
  • Suit HD, Mankin HJ, Wood WC et al. Treatment of the patient with stage M0 soft tissue sarcoma. J. Clin. Oncol.6(5), 854–862 (1988).
  • Sarcoma Meta-analysis Collaboration. Adjuvant chemotherapy for localised resectable soft-tissue sarcoma of adults: meta-analysis of individual data. Lancet350, 1647–1654 (1997).
  • Gasco M, Crook T. p53 family members and chemoresistance in cancer: what we know and what we need to know. Drug Resist. Updat.6, 323–328 (2003).
  • Coley HM, Verrill MW, Gregson SE, Odell DE, Fisher C, Judson IR. Incidence of P-glycoprotein overexpression and multidrug resistance (MDR) reversal in adult soft tissue sarcoma. Eur. J. Cancer36(7), 881–888 (2000).
  • Mocellin S, Rossi CR, Brandes A, Nitti D. Adult soft tissue sarcomas: conventional therapies and molecularly targeted approaches. Cancer Treat. Rev.32, 9–27 (2006).
  • Malkin D, Li FP, Strong LC et al. Germline p53 mutations in a familial syndrome of breast cancer, sarcomas and other neoplasms. Science,250, 1233–1238 (1990).
  • Li FP, Fraumeni JF. Soft tissue sarcomas, breast cancer and other neoplasms. A familial syndrome? Ann. Intern. Med.71, 747–752 (1969).
  • Li FP, Fraumeni JF, Mulvihill JJ et al. A cancer family syndrome in twenty four kindreds. Cancer Res.48, 5358–5362 (1988).
  • Sanchez-Garcia I. Consequences of chromosomal abnormalities in tumor development. Ann. Rev. Genet.31, 429–453 (1997).
  • Hogendoorn PCW, Collin F, Daugaard S et al. Changing concepts in the pethological basis of soft tissue and bone sarcoma treatment. Eur. J. Cancer40, 1644–1654 (2004).
  • Guillou L, Benhattar J, Bonichon F et al. Histologic grade, but not SYT-SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis. J. Clin. Oncol.22(20), 4040–4050 (2004).
  • Nilsson M, Meza-Zepeda LA, Mertens F, Forus A, Myklebost O, Mandahl N. Amplification of chromosome 1 sequences in lipomatous tumours and other sarcomas. Int. J. Cancer109, 363–369 (2004).
  • Hirota S, Isozaki K, Moriyama Y et al. Gain-of-Function mutations of c-kit in human gastrointestinal stromal tumours. Science279(5350), 577–580 (1988).
  • Nakanishi H, Myoui A, Ochi T, Aozasa K. P-glycoprotein expression in soft-tissue sarcomas. J. Cancer Res. Clin. Oncol.123(6), 352–356 (1997).
  • Serra M, Scotlandi K, Manara MC et al. Evaluation of P-glycoprotein expression in soft tissue sarcomas of the extremities. Cytotechnology19(3), 253–256 (1996).
  • Hoffmann J, Schmidt-Peter P, Hansch W et al. Anticancer drug sensitivity and expression of multidrug resistance markers in early passage human sarcomas. Clin. Cancer Res.5, 2198–2204 (1999).
  • Jimenez RE, Zalupski MM, Frank JJ, Du W, Ryan JR, Lucas DR. Multidrug resistance phenotype in high grade soft tissue sarcomas. Cancer86(6), 976–981 (1999).
  • Nielsen TO, West RB, Linn SC et al. Molecular characterisation of soft tissue tumours: a gene expression study. Lancet359, 1301–1307 (2002).
  • Ren B, Yu YP, Jing L et al. Gene expression analysis of human soft tissue leiomyosarcomas. Hum. Pathol.34(6), 549–558 (2003).
  • Allander SV, Illei PB, Chen Y et al. Expression profiling of synovial sarcoma by cDNA microarrays: association of ERBB2, IGFBP2 and ELF3 with epithelial differentiation. Am. J. Pathol.161(5), 1587–1595 (2002).
  • Nuciforo PG, Pellegrini C, Fasani R et al. Molecular and immunohistochemical analysis of HER2/neu oncogene in synovial sarcoma. Hum. Pathol.34(7), 639–645 (2003).
  • Barbashini V, Benevenia J, Aviv H et al. Oncoproteins and proliferation markers in synovial sarcomas: a clinicopathological study of 19 cases. J. Res. Clin. Oncol.128(11), 610–616 (2002).
  • Olsen RJ, Lydiatt WM, Koepsell SA et al. C-erb-B2 (HER2/neu) expression in synovial sarcoma of the head and neck. Head Neck27(10), 883–892 (2005).
  • Sapi Z, Papai Z, Hruska A, Antal I, Bodo M, Orosz Z. Her-2 oncogene amplification, chromosome 17 and DNA ploidy status in synovial sarcoma. Pathol. Oncol. Res.11(3), 133–138 (2005).
  • Thomas DG, Giordano TJ, Sanders D et al. Expression of receptor tyrosine kinases, epidermal growth factor receptor and HER-2/neu in synovial sarcoma. Cancer103(4), 830–838 (2005).
  • Terry J, Lubieniecka JM, Kwan W, Liu S, Nielsen TO. Hsp 90 inhibitor 17-allylamino-17-demethoxygeldanamycin prevents synovial sarcoma proliferation via apoptosis in in vitro models. Clin. Cancer Res.11(15), 5631–5638 (2005).
  • Hollstein M, Rice K, Greenblatt MS et al. Database of p53 gene somatic mutations in human tumours and cell lines. Nucleic Acids Res.22, 3551–3555 (1994).
  • Yoo J, Lee HK, Kang CS, Park WS, Lee JY, Shim SI. p53 gene mutations and p53 protein expression in human soft tissue sarcomas. Arch. Pathol. Lab. Med.121(4), 395–399 (1997).
  • Lowe SW, Bodis S, McClatchey A et al. p53 status and the efficacy of cancer therapy in vivo. Science266, 807–810 (1994).
  • Schmitt CA, Lowe SW. Apoptosis is critical for drug response in vivo. Drug Resist. Updat.4, 132–134 (2001).
  • Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell108, 153–164 (2002).
  • Blandino G, Levine AJ, Oren M. Mutant p53 gain of function: differential effects of different p53 mutations on resistance of cultured cells to chemotherapy. Oncogene18, 477–485 (1999).
  • Geisler S, Lonning PE, Aas T et al. Influence of TP53 gene alterations and c-erb-2 expression on the response to treatment with doxorubicin in locally advanced breast cancer. Cancer Res.61, 2505–2512 (2001).
  • Rahko E, Blanco G, Soini Y, Bloigu R, Jukkola A. A mutant TP53 gene status is associated with a poor prognosis and anthracycline resistance in breast cancer. Eur. J. Cancer39, 447–453 (2003).
  • Wu X, Bayle H, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dev.7, 1126–1132 (1993).
  • Bartel F, Meye A, Wurl P et al. Amplification of the MDM2 gene, but not expression of splice variants of MDM2 RNA, is associated with prognosis in soft tissue sarcoma. Int. J. Cancer95, 168–175 (2001).
  • Momand J, Jung D, Wilczynski S, Niland J. The MDM2 gene amplification database. Nucleic Acids Res.26(15), 3453–3459 (1998).
  • Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta1378(2), 115–177 (1998).
  • Silva J, Dominguez G, Silva JM et al. Analysis of genetic and epigenetic processes that influence p14ARF expression in breast cancer. Oncogene20, 4586–4590 (2001).
  • Nakamura M, Watanabe T, Klangby U et al.p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol.11, 159–168 (2001).
  • Pomerantz J, Schreiber-Agus N, Liegeois L et al. The INK4a tumour supressor gene product, p19ARF, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell92, 713–723 (1998).
  • Honda R, Yasuda H. Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of MDM2 for tumour supressor p53. EMBO J.18, 22–27 (1999).
  • Weber JD, Kuo M-L, Bothner B et al. Cooperative signals governing ARF-Mdm2 interaction and nucleolar localisation of the complex. Mol. Cell Biol.20, 2517–2528 (2000).
  • Lopez-Guerrero JA, Pellin A, Noguera R, Carda C, Llombart-Bosch A. Molecular analysis of the 9p21 locus and p53 genes in Ewing family tumours. Lab. Invest.81(6), 803–814 (2001).
  • Tsuchiya T, Sekine K, Hinohara S, Namiki T, Nobori T, Kaneko Y. Analysis of the p16INK4, P14ARF, P15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma. Cancer Genet. Cytogenet.120, 91–98 (2000).
  • Orlow I, Drobnjak M, Zhang ZF et al. Alterations of INK4A and INK4B genes in adult soft tissue sarcomas: effect on survival. J. Natl Cancer Inst.91(1), 73–79 (1999).
  • Roth JA, Nguyen D, Lawerence DD et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat. Med.2, 985–991 (1996).
  • Hupp TR. Regulation of p53 protein function through alterations in protein-folding pathways. Cell. Mol. Life Sci.55, 88–95 (1999).
  • Bykov VJ, Selivanova G, Wiman KG. Small molecules that reactivate mutant p53. Eur. J. Cancer39, 1828–1834 (2003).
  • Roth J, Lenz-Bauer C, Contente A et al. Reactivation of mutant p53 by a one-hybrid adaptor protein. Cancer Res.63, 3904–3908 (2003).
  • Makower D, Rozenblit A, Kaufman H et al. Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumours with correlative p53 studies. Clin. Cancer Res.9, 693–702 (2003).
  • Galanis E, Okuno SH, Nascimento AG et al. Phase I–II trial of ONYX-015 in combination with MAP chemotherapy in patients with advanced sarcomas. Gene Therapy12(5), 437–445 (2005).
  • Vassilev LT, Vu BT, Graves B et al.In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science303, 844–848 (2004).
  • Tovar C, Rosinski J, Filipovic Z et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc. Natl Acad. Sci. USA7(103), 1659–1660 (2006).
  • Debeic-Rychter M, Dumez H, Judson I et al. Use of c-KIT.PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. Eur. J. Cancer40, 689–695 (2004).
  • Verweij J, van Oosterom A, Blay JY et al. Imatinib mesylate (STI-571 Glivec, Gleevec) is an active agent for gastrointestinal stromal tumours, but does not yield responses in other soft-tissue sarcomas that are unselected for a molecular target: results from an EORTC Soft Tissue and Bone Sarcoma Group Phase II study. Eur. J. Cancer39, 2006–2011 (2003).
  • Prenen H, Cools J, Mentens N et al. Efficacy of the kinase inhibitor SU11248 against gastrointestinal stromal tumour mutants refractory to imatinib mesylate. Clin. Cancer Res.12(8), 2622–2627 (2006).
  • Demetri GD, van Oosterom A, Garrett CR et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet368(9544), 1329–1338 (2006).
  • Zucman J, Melot T, Desmaze C et al. Combinatorial generation of variable fusion proteins in the ewing family of tumours. EMBO J.12, 4481–4487 (1993).
  • Turc-Carel C, Aurias A, Mugneret F et al. Chromosomes in Ewings Sarcoma. I. An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). Cancer Genet. Cytogenet.32(2), 229–238 (1988).
  • Kaneko Y, Yoshida K, Handa M et al. Fusion of an ETS-family gene, E1AF to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer15, 115–121 (1996).
  • Peter M, Couturier J, Pacquement H et al. A new member of the ETS family fused to EWS in Ewing tumours. Oncogene14, 1159–1164 (1997).
  • Antonescu CR, Tschernyavsky SJ, Woodruff JM, Jungbluth AA, Brennan M, Ladanyi M. Detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J. Mol. Diagn.4(1), 44–52 (2002).
  • Labelle Y, Zucman J, Stenman G et al. Oncogeneic conversion of a novel orphan nuclear receptor by chromosome translocation. Hum. Mol. Genet.4, 2219–2226 (1995).
  • Ladanyi M, Gerald W. Fusion of the EWS and ET1 genes in the desmoplastic small round cell tumour. Cancer Res.54, 2837–2840 (1994).
  • Waters BL, Panagopoulos I, Allen EF. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by the chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet. Cytogenet.121, 109–116 (2000).
  • Raddaoui E, Donner LR, Panagopoulos I. Fusion of the FUS and ATF-1 genes in a large, deep-seated angiomatoid fibrous histiocytoma. Diagn. Mol. Pathol.11, 157–162 (2002).
  • Ladanyi M, Lui MY, Antonescu CR et al. The der(17)t(X;17)(p11;q25)of human alveolar soft part sarcoma fuses the TFE transcription factor gene to ASPL, a novel gene at 17q25. Oncogene20, 48–57 (2001).
  • Fitzgerald JC, Scherr AM, Barr FG. Structural analysis of PAX7 rearrangements in alveolar rhadbomyosarcoma. Cancer Genet. Cytogenet.117(1), 37–40 (2000).
  • Sirvent N, Maire G, Pedetour F. Genetics of dermatofibrosarcoma protuberans family of tumours: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer37, 1–19 (2003).
  • Knezevich SR, McFadden DE, Tao W, Linm JF, Sorensen PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nature Genetics18, 184–187 (1998).
  • Koontz JI, Soreng AL, Nucci M et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumours. Proc. Natl Acad. Sci. USA98(11), 6348–6353 (2001).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.