693
Views
149
CrossRef citations to date
0
Altmetric
Perspective

The role of platelet activation in tumor metastasis

Pages 1247-1255 | Published online: 10 Jan 2014

References

  • Rickles FR, Falanga A. Molecular basis for the relationship between thrombosis and cancer. Thromb. Res.102, V215–V224 (2001).
  • Varki A. Trousseau’s syndrome: multiple definitions and multiple mechanisms. Blood110, 1723–1729 (2007).
  • Nash GF, Turner LF, Scully MF, Kakkar AK. Platelets and cancer. Lancet Oncol.3, 425–430 (2002).
  • Kakkar AK, Levine MN. Thrombosis and cancer: implications beyond Trousseau. J. Thromb. Haemost.2, 1261–1262 (2004).
  • Karpatkin S, Pearlstein E, Ambrogio C, Coller BS. Role of adhesive proteins in platelet tumor interactionin vitro and metastasis formation in vivo.J. Clin. Invest.81, 1012–1019 (1988).
  • Boccaccio C, Sabatino G, Medico E et al. The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature434, 396–400 (2005).
  • Karpatkin S, Pearlstein E. Role of platelets in tumor cell metastases. Ann. Intern. Med.95, 636–641 (1981).
  • Gasic GJ. Role of plasma, platelets, and endothelial cells in tumor metastasis. Cancer Metastasis Rev.3, 99–114 (1984).
  • Honn KV, Tang DG, Chen YQ. Platelets and cancer metastasis: more than an epiphenomenon. Semin. Thromb. Hemost.18, 392–415 (1992).
  • Jurasz P, Alonso-Escolano D, Radomski MW. Platelet – cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br. J. Pharmacol.143, 819–826 (2004).
  • Burdick MM, Konstantopoulos K. Platelet-induced enhancement of LS174T colon carcinoma and THP-1 monocytoid cell adhesion to vascular endothelium under flow. Am. J. Physiol. Cell Physiol.287, C539–C547 (2004).
  • Sierko E, Wojtukiewicz MZ. Inhibition of platelet function: does it offer a chance of better cancer progression control? Semin. Thromb. Hemost.33, 712–721 (2007).
  • Freedman JE. Molecular regulation of platelet-dependent thrombosis. Circulation112, 2725–2734 (2005).
  • Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev.21, 99–111 (2007).
  • Brass LF. Thrombin and platelet activation. Chest124, 18S–111 (2003).
  • Rendu F, Brohard-Bohn B. The platelet release reaction: granules’ constituents, secretion and functions. Platelets12, 261–273 (2001).
  • Smith WL. Prostanoid biosynthesis and mechanisms of action. Am. J. Physiol.263, F181–F191 (1992).
  • Weyrich AS, Lindemann S, Zimmerman GA. The evolving role of platelets in inflammation. J. Thromb. Haemost.1, 1897–1905 (2003).
  • Santos-Martinez MJ, Medina C, Jurasz P, Radomski MW. Role of metalloproteinases in platelet function. Thromb. Res.121, 535–542 (2008).
  • Mause SF, von Hundelshausen P, Zernecke A, Koenen RR, Weber C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler. Thromb. Vasc. Biol.25, 1512–1518 (2005).
  • Von Hundelshausen P, Weber KS, Huo Y et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation103, 1772–1777 (2001).
  • Henn V, Slupsky JR, Grafe M et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature391, 591–594 (1998).
  • Danese S, de La Motte C, Reyes BM, Sans M, Levine AD, Fiocchi C. Cutting edge: T cells trigger CD40-dependent platelet activation and granular RANTES release: a novel pathway for immune response amplification. J. Immunol.172, 2011–2015 (2004).
  • Zimmerman GA, Weyrich AS. Signal-dependent protein synthesis by activated platelets: new pathways to altered phenotype and function. Arterioscler. Thromb. Vasc. Biol.28, S17–S24 (2008).
  • Bugert P, Dugrillon A, Gunaydin A, Eichler H, Kluter H. Messenger RNA profiling of human platelets by microarray hybridization. Thromb. Haemost.90, 738–748 (2003).
  • Denis MM, Tolley ND, Bunting M et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell122, 379–391 (2005).
  • Rickles FR, Levine M, Edwards RL. Hemostatic alterations in cancer patients. Cancer Metastasis Rev.11, 237–248 (1992).
  • Harker LA, Slichter SJ. Platelet and fibrinogen consumption in man. N. Engl. J. Med.287, 999–1005 (1972).
  • Costantini V, Zacharski LR, Moritz TE, Edwards RL. The platelet count in carcinoma of the lung and colon. Thromb. Haemost.64, 501–505 (1990).
  • Boneu B, Bugat R, Boneu A, Eche N, Sie P, Combes PF. Exhausted platelets in patients with malignant solid tumors without evidence of active consumption coagulopathy. Eur. J. Cancer Clin. Oncol.20, 899–903 (1984).
  • Pinedo HM, Verheul HM, D’amato RJ, Folkman J. Involvement of platelets in tumour angiogenesis? Lancet352, 1775–1777 (1998).
  • Zacharski LR. Anticoagulants in cancer treatment: malignancy as a solid phase coagulopathy. Cancer Lett.186, 1–9 (2002).
  • Tang DG, Honn KV. Adhesion molecules and tumor metastasis: an update. Invasion Metastasis14, 109–122 (1994).
  • Nash GF, Walsh DC, Kakkar AK. The role of the coagulation system in tumour angiogenesis. Lancet Oncol.2, 608–613 (2001).
  • Borsig L, Stevenson JL, Varki A. Heparin in cancer: role of selectin interactions. In: Cancer-Associated Thrombosis. Khorana AA, Francis CW (Eds). Informa Healthcare, NY, USA 97–113 (2007).
  • Shivdasani RA, Rosenblatt MF, Zucker-Franklin D et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell81, 695–704 (1995).
  • Camerer E, Qazi AA, Duong DN, Cornelissen I, Advincula R, Coughlin SR. Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood104, 397–401 (2004).
  • Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell10, 355–362 (2006).
  • Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl Acad. Sci. USA98, 3352–3357 (2001).
  • Mueller BM, Reisfeld RA, Edgington TS, Ruf W. Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proc. Natl Acad. Sci. USA89, 11832–11836 (1992).
  • Rak J, Yu JL, Luyendyk J, Mackman N. Oncogenes, Trousseau syndrome, and cancer-related changes in the coagulome of mice and humans. Cancer Res.66, 10643–10646 (2006).
  • Ruf W, Mueller BM. Thrombin generation and the pathogenesis of cancer. Semin. Thromb. Hemost.32(Suppl. 1), 61–68 (2006).
  • Rickles FR. Mechanisms of cancer-induced thrombosis in cancer. Pathophysiol. Haemost. Thromb.35, 103–110 (2006).
  • Giesen PL, Rauch U, Bohrmann B et al. Blood-borne tissue factor: another view of thrombosis. Proc. Natl Acad. Sci. USA96, 2311–2315 (1999).
  • Rak J, Milsom C, May L, Klement P, Yu J. Tissue factor in cancer and angiogenesis: the molecular link between genetic tumor progression, tumor neovascularization, and cancer coagulopathy. Semin. Thromb. Hemost.32, 54–70 (2006).
  • Wang X, Wang M, Amarzguioui M, Liu F, Fodstad O, Prydz H. Downregulation of tissue factor by RNA interference in human melanoma LOX-L cells reduces pulmonary metastasis in nude mice. Int. J. Cancer112, 994–1002 (2004).
  • Nierodzik ML, Chen K, Takeshita K et al. Protease-activated receptor 1 (PAR-1) is required and rate-limiting for thrombin-enhanced experimental pulmonary metastasis. Blood92, 3694–3700 (1998).
  • Costantini V, Zacharski LR. Fibrin and cancer. Thromb. Haemost.69, 406–414 (1993).
  • Palumbo JS, Kombrinck KW, Drew AF et al. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood96, 3302–3309 (2000).
  • Kim YJ, Borsig L, Varki NM, Varki A. P-selectin deficiency attenuates tumor growth and metastasis. Proc. Natl Acad. Sci. USA95, 9325–9330 (1998).
  • Oleksowicz L, Mrowiec Z, Schwartz E, Khorshidi M, Dutcher JP, Puszkin E. Characterization of tumor-induced platelet aggregation: the role of immunorelated GPIb and GPIIb/IIIa expression by MCF-7 breast cancer cells. Thromb. Res.79, 261–274 (1995).
  • Clezardin P, Drouin J, Morel-Kopp MC et al. Role of platelet membrane glycoproteins Ib/IX and IIb/IIIa, and of platelet alpha-granule proteins in platelet aggregation induced by human osteosarcoma cells. Cancer Res.53, 4695–4700 (1993).
  • Nierodzik ML, Klepfish A, Karpatkin S. Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesionin vitro and metastasis in vivo.Thromb. Haemost.74, 282–290 (1995).
  • Trikha M, Zhou Z, Timar J et al. Multiple roles for platelet GPIIb/IIIa and avb3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res.62, 2824–2833 (2002).
  • Jain S, Zuka M, Liu J et al. Platelet glycoprotein Iba supports experimental lung metastasis. Proc. Natl Acad. Sci. USA104, 9024–9028 (2007).
  • Borsig L, Wong R, Hynes RO, Varki NM, Varki A. Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc. Natl Acad. Sci. USA99, 2193–2198 (2002).
  • Mcever RP. Selectin-carbohydrate interactions during inflammation and metastasis. Glycoconj. J.14, 585–591 (1997).
  • Kansas GS. Selectins and their ligands: current concepts and controversies. Blood88, 3259–3287 (1996).
  • Ludwig RJ, Boehme B, Podda M et al. Endothelial P-selectin as a target of heparin action in experimental melanoma lung metastasis. Cancer Res.64, 2743–2750 (2004).
  • Nieswandt B, Hafner M, Echtenacher B, Mannel DN. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res.59, 1295–1300 (1999).
  • Fuster MM, Brown JR, Wang L, Esko JD. A disaccharide precursor of sialyl Lewis X inhibits metastatic potential of tumor cells. Cancer Res.63, 2775–2781 (2003).
  • Palumbo JS, Talmage KE, Massari JV et al. Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood110, 133–141 (2007).
  • Floyd CM, Irani K, Kind PD, Kessler CM. von Willebrand factor interacts with malignant hematopoietic cell lines: evidence for the presence of specific binding sites and modification of von Willebrand factor structure and function. J. Lab. Clin. Med.119, 467–476 (1992).
  • Terraube V, Pendu R, Baruch D et al. Increased metastatic potential of tumor cells in von Willebrand factor-deficient mice. J. Thromb. Haemost.4, 519–526 (2006).
  • Falanga A, Gordon SG. Isolation and characterization of cancer procoagulant: a cysteine proteinase from malignant tissue. Biochemistry24, 5558–5567 (1985).
  • Denko NC, Giaccia AJ. Tumor hypoxia, the physiological link between Trousseau’s syndrome (carcinoma-induced coagulopathy) and metastasis. Cancer Res.61, 795–798 (2001).
  • Polgar J, Matuskova J, Wagner DD. The P-selectin, tissue factor, coagulation triad. J. Thromb. Haemost.3, 1590–1596 (2005).
  • Wahrenbrock M, Borsig L, Le D, Varki N, Varki A. Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J. Clin. Invest.112, 853–862 (2003).
  • Salgado R, Vermeulen PB, Benoy I et al. Platelet number and interleukin-6 correlate with VEGF but not with bFGF serum levels of advanced cancer patients. Br. J. Cancer80, 892–897 (1999).
  • Benoy I, Salgado R, Colpaert C, Weytjens R, Vermeulen PB, Dirix LY. Serum interleukin 6, plasma VEGF, serum VEGF, and VEGF platelet load in breast cancer patients. Clin. Breast Cancer2, 311–315 (2002).
  • Kim HK, Song KS, Park YS et al. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur. J. Cancer39, 184–191 (2003).
  • Verheul HM, Jorna AS, Hoekman K, Broxterman HJ, Gebbink MF, Pinedo HM. Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood96, 4216–4221 (2000).
  • Mcdowell G, Temple I, Li C et al. Alteration in platelet function in patients with early breast cancer. Anticancer Res.25, 3963–3966 (2005).
  • Verheul HM, Hoekman K, Lupu F et al. Platelet and coagulation activation with vascular endothelial growth factor generation in soft tissue sarcomas. Clin. Cancer Res.6, 166–171 (2000).
  • Trikha M, Nakada MT. Platelets and cancer: implications for antiangiogenic therapy. Semin. Thromb. Hemost.28, 39–44 (2002).
  • Boucharaba A, Serre CM, Gres S et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J. Clin. Invest.114, 1714–1725 (2004).
  • Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat. Rev. Cancer3, 582–591 (2003).
  • Ishii I, Fukushima N, Ye X, Chun J. Lysophospholipid receptors: signaling and biology. Annu. Rev. Biochem.73, 321–354 (2004).
  • Wojtukiewicz MZ, Sierko E, Klement P, Rak J. The hemostatic system and angiogenesis in malignancy. Neoplasia3, 371–384 (2001).
  • Sawicki G, Salas E, Murat J, Miszta-Lane H, Radomski MW. Release of gelatinase A during platelet activation mediates aggregation. Nature386, 616–619 (1997).
  • Vlodavsky I, Eldor A, Haimovitz-Friedman A et al. Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis12, 112–127 (1992).
  • Belloc C, Lu H, Soria C, Fridman R, Legrand Y, Menashi S. The effect of platelets on invasiveness and protease production of human mammary tumor cells. Int. J. Cancer60, 413–417 (1995).
  • Janowska-Wieczorek A, Wysoczynski M, Kijowski J et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int. J. Cancer113, 752–760 (2005).
  • Janowska-Wieczorek A, Marquez-Curtis LA, Wysoczynski M, Ratajczak MZ. Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion46, 1199–1209 (2006).
  • Alonso-Escolano D, Medina C, Cieslik K et al. Protein kinase C d mediates platelet-induced breast cancer cell invasion. J. Pharmacol. Exp. Ther.318, 373–380 (2006).
  • Cohen SA, Trikha M, Mascelli MA. Potential future clinical applications for the GPIIb/IIIa antagonist, abciximab in thrombosis, vascular and oncological indications. Pathol. Oncol. Res.6, 163–174 (2000).
  • Amirkhosravi A, Mousa SA, Amaya M et al. Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thromb. Haemost.90, 549–554 (2003).
  • Ludwig RJ, Schon MP, Boehncke WH. P-selectin: a common therapeutic target for cardiovascular disorders, inflammation and tumour metastasis. Expert Opin. Ther. Targets11, 1103–1117 (2007).
  • Barthel SR, Gavino JD, Descheny L, Dimitroff CJ. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin. Ther. Targets11, 1473–1491 (2007).
  • Laubli H, Stevenson JL, Varki A, Varki NM, Borsig L. L-selectin facilitation of metastasis involves temporal induction of fut7-dependent ligands at sites of tumor cell arrest. Cancer Res.66, 1536–1542 (2006).
  • Hostettler N, Naggi A, Torri G, Casu B, Vlodavsky I, Borsig L. P-selectin- and heparanase-dependent antimetastatic activity of non-anticoagulant heparins. FASEB J.21, 3562–3572 (2007).
  • Kakkar AK, Levine MN, Kadziola Z et al. Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J. Clin. Oncol.22, 1944–1948 (2004).
  • Klerk CP, Smorenburg SM, Otten HM et al. The effect of low molecular weight heparin on survival in patients with advanced malignancy. J. Clin. Oncol.23, 2130–2135 (2005).
  • Lee AY, Rickles FR, Julian JA et al. Randomized comparison of low molecular weight heparin and coumarin derivatives on the survival of patients with cancer and venous thromboembolism. J. Clin. Oncol.23, 2123–2129 (2005).
  • Altinbas M, Coskun HS, Er O et al. A randomized clinical trial of combination chemotherapy with and without low-molecular-weight heparin in small cell lung cancer. J. Thromb. Haemost.2, 1266–1271 (2004).
  • Varki NM, Varki A. Heparin inhibition of selectin-mediated interactions during the hematogenous phase of carcinoma metastasis: rationale for clinical studies in humans. Semin. Thromb. Hemost.28, 53–66 (2002).
  • Varki A, Varki NM. P-selectin, carcinoma metastasis and heparin: novel mechanistic connections with therapeutic implications. Braz. J. Med. Biol. Res.34, 711–717 (2001).
  • Borsig L. Selectins facilitate carcinoma metastasis and heparin can prevent them. News Physiol. Sci.19, 16–21 (2004).
  • Garcia J, Callewaert N, Borsig L. P-selectin mediates metastatic progression through binding to sulfatides on carcinoma cells. Glycobiology17, 185–196 (2007).
  • Stevenson JL, Choi SH, Varki A. Differential metastasis inhibition by clinically relevant levels of heparins – correlation with selectin inhibition, not antithrombotic activity. Clin. Cancer Res.11, 7003–7011 (2005).
  • Koenig A, Norgard-Sumnicht K, Linhardt R, Varki A. Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents. J. Clin. Invest.101, 877–889 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.