19
Views
19
CrossRef citations to date
0
Altmetric
Miscellaneous

Quartz crystal analytical sensors: the future of label-free, real-time diagnostics?

Pages 173-186 | Published online: 09 Jan 2014

References

  • Henning B, Daur P-C, Prange S, Dierks K, Hauptmann. In-line concentration measurement in complex liquids using ultrasonic sensors. Ultrasonics 38, 799–803 (2000).
  • Ali Z, OHare WT, Sarkodie-Gyan T, Theaker B. J. Therm. Anal. and Calor. 55, 371–381 (1999).
  • Newton MI, McHale G, Martin F, Gizeli E, Melzak KA. Pulse mode operation of Love wave devices for biosensing applications. Analyst 126, 2107–2109 (2001).
  • Grate JW, Martin SJ, White RM. Acoustic wave microsensors. Anal. Chem. 65(21), 940A (1993).
  • Curie J, Curie P. Development by pressure of polar electricity in crystals with angled faces. Comp. Rend. Acad. Sci. Paris 91, 294–297 (1880).
  • Lippman G. Sur le principle de la converation de lelectricite ou le second principe de la theorie des phenomenes electriques. Comp. Rend. Acad. Sci. Paris 92, 1049 (1881).
  • Curie J, Curie P. Electrical deformation of quartz. Comp. Rend. Acad. Sci. Paris 94, 122–126 (1882).
  • Rayleigh L. On the free vibrations of an infinite plate of homogeneous isotropic elastic matter. Proc. London Math. Soc. 20, 225–226 (1889).
  • Cady WG. The piezoelectric resonator. Phys. Rev. 17, 531–533 (1921).
  • Lack FR, Willard GW, Fair IE. Some improvements in quartz crystal circuit elements. Bell Syst. Techn. J. 13, 453–455 (1934).
  • Sauerbrey G. Use of quartz vibrator for weighing thin films on a microbalance. Z. Phys. 155, 206–222 (1959).
  • • This paper defines the original analytically applied frequency-mass relationship.
  • King WH, Jnr. A piezoelectric sorption detector. Anal. Chem. 36, 1735–1739 (1964).
  • Andrade JF, FatibelloFilho O, Guilbault GG. Coated piezoelectric sensor for determination of 2,4 toluene diisocynate in air. Anal. Chim. Acta. 217, 187–192, (1989).
  • Guilbault GG. Determination of formaldehyde with an enzyme coated piezoelectric detector. Anal. Chem. 55, 1682–1684 (1993).
  • Nomura T, Okuhara M. Frequency shifts of piezoelectric crystals immersed in organic liquids. Anal. Chim. Acta. 142, 281–284 (1982).
  • Kurosawa K, Tawara E, Kamo N, Kobatake Y. Oscillating frequency of piezoelectric crystal in solutions. Anal. Chim. Acta. 230, 41–49 (1990).
  • Yao S, Mo ZH, Nie LH. Determination of pico-molar concentrations of bromide with a piezoelectric detector by catalysis of the permanganate/iodide reaction. Anal. Chim. Acta. 217, 327–334 (1989).
  • Muratsugu M, Ohta F, Miya Y et al. QCM for the detection of microgram quantities of human serum albumin: relationship between the frequency change and the mass of serum adsorbed. Anal. Chem. 65, 2933–2937 (1993).
  • He F, Deng L, Xie Q, Nie L, Yao S. Rapid detection of Esherichia coli. Using a separated electrode piezoelectric crystal sensor. Anal. Chim. Acta. 289, 313–319 (1994).
  • Wei W, Nie L, Yao S. Multi component analysis in solution using piezoelectric sensors - detection of aspirin in aqueous solution. Anal. Chim. Acta. 263, 77–83 (1992).
  • Salt D. Handbook of Quartz Crystal Devices, Van Nostrand Reinhold (1987).
  • Rickert J, Hayward GL, Cavic BA, Thompson M, Gpel W. In: Sensors update: Sensor Technology-Applications-Markets (Volume 5). Baltes H, Gpel W, Jesse J. (Eds.), Wiley-VCH, Weinhem, 105–139 (1999).
  • Uttenhaler E, Schrml M, Mandel Johannes, Drost S. Ultrasensitive quartz crystal microbalance sensors for detection of M13-phages in liquids. Biosens. Bioelect. 16, 735–743 (2001).
  • •• Describes the highest frequency TSM application to date.
  • Zimmermann B, Lucklum R, Hauptmann P, Rabe J, Buttgenbach S. Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis. Sens. Act. B76, 47–57 (2001).
  • Sakti SP, Lucklum R, Hauptmann P, Bhling F, Ansorge S. Disposable TSM biosensor based on viscosity changes of the contacting medium. Biosens. Bioelec. 16, 1101–1108 (2001).
  • • Ring type QCM mounting structure.
  • Tanaka M, Mochizuki A, Motomura T, Shimura K, Onishi M, Okahata Y. In situ studies on protein adsorption onto a poly(2-methoxyethylacrylate) surface by a quartz crystal microbalance. Coll. Surf. A 193, 145–152 (2001).
  • • Bulk solution beaker type QCM usage.
  • Shen D, Huang M, Chow L-M, Yang M. Kinetic profile of the adsorption and conformational change of lysozyme on selfassembled monolayers as revealed by quartz crystal resonator. Sen. Actuat. 77, 664–670 (2001).
  • Pavey KD, Olliff CJ, Paul F. Quartz crystal resonant sensor (QCRS) model for labelfree, small-molecule receptor studies. Analyst 126, 1711–1715 (2001).
  • • Shows typical flow injection analysis type crystal architecture.
  • Cavic BA, Hayward GL, Thompson M. Acoustic waves and the study of biochemical macromolecules and cells at the sensor surface. Analyst 124, 1405–1420 (1999).
  • Paul F, Pavey KD, Payne R, Patent # GB0019340.9, 2000.
  • • Most recent pressure-free cartridge type crystal mounting.
  • Ali Z. Acoustic wave mass sensors. Therm. Anal. Calor. 55, 397–412 (1999).
  • Bandey HL, Martin SJ, Cernosek RW, Hillman AR. Modelling the responses of thickness-shear mode resonators under various loading conditions. Anal. Chem. 71, 2205–2214 (1999).
  • Paul F, Pavey K.D, Payne R, James P, International Patent # WO 00/25118: Quartz crystal microbalance auto-gain control circuitry. (2001).
  • Rodahl M, Hk F, Krozer A, Brzenzinski P, Kasemo B. Quartz crystal microbalance set-up for frequency and Q-factor measurements in gaseous and liquid environments. Rev. Sci. Instrum. 66(7), 3924–3930 (1995).
  • •• Useful description of discontinuous resonance (DR) methodology.
  • Rodahl M, Kasemo B. Frequency and dissipation-factor responses to localized liquid deposits on a QCM electrode. Sens. Actu. B 37, 111–116 (1996).
  • Schrder J, Borngrber R, Lucklum R, Hauptmann P. Network analysis based interface electronics for quartz crystal microbalance. Rev. Sci. Instrum. 72(6), 2750–2755 (2001).
  • •• Application of circuit analysis (CA) methods.
  • Rickert J, Weiss T, Krass W, Jung G, Gpel W. A new affinity biosensor: self-assembled thiols as selective coatings of quartz crystal microbalances. Biosens. Bioelectron. 11, 591–598 (1996).
  • Muramatsu H, Tamiya E, Karube I. Computation of equivalent circuit parameters of quartz crystals in contact with liquids and study of liquid properties. Anal. Chem. 60, 2142–2146 (1988).
  • Van-Dyke KS. The electric network equivalent of a piezoelectric resonator. Phys. Rev. 25, 895–898 (1925).
  • Hayward GL, Thompson M. A transverse shear model of a piezoelectric chemical sensor. J. Appl. Phys. 83, 2194–2198 (1998).
  • Bandey HL, Martin SJ, Cernosek RW, Hillman AR. Modelling the response of thickness shear mode resonators under various loading conditions. Anal. Chem. 71, 2205–2214 (1999).
  • McHale G, Lcklum R, Newton MI, Cowen JA. Influence of viscoelasticity and interfacial slip on acoustic wave sensor. J. Appl. Phys. 88(12), 7304–7312 (2000).
  • Rodahl M, Kasemo B. A simple set-up to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance. Rev. Sci. Instrum. 67(9), 3238–3241 (1996).
  • Schrder J, Borngrber R, Lucklum R, Hauptmann P. Network analysis based interface electronics for quartz crystal microbalance. Rev. Sci. Instrum. 72(6), 2750–2755 (2001).
  • Qu X, Bao L, Su X, Wei W. A new method based on gelation of tachypleus amebocyte lysate for detection of Escherichia coliform using a series piezoelectric quartz crystal sensor. Anal. Chim. Acta. 374, 47–52 (1998).
  • Aizawa H, Kurosawa S, Ogawa K, Yoshimoto M, Miyake J, Tanaka H. Conventional diagnosis of C-reactive protein in serum using latex piezoelectric immunoassay. Sens. Actu. B 76, 173–176 (2001).
  • Vikinge TP, Hansson KM, Sandstrm P. et al. Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation. Biosens. Bioelec. 15, 605–613 (2000).
  • Lee TY, Shim YB Direct DNA hybridisation detection based on the oligonucleotide-functionalized conductive polymer. Anal. Chem. 73, 5629–5632 (2001).
  • Su X, Chew FT, Li SFY. Self-assembled monolayer-based piezoelectric crystal immunosensor for the quantification of total human immunoglobulin E. Anal. Biochem. 273, 66–72 (1999).
  • Ghafouri S, Thompson M. Electrode modification and the response of the acoustic shear wave device operating in liquids. Analyst 126, 2159–2167 (2001).
  • • Very recent paper describing surface engineering application to increase sensitivity.
  • Van Noort D, Rani R, Mandenius C-F. Improving the sensitivity of a quartz crystal microbalance for biosensing by using porous gold. Mikrochim. Acta. 136, 49–53 (2001).
  • Zhao H, Lin L, Tang J, Duan M, Jiang L. Enhancement of the immobilization and discrimination of DNA probe on a biosensor using gold nanoparticles. Chin. Sci. Bull. 46(13), 1074–1077 (2001).
  • Chance JJ, Purdy WC. Signal enhancement using a swellable polymer TSM acoustic wave sensor coating. Anal. Lett. 32(9), 1751–1760 (1999).
  • Lucklum R, Hauptmann P. The quartz crystal microbalance: mass sensitivity, viscoelasticity and acoustic amplification. Sens. Actu. B 70, 30–36 (2000).
  • Janshoff A, Galla H-J, Steinhem C. Piezoelectric mass-sensing devices as biosensors An alternative to optical biosensors? Angew. Chem. Int. Ed. 39, 4004–4032 (2000).
  • Medyantseva EP, Khaldeeva EV, Budnikov GK. Immonosensors in biology and medicine: Analytical capabilities, problems and prospects. J. Anal. Chem. 56(10), 886– 900 (2001).
  • Halmek J, Hepel M, Skldel P. Investigation of highly sensitive piezoelectric immonosensors for 2,4- dichlorophenoxyacetic acid. Biosens. Bioelec. 16, 253–260 (2001).
  • •• Highly sensitive assay for common environmental pollutant.
  • Zhou XC, Cao L. High sensitivity microgravimetric biosensor for qualitative and quantitative diagnostic detection of polychlorinated dibenzo-p-dioxins. Analyst 126, 71–78 (2001).
  • Haupt K. Molecularly imprinted polymers in analytical chemistry. Analyst 126, 747–756 (2001).
  • Liang C, Peng H, Nie L, Yao S. Bulk acoustic wave sensor for herbicide assay based on molecularly imprinted polymer. Fresenius J. Anal Chem. 367, 551–555 (2000).
  • Percival CJ, Stanley S, Galle M. et al.Molecular-imprinted, polymer-coated quartz crystal microbalances for the detection of terpenes. Anal. Chem. 73, 4225–4228 (2001).
  • Gabai R, Sallacan N, Chegel V, Bourrenko T, Katz E, Willner I. Characterization of the swelling of acryamidophenylboronic acid - acrylamide hydrogels upon interaction with glucose by faradaic impedance spectroscopy, chromopotentiometry, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) experiments. J. Phys. Chem. B 105, 8196–8202 (2001).
  • Tsuchida A, Matsuura K, Kobayashi K.A quartz-crystal microbalance study of adsorption behaviours of artificial glycoconjugate polymers with different saccharide chain lengths and with different backbone structures. Macromol. Chem. Phys. 201, 2245–2250 (2000).
  • Teresa M,Gomes SR, Tavares KS, Oliveira JABP. The quantification of potassium using a quartz crystal microbalance. Analyst 125, 1983–1986 (2000).
  • • Detection of potassium ions in solution at low concentration.
  • Drake PL, Price GJ. Crown ether containing co-polymers as selective membranes for quartz crystal microbalance chemical sensors. Polym. Int. 49, 926–930 (2000).
  • Teresa M, Gomes SR, Taveras KS, Oliveira JABP. Development of a sensor for calcium based on quartz crystal microbalance. Fresenius J. Anal. Chem. 369, 616–619 (2001).
  • He D, Bao L, Long Y, Wei W, Yao S. A new study of the enzymatic hydrolysis of carboxymethyl cellulose with a bulk acoustic wave sensor. Talanta 50, 1267–1273 (2000).
  • Zhu PX, Masuda Y, Koumoto K. Siteselective adhesion of hydroxyapatite microparticles on charged surfaces in a supersaturated solution. J. Coll. Inter. Sci. 243, 31–36 (2001).
  • Langford J, Pavey KD, Olliff CJ et al. Realtime monitoring of stain formation and removal on calcium hydroxyapatite surfaces using quart crystal sensor technology. Analyst 127, 360–367 (2002).
  • • Real-life application of an inorganic matrix on a QCM surface as a model tooth surface.
  • Liebau M, Hildebrand A, Neubert RHH. Bioadhesion of supramolecular structures at supported planar bilayers as studied by the quartz crystal microbalance. Eur. Biophys. J. 30 42–52 (2001).
  • Kaneda H, Takashio M, Shinotsuka K, Okahata Y. Adsorption to or desorption of beer components from a lipd membrane related to sensory evaluation. J. Biosci. Bioeng. 92(3), 221–226 (2001).
  • •• Tongue and throat model for mimicking human response to the taste and smoothness components of beer.
  • Pavey KD, Lyle E-L, Olliff CJ, Paul F. a quartz crystal resonant sensor (QCRS) study of HSA-drug interactions. Analyst 126, 426–428 (2001).
  • Kobayashi T, Murawaki Y, Reddy PS, Abe M, Fuji N. Molecular imprinting of caffeine and its recognition assay by quartz crystal microbalance. Anal. Chim. Acta. 435, 141–149 (2001).
  • Tan Y, Yin J, Liang C, Peng H, Nie L, Yao S. A study of a new TSM bio- mimetic sensor using a molecularly imprinted polymer coating and its application for the determination of nicotine in human serum and urine. Bioelectrochem. 53, 141–148 (2001).
  • Yao S, Peng H, Liang C, Wu Y, Nie L. biomimetic bulk acoustic wave sensor for determination of trimethoprim in the organic phase based on a molecular imprinting polymer. Anal. Sci. 16, 211–215 (2000).
  • Tan Y, Zhou Z, Wang P, Nie L, Yao S. Talanta 55, 337–347 (2001).
  • • Highly sensitive method for the rapid determination of paracetamol in serum or urine using molecularly imprinted polymer surface architecture.
  • Tan Y, Peng H, Liang C, Yao S. A new assay system for phenacetin using biomimic bulk acoustic wave sensor with a molecularly imprinted polymer coating. Sens. Actu. B 73, 179–184 (2001).
  • Peng H, Liang C, Zhou A, Zhang Y, Xie Q, Yao S. Development of a new atropine sulfate bulk acoustic wave sensor based on a molecularly imprinted electrosynthesized co-polymer of aniline with ophenylenediamine. Anal. Chim. Acta. 423, 221–228 (2000).
  • Haupt K, Noworyta K, Kutner W. Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance. Anal. Comm. 36, 391–393 (1999).
  • Cao L, Zhou XC, Li SFY. Enantioselective sensor based on microgravimetric quartz crystal microbalance with molecularly imprinted polymer film. Analyst 126, 184–188 (2001).
  • Kugimiya A, Yoneyama H, Takeuchi T. Sialic acid imprinted polymer-coated quartz crystal microbalance. Electroanalysis 2(16), 1322–1326 (2000).
  • Peng H, Zhang Y, Xie Q, Nie L, Yao S. Development of a thickness shear mode acoustic sensor based on an electrosynthesized molecularly imprinted polymer using an underivatised amino acid as the template. Analyst 126, 189–194 (2001).
  • Marx S, Kaushansky N, Gratziany N, Barness I, Liron Z. Acoustic and optical transduction of BuChE binding to procainamide modified surfaces. Biosens. Bioelec. 16, 239–244 (2001).
  • Long Y, Liu Y, Lei L, Nie L, Yao S. Construction and application of pheytoin anion-selective electrode based on bulk acoustic wave (BAW) sensing technique. Analyst 126, 1090–1094 (2001).
  • Johnsson M, Bergstrand N, Edwards K, Stalgren JJR. Adsorption of a PEO- PPOPEO triblock co-polymer on small unilallar vesicles: Equilibrium and kinetic properties and correlation with membrane permeability. Langmuir 17, 3902–3911 (2001).
  • Cavic BA, Thompson M. Adsorptions of plasma proteins and their elutabilities from a polysiloxane surface studied by an on-line acoustic wave sensor. Anal. Chem. 72, 1523–1531 (2000).
  • •• Yields useful results regarding plasma protein adsorption from QCM CA data and challenges the established mechanisms.
  • Furtado LM, Su H, Thompson M, Mack DP, Hayward GL. Interactions of HIV-1 TAR RNA with Tat-derived peptides discriminated by on-line acoustic wave detector. Anal. Chem. 71, 1167–1175 (1999).
  • Zhou XC, Huang LQ, Li SFY. Microgravimetric DNA sensor based on quartz crystal microbalance: comparison of oligonucleotide immobilization methods and the application in genetic diagnosis. Biosens. Bioelec. 16, 85–95 (2001).
  • •• Shows capability of QCM technique for determining specific DNA mutations.
  • Tombelli S, Mascini M, Braccini L, Anichini M, Turner APF. Coupling of a DNA piezoelectric biosensor and polymerase chain reaction to detect apolipoprotein E polymorphisms. Biosens. Bioelec. 15, 363–370 (2000).
  • Towery RB, Fawcett NC, Zhang P, Evans JA. Genomic DNA hybridises with the same rate constant on the QCM biosensor as in homogeneous solution. Biosens. Bioelec. 16, 1–8 (2001).
  • Patolsky F, Lichenstein A, Willner I. Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nature Biotechnol. 19, 253–257 (2001).
  • Yan F, Sadik OA. Enzyme-modulated cleavage of dsDNA for supramolecular design of biosensors. Anal. Chem. 73, 5272–5280 (2001).
  • Pavey KD, Miah M, Fucassi F, Paul F, Cragg PJ. Vitamin C induced decomposition of lipid hydroperoxides: direct evidence of genotoxin-DNA binding detected by QCRS. Chem. Comm. 1886– 1887 (2001).
  • • Real-life application determining potential genotoxins from high-dose ascorbic acid incubation with lipid hydroperoxides.
  • Matsuno H, Niikura K, Okahata Y. Design and characterization of aspargine- and lysine-containing alanine-based helical peptides that bind selectively to AT base pairs of oligonucleotides immobilized on a
  • MHz quartz crystal microbalance. Biochemistry 40, 3615–3622 (2001).
  • Wu Z-Y, Shen G-L, Lie L-J, Yu R-Q. A PEG piezoelectric immunoassay for the determination of transferrin in human serum. Sens. Actu. B. 71, 99–105 (2000).
  • • Useful diagnostic assay for serum phase transferrin.
  • Pavey KD, Ali Z, Olliff CJ, Paul F. Application of the quartz crystal microbalance to the monitoring of Staphylococcus epidermidis antigen antibody agglutination. J. Pharm. Biomed. Anal. 20, 241–245 (1999).
  • Su X, Chew FK, Li SFY. Self-assembled monolayer-based piezoelectric crystal immunosensor for the quantifications of total human immunoglobulin E. Anal. Biochem. 273, 66–72 (1999).
  • Sakti SP, Hauptmann P, Zimmermann B, Bhling F, Ansorge S. Disposable HSA QCM-immunosensor for practical measurement in liquid. Sens. Actu. B. 78, 257–262 (2001).
  • Susmel S, OSullivan CK, Guilbault GG. Human cytomegalovirus detection by a quartz crystal microbalance immunosensor. Enzyme Microb. Tech. 27, 639–645 (2000).
  • Hengerer A, Decker J, Prohaska E, Hauck S, Klinger C, Wolf H. Quartz crystal microbalance (QCM) as a device for the screening of phage libraries. Biosens. Bioelec. 14, 139–144 (1999).
  • Cooper M, Dultsev FN, Minson T, Ostanin VP, Abell C, Klenerman D. Direct and sensitive detection of a human virus by rupture event scanning. Nature Biotechnol. 19, 833–837 (2001).
  • Alfonta L, Willner, Throckmorton DJ, Singh AK. Electrochemical and quartz crystal microbalance detection of the cholera toxin empolying horseradish peroxidase and GM-1 functionalized liposomes. Anal. Chem. 73, 5287–5295 (2001).
  • •• Incredibly sensitive assay for cholera toxin.
  • Rees RC, Dickenson AM. Mycology. In: Pharmaceutical Microbiology (Sixth Edition). Hugo WB, Russell AD (Eds.) Blackwell Science, London, UK, 32–33 (1998).
  • He F, Geng Q, Zhu W, Nie L, Yao S, Meifeng C. Rapid detection of Escherichia coli using a separated electrode piezoelectric crystal sensor. Anal. Chim. Acta. 289, 313–319 (1994).
  • Tan H, Deng Le, Nie L, Yao S. Detection and analysis of the growth characteristics of proteus vulgaris with a bulk acoustic wave ammonia sensor. Analyst 122, 179–184 (1997).
  • Fung YS, Wong YY. Selfassembled monolayers as the coating in a quartz piezoelectric crystal immunosensor to detect salmonella in aqueous solution. Anal. Chem. 73, 5302–5309 (2001).
  • Otto K, Elwing H, Hermansson M. Effect of ionic strength on initial interactions of Escherichia coli with surface, studied on-line by a novel quartz microbalance technique. J. Bacteriol. 181(17), 5210–5218 (1999).
  • Qu X. Bao L, Su X, Wei W. Rapid detection of Esherichia coliform with a bulk acoustic wave sensor based on the gelatio n of Tachypleus amebocyte lysate Talanta 47, 285–290 (1998).
  • • Detection method for E. coli with sensitivity equal to current methods but significant improvements in speed of diagnosis.
  • 112. Nivens DE, Palmer RJ, White DC. Continuous non-destructive monitoring of microbial biofilms: a review of analytical techniques. J. Indus. Micro. 15, 263–276 (1995).
  • 113. Helle H, Vuoriranta P, Vlimki H, Lekkala J, Aaltonen V. Monitoring of biofilm growth with thickness-shear mode quartz resonators in different flow and nutrition conditions. Sens. Actu. B. 71, 47–54 (2000).
  • • Describes QCM method capable of following biofilm growth in real-time and under different conditions.
  • 114. Redpenning J, Schlesinger TK, Mechalke EJ, Puleo DA, Bizios.Osteoblast attachment monitored with a quartz crystal microbalance. Anal. Chem. 65, 3378–3381 (1993).
  • 115. Gryte DM, Ward MD, Hu WS. Real0time measurement of anchorage dependent cell adhesion using a quartz crystal microbalance. Biotechnol. Prog. 9.
  • •108 (1993).
  • 116. Wegener J, Janshoff A, Galla H-J. Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur. Biophys. 28, 26–37 (1998).
  • 117. Janshoff A. Wegener J, Sieber M, Galla HJ. Double mode impedance analysis of epithelial cell monolayers cultured o shear wave resonators. Eur. Biophys. 25, 93–103 (1996).
  • 118. Fredriksson C, Kihlman S, Steel DM, Kasemo B. In vitro real-time characterisation of cell attachment and spreading. Mater. Sci. Mater. Med. 9, 785–788 (1998).
  • •• Real-time cell biological processes upon a QCM sensor.
  • 119. Cavic BA, Freedman J, Morel Z et al. Blood platelet adhesion to protein studied by on-line acoustic wave sensor. Analyst 126, 342–348 (2001).
  • 120. Marx KA, Zhou T, Montrone A, Schulze H, Braunhut SJ. A quartz crystal microbalance cell biosensor: detection of microtubule alterations in living cells at nM nocodazole concentrations. Biosens. Bioelec. 16, 773–782 (2001).
  • •• First report of a drug effect upon live cells upon a QCM sensor, leading to changes in cytoskeletal structure.
  • Cans A-S, Hk F, Shupliakov O et al. Measurement of the dynamics of exocytosis and vesicle retrieval at cell populations using a quartz crystal microbalance. Anal. Chem. 73, 5805–5811 (2001).
  • Wiseman T, Williston S, Brandts JF, Lin LN. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179(1), 131–137 (1989).
  • Hutchinson AM. Evanescent wave biosensors real-time analysis of biomolecular interactions. Mol. Biotech. 3, 47–54 (1995).
  • Tatsuma T, Watanabe Y, Oyama N. Multichannel quartz crystal microbalance. Anal. Chem. 71, 3632–3636 (1999).
  • Stevenson AC, Lowe C. Magnetic-acousticresonator sensor (MARS): a new sensing methodology. Sens. Actu. A. 72, 32–35 (1999).

Websites

  • http://chemintserver.ucc.ie/sensors/ universal/P_PZ1001.htm
  • •• Universal Sensors website describing current continuous resonance (CR) instrument.
  • www.q-sense.com/qsense.htm
  • •• Manufacturer of discontinuous resonance (DR) QCM instrument with static, flow type liquid cells
  • www.princetonappliedreserach.com/ applications/applicationnotes.htm
  • •• Arguably the first commercially available QCM instrument with hybrid CA analysis capability.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.