27
Views
15
CrossRef citations to date
0
Altmetric
Review

Molecular diagnosis of myocardial disease

&
Pages 587-602 | Published online: 09 Jan 2014

References

  • Towbin J. Molecular genetic aspects of cardiomyopathy. Biochem. Med Metabot Biol. 49, 285–320 (1993).
  • Towbin JA, Bowles KR, Bowles NE. Etiologies of cardiomyopathy and heart failure. Nature Med 5, 266–267 (1999).
  • Richardson P, McKenna WJ, Bristow M et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93, 841–842 (1996).
  • Towbin JA. Pediatric myocardial disease. Pediah: Gun. North Am. 46, 289–312 (1999).
  • Bowles NE, Bowles KR, Towbin JA. The 'final common pathway' hypothesis and inherited cardiovascular disease: the role of cytoskeletal proteins in dilated cardiomyopathy. Herz 25, 168–175 (2000).
  • Towbin JA, Bowles NE. The failing heart. Nature 415, 227–233 (2002).
  • •Detailed overview of causes of heart fail= and underlying genetic abnormalities.
  • Manolio TA, Baughman KL, Rodeheffer R et al. Prevalence and etiology of idiopathic dilated cardiomyopathy (summary of a National, Heart, Lung and Blood Institute Workshop). Am.j Cardia 69, 1458–1466 (1992). Wiles HB, McArthur PD, Taylor AB et al. Prognostic features of children with idiopathic dilated cardiomyopathy. Am. J. Cardiol. 68, 1372–1376 (1991). Schaper J, Froede R, Hein S et aZ Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 83, 503–514 (1991).
  • Michels VV, Moll PP, Miller FA et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl. J. Med. 326, 77–82 (1992). iiKeeling PJ, Gang Y, Smith Get al. Familial dilated cardiomyopathy in the United Kingdom. Br. Heartj 73, 417–421 (1995).
  • Grunig E, Tasman JA, Kucherer H, Franz W, Kubler W, Katus HA. Frequency and phenotypes of familial dilated cardiomyopathy.1 Am. Coll. Cardiol. 31, 186–194 (1998).
  • Ba ig MK, Goldman JH, Caforio ALP, Coonar AS, Keeling PJ, McKenna WJ. Familial dilated cardiomyopathy: cardiac abnormalities are common in asymptomatic relatives and may represent early disease. J. Am. Coll Cardiol. 31, 195–201 (1998).
  • Graham RM, Owens WA. Pathogenesis of inherited forms of dilated cardiomyopathy. N Engl 1. Med. 341, 1759–1762 (1999).
  • Berko BA, Swift M. X-linked dilated cardiomyopathy. N EngZ J. Med. 316, 1186–1191 (1987).
  • Towbin JA. Biochemical and molecular characterization of X-linked dilated cardiomyopathy (XLCM). In: Developmental Mechanisnzs of Heart Disease. Clark EB, Markwald RR, Takao A (Eds), Futura Publishing Co. Inc., New York, NY, USA, 121–132 (1995).
  • Muntoni F, Cau M, Ganau A et al. Brief report: deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. N Engl. J. Med. 329, 921–925 (1993).
  • MilaSin J, Muntoni F, Severini GM et al. A point mutation in the 5' splice site of the dystrophin gene first intron responsible for X-linked dilated cardiomyopathy. Hum. Mal. Genet. 5, 73–79 (1996).
  • Ortiz-Lopez R, Li H, Su J, Goytia V, Towbin JA. Evidence for a dystrophin missense mutation as a cause of X-linked dilated cardiomyopathy. Circulation 95, 2434–2440 (1997).
  • Ferlini A, Galie N, Merlini L, Sewry C, Branzi A, Muntoni E. A novel Alu-like element rearranged in the dystrophin gene causes a splicing mutation in a family with X-linked dilated cardiomyopathy. Am. J. Hum. Genet. 63, 436–460 (1998).
  • Nigro G, Politano L, Nigro V, Petretta VR, Gomi LI. Mutation of dystrophin gene and cardiomyopathy. /Veuromusca Disord. 4, 371–379 (1994).
  • Yoshida K, Nakamura A, Yazaki M, Ikeda S, Takeda S. Insertional mutation by transposable element, Li, in the DMD gene results in X-linked dilated cardiomyopathy. Hum. Malec. Genet. 7, 1129–1132 (1998).
  • Franz WM, Cremer M, Hermann R X-linked dilated cardiomyopathy: novel mutation of the dystrophin gene. Ann. NY Acad. Sci. 751, 470–491 (1995).
  • Franz W-M, Muller M, Muller AJ et al. Association of nonsense mutation of dystrophin gene with disruption of sarcoglycan complex in X-linked dilated cardiomyopathy. Lancet 355, 1781–1785 (2000).
  • Hoffman EP, Brown RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928 (1987).
  • Meng H, Leddy JJ, Frank J, Holland P, Tuana BS. The association of cardiac dystrophin with myofibrils/Z-discs regions in cardiac muscle suggests a novel role in the contractile apparatus. J. Biol. Chem. 271, 12364–12371 (1996).
  • Kaprielian RR, Stevenson S, Rothery SM, Cullen MJ, Severs NJ. Distinct patterns of dystrophin organization in myocyte sarcolemma and transverse tubules of normal and diseased human myocardium. Circulation 101, 2586–2594 (2000).
  • Campbell KP. Three muscular dystrophies: loss of cytoskeleton—extracellular matrix linkage. Cell 80, 675–679 (1995).
  • Cox GF, Kunkel LM. Dystrophies and heart disease. Curr. Opin. Cardiol 12, 329–343 (1997).
  • Chang WJ, Iannaccone ST, Lau KS et al. Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proc. Natl Acia Sci. USA 93, 9142–9147 (1996).
  • Koenig M, Hoffman EP, Bertelson CJ et al. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50, 509–517 (1987).
  • Hunsaker RH, Fulkerson PK, Barry FJ, Lewis RP, Leier CV, Unverferth DV. Cardiac function in Duchenne's muscular dystrophy: Result of 10-year follow-up study and noninvasive test. Am I Med. 73, 235–238 (1982).
  • MelaCini P, Fanin M, Danieli GA et al. Myocardial involvement is very frequent among patients affected with subdinical Becker's muscular dystrophy. Circulation 94, 3168–3175 (1996).
  • Ohlendieck K Towards an understanding of the dystrophin—glycoprotein complex: Linkage between the extracellular matrix and the membrane cytoskeleton in muscle fibers. Eur. Cell Biol 69,1–10 (1996).
  • Helbling-Leclerc A, Zhang X, Topaloglu H et al. Mutations in the laminin a2-chain (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nature Genet. 11,216–218 (1995).
  • Klietsch R, Ervasti JM, Arnold W Campbell KP, Jorgensen AO. Dystrophin—glycoprotein complex and laminin colocalize to the sarcolemma and transverse tubules of cardiac muscle. Circ. Res. 72, 349–360 (1993).
  • Ozawa E, Yoshida M, Suzuki A, Mizuno Y, Hagiwara Y, Noguchi S. Dystrophin-associated proteins in muscular dystrophy. Hum. Mot Genet. 4, 1711–1716 (1995).
  • Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc. Natl Acad. Sci. USA 90(37), 3710–3714 (1993).
  • Towbin JA. The role of cytoskeletal proteins in cardiomyopathies. Curr. (.pin. Cell Biol. 10, 131–139 (1998).
  • Vatta M, Stetson SJ, Perez-Verdia A et al. Molecular remodelling of dystrophin in patients with end-stage cardiomyopathies and reversal in patients on assistance-device therapy. Lancet 359, 936–941 (2002).
  • •Use of VAD therapy in reverse remodeling of DCM.
  • Neustein HD, Lurie PR, Dahms B, Takahashi M. An X-linked recessive cardiomyopathy with abnormal mitochondria. Pediatrics 64, 24–29 (1979).
  • Barth PG, Scholte HR, Berden JA et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. j Neural Sci. 62, 327–355 (1983).
  • Kelley RI, Cheatham JP, Clark BJ et al. X- linked dilated cardiomyopathy with neutropenia, growth retardation and 3-methylglutaconic aciduria. j Pediatr. 119, 738–747 (1991).
  • Bione S, D'Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D. A novel X-linked gene, G4.5, is responsible for Barth syndrome. Nature Genet. 12, 385–389 (1996).
  • D'Adamo P, Fassone L, Gedeon A et al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am. J. Hum. Genet. 61, 862–867 (1997).
  • Johnston J, Kelley RI, Feigenbaum A et al. Mutation characterization and genotype—phenotype correlation in Barth syndrome. Am.j Hum. Genet. 61, 1053–1058 (1997).
  • Bleyl SB, Mumford BR, Thompson Vet al. Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am.j Hum. Genet. 61, 868–872 (1997).
  • Chin TK, PerloffJK, Williams RG. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 82, 507–513 (1990).
  • Durand JB, Bachinski LL, Biding Let al. Localization of a gene responsible for familial dilated cardiomyopathy to chromosome 1q32. Circulation 92, 3387–3389 (1995).
  • Bowles KR, Gajarski R, Porter P et al. Gene mapping of familial autosomal dominant dilated cardiomyopathy to chromosome ioq2i-23.j Clin. Invest. 98, 1355–1360 (1996). SiTsubata S, Bowles KR, Vatta M et al. Mutations in the human delta-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. j Clin. Invest. 106, 655–662 (2000)
  • Siu BL, Nimura H, Osborne JA et al. Familial dilated cardiomyopathy locus maps to chromosome 2q31. Circulation 99, 1022–1026 (1999).
  • Li D, Tapscott T, Gonzalez 0 et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 100, 461–464 (1999).
  • Krajinovic M, Pinamonti B, Sinagra G et al. linkage of familial dilated cardiomyopathy to chromosome 9. Am. J. Hum. Genet. 57, 846–852 (1995). Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280, 750–752 (1998).
  • Olson TM, Illenberger S, Kishimoto NY, Huttelmaier S, Keating MT, Jockusch BM. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 105, 431–437 (2002).
  • •New cytoskeletal gene mutation in DCM.
  • Barresi R, DiBlasi C, Negri T et al. Disruption of heart sarcoglycan complex and severe cardiomyopathy caused by 0-sarcoglycan mutations.' Med. Genet. 37, 102–107 (2000).
  • Olson TM, Illenberger S, Kishimoto NY, Huttelmaier S, Keating MT, Jockusch BM. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 105, 431–437 (2002).
  • Kamisago M, Sharma SD, DeParma SR et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl. J Med 343,1688–1966 (2000).
  • Olson TM, Kishimoto NY, Whitby FG, Michels VV. Mutations that alter the surface charge of a-tropomyosin are associated with dilated cardiomyopathy. Mot Cell Cardiol 33,723–732 (2001).
  • Gerull B, Gramlich M, Atherton J et al. Mutations of TT1V, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nature Genet. 30,201–204 (2002).
  • •Mutations in thin cause DCM.
  • Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. I Cell Biol. 134, 1255–1270 (1996).
  • Li Z, Colucci-Guyon E, Pincon-Raymond M et al. Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dev. Biol. 175,362–366 (1996).
  • Mogensen J, Klausen IC, Pedersen AK et al. a-Cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. I Clin. Invest. 103, R39—R43 (1999).
  • Satoh M, Takahashi M, Sakamoto T, Hiroe M, Marumo I, Kimura A. Structural analysis of the titin gene in hypertrophic cardiomyopathy: Identification of a novel disease gene. Biochem. Biophys. Res. Commun. 262,411–417 (1999).
  • Kass S, MacRae C, Graber HL et al. A gene defect that causes conduction system disease and dilated cardiomyopathy maps to chromosome 1p1-1q1. Nature Genet.7, 546–551 (1994).
  • Jung M, Poepping I, Perrot A et al. Investigation of a family with autosomal dominant dilated cardiomyopathy defines a novel locus on chromosome 2q14-q22. Am. J. Hum. Genet. 65,1068-1077 (1999).
  • Olson TM, Keating MT. Mapping a cardiomyopathy locus to chromosome 3p22-p25.j Clin. Invest. 97,528-532 (1996).
  • Messina DN, Speer MC, Pericak-Vance MA, McNally EM. linkage of familial dilated cardiomyopathy with conduction defect and muscular dystrophy to chromosome 6q23. Am. J Hum. Genet. 61, 909–917 (1997).
  • Schonberger J, Levy H, Grunig E et al. Dilated cardiomyopathy and sensorineural hearing loss. A heritable syndrome that maps to 6q23-24. Circulation 101,1812–1818 (2000).
  • Fatkin D, MacRae C, Sasaki T et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med. 341,1715–1724 (1999).
  • Brodsky GL, Muntoni F, Miocic S, Sinagra G, Sewry C, Mestroni L Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 101,473–476 (2000).
  • Bione S, Maestrini E, Rivella S et al. Identification of a novel X-linked gene responsible for Emery—Dreifuss muscular dystrophy. Nature Genet. 8,323–327 (1994).
  • Jung D, Duclos F, Apostal B et al. Characterization of delta-sarcoglycan, a novel component of the oligomeric sarcoglycan complex involved in limb-girdle muscular dystrophy. J Biol. Chem. 271,32321–32329 (1996).
  • MelaCilli P, Fanin M, Duggan DJ et al. Heart involvement in muscular dystrophies due to sarcoglycan gene mutations. Muscle Nerve 22, 473–479 (1999)
  • Nigro V, de Sa Moreira E, Piluso G et al. Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the delta-sarcoglycan gene. Nature Genet. 14,195–198 (1996).
  • Ozawa E, Noguchi S, Mizuno Y, Hagiwara Y, Yoshida M. From dystrophinopathy to sarcoglycanopathy: evolution of a concept of muscular dystrophy. Muscle Nerve 21, 421–438 (1998).
  • Bonne G, DiBarletta MR, Varnous S et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nature Genet. 21, 285–288 (1999).
  • Raffaele Di Barletta M, Ricci E et al. Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery—Dreifuss muscular dystrophy. Am. J Hum. Genet. 66,1407–1412 (2000).
  • Muchir A, Bonne G, van der Kooi AJ et al. Identification of mutations in the gene encoding lamin A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbance (LGMD1B) Hum. Mot Genet. 9,1453-1459 (2000).
  • Nowak KJ, Wattanasirichaigoon D, Goebel HH et al. Mutations in the skeletal muscle a-actin gene in patients with actin myopathy and nemaline myopathy. Nature Genet. 23,208–212 (1999).
  • Bione S, D'Adamo P Maestrini E, Gedeo AK, Blohuis PA, Toniolo D. A novel X—linked gene, G4.5. is resposible for Barth syndrome. Nature Genet. 12,385-389 (1996).
  • Goldfarb LG, Park K-Y, Cervenakova Let al. Missense mutations in desmin associated wit familial cardiac and skeletal myopathy. Nature Genet. 19, 402–403 (1998).
  • Dalakas MC, Park K-Y, Semino-Mora C, Lee HS, Sivakumar K, Goldfarb LG. Desmin myopathy a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Englj Med. 342, 770–780 (2000).
  • Van der Kooi AJ, Ledderhof TM, de Voogt WG et al. A newly recognized autosomal dominant limb girdle muscular dystrophy with cardiac involvement. Ann. Neurol 39, 636–642 (1996).
  • Van der Kooi AJ, van Meeger M, Ledderhof TM, McNally EM, de Visser M, Bolhuis PA. Genetic heterogeneity of a newly recognized autosomal dominant limb girdle muscular dystrophy with cardiac involvement (LGMD1B). Am.j Hum. Genet. 60,891-895 (1997).
  • Nigro V, Okazaki Y, Belsito A. Identification of the Syrian hamster cardiomyopathy gene. Hum. Ma Genet. 6, 601–607 (1997).
  • Sakamoto A, Ono K, Abe M et al. Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, 8-sarcoglycan, in hamster: an animal model of disrupted dystrophin-associated glycoprotein complex. Proc. Natl Acad. Sci. USA 94, 13873–13878 (1997).
  • Sakamoto A, Abe M, Masaki T. Delimation of genomic deletion in cardiomyopathic hamster. FEBS Lett. 447, 124–128 (1999).
  • Araishi K, Sasaoka T, Imamura M et al. Loss of the sarcoglycan complex and sarcospan leads to muscular dystrophy in 0-sarcoglycan-deficient mice. Hum. Ma Genet. 8, 1589–1598 (1999).
  • Coral-Vazquez R, Cohn RD, Moore SA et al. Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: A novel mechanism for cardiomyopathy and muscular dystrophy. Cell 98,465–474 (1999).
  • Straub V, Duclos F, Venzke DP et al. Molecular pathogenesis of muscle degeneration in the delta-sarcoglycan deficient hamster. Am.j Pathol 153, 1623–1630 (1998).
  • Fadic R, Sunada Y, Walclawik AJ et al. Brief report: deficiency of a dystrophin-associated glycoprotein (adhalin) in a patient with muscular dystrophy and cardiomyopathy. N Englj Med. 334, 362–366 (1996).
  • Lim LE, Duclos F, Broux 0 et al. 0- sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nature Genet. 11, 257–265 (1995).
  • Arber S, Hunter JJ, Ross J Jr et aZ MLP- deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy and heart failure. Cell 88, 393–403 (1997).
  • Zolk 0, Caroni R Bohm M. Decreased expression of the cardiac UM domain protein MLP in chronic human heart failure. Circulation 101, 2674–2677 (2000).
  • Katz AM. Cytoskeletal abnormalities in the failing heart. Out on a UM? Circulation 101, 2672–2673 (2000).
  • •Discussion of the actin cytoskeleton in DCA
  • Badorff C, Lee GH, Lamphear BJ et al. Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nature Med 5, 320–326 (1999).
  • Maron BJ. Hypertrophic cardiomyopathy. Lancet 350, 127–133 (1997).
  • Spirito R Seidman CE, McKenna WJ, Maroun BJ. The management of hypertrophic cardiomyopathy. N Engl. J. Med 336, 775–785 (1997).
  • Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults: echocardiographic analysis of 4111 subjects in the CARDIA study. Circulation 92, 785–789 (1995).
  • Maron BJ, Spirito R Wesley YE, Arce J. Development and progression of left ventricular hypertrophy in children with hypertrophic cardiomyopathy. N Engl. J. Med. 315, 610–614 (1986).
  • Jarcho JA, McKenna W, Pare JAP et al. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N Engl. Med. 321, 1372–1378 (1998).
  • Solomon SD, Jarcho JA, McKenna WJ et aZ Familial hypertrophic cardiomyopathy is a genetically heterogeneous disease. j Clin. Invest. 86, 993–999 (1990).
  • Thierfelder L, MacRae C, Watkins H et al. A familial hypertrophic cardiomyopathy locus maps to chromosome 15q2. Proc. Natl Acad. Sci. USA 90, 6270–6274 (1993).
  • Watkins H, MacRae C, Thierfelder Let al. A disease locus for familial hypertrophic cardiomyopathy maps to chromosome 1q3. Nature Genet. 3, 333–337 (1993).
  • Carrier L, Hengstenberg C, Beckmann JS et al. Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11. Nature Genet 4, 311–313 (1993).
  • MacRae CA, Ghaisas N, Kass S et al. Familial hypertrophic cardiomyopathy with Wolff—Parkinson—White syndrome maps to a locus on chromosome 7q3./ Clin. Invest. 96, 1216–1220 (1995).
  • Poetter K, Jiang H, Hassanzadeh S et al. Mutations in either the essential regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nature Genet. 13, 63–69 (1996). no Kimura A, Harada H, Park JE et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nature Genet. 16, 379–382 (1997). it Rayment I, Holden HM, Whittaker M et al. Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58–65 (1993).
  • Thierfelder L, Watkins H, MacRae C et al. a-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77, 701–712 (1994).
  • Bonne G, Carrier L, Richard R Hainque B, Schwartz K Familial hypertrophic cardiomyopathy from mutations to functional defects. Circ. Res. 83, 380–593 (1998).
  • Geisterfer-Lawrence AA, Kass S, Tanigawa G et al. A molecular basis for familial cardiomyopathy b—cardiac myosin heavy chain gene missense mutation. Cell 62 999–1006 (1990)
  • Watkins H, McKenna WJ, Thierfelder L et al. Mutations in the genes for cardiac Troponin T and a-tropomyosin in hypertrophic cardiomyopathy. N Engl. J. Med 332, 1058–1064 (1995).
  • Bonne G, Carrier L, Bercovici J et al. Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nature Genet. 11, 438–440 (1995).
  • Gollob MH, Green MS, Tang AS-L et al. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl. 1 Med 344, 1823–1831 (2001).
  • •Identification of AIVIPK as the cause of WPWwith HCM.
  • Blair E, Redwood C, Ashrafian H et al. Mutations in the y2 subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum. Mot Genet. 10, 1215–1220 (2001).
  • •Demonstration of the energy disruption in FHC due to AIVIPK
  • Schiaffino S, Reniani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiot Rev. 76, 371–423 (1996).
  • Vikstrom KL, Factor SM, Leinwand LA. Mice expressing mutant myosin heavy chains are a model for familial hypertrophic cardiomyopathy. Mot Med. 2, 556–567 (1996).
  • Geisterfer-Lowrance AA, Christie M, Conner DA. A mouse model of familial hypertrophic cardiomyopathy. Science 272, 731–734 (1996).
  • Fatkin D, Christe ME, Aristizabal 0 et al. Neonatal cardiomyopathy in mice homozygous for the Arg403Gln mutant in the a-cardiac myosin heavy chain gene. J. Clin. Invest. 103, 147–153 (1999).
  • Hofmann PA, Hartzell HC, Moss R Alterations in Ca2+ sensitive tension due to partial extraction of C-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J. Gen. Physia 97, 1141–1163 (1991).
  • Gautel M, Zuffardi 0, Freiburg A, Labeit S. Phosphorylation switches specific for the cardiac isoform of myosin binding protein C: a modulator of cardiac contraction? EMBO J. 14, 1952–1960 (1995).
  • Fougerousse F, Delezoide AL, Fiszman MY, Schwartz K, Beckman JS, Carrier L Cardiac myosin binding protein C gene is specifically expressed in heart during rnurine and human development. Circ. Res. 82, 130–133 (1998).
  • Gautel M, Furst DO, Cocco A, Schiaffino S. Isoforrn transitions of the myosin-binding protein C family in developing human and mouse muscles. Lack of isoforrn transcomplementation in cardiac muscle. Circ. Res. 82, 124–129 (1998).
  • Carrier L, Bonne G, Bahrend E et al. Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ. Res. 80, 427–434 (1997).
  • McConnell BK, Jones KA, Fatkin D et al. Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice. J. Clin. Invest. 104, 1235–1244 (1999).
  • Yang Q A mouse model of myosin binding protein C human familial hypertrophic cardiomyopathy.1 Clin. Invest. 102,1292–1300 (1998).
  • Lees-Miller JP, Helfman DM. The molecular basis for tropomyosin isoform diversity. Bioessays 13,429–437 (1991).
  • Mesnard L, Logeart D, Taviaux S, Diriong S, Mercadier JJ, Samson F. Human cardiac troponin T. Cloning and expression of new isoforms in the normal and failing heart. Circ. Res. 76,687-692 (1995)•
  • Forissier JF, Carrier L, Farza H et al. Codon 102 of the cardiac troponin T gene is a putative hot sot for mutations in familial hypertrophic cardiomyopathy. Circulation 94,3069–3073 (1996).
  • Farza H, Townsend PJ, Carrier L et al. Genomic organization, alternative splicing and polymorphisms of the human cardiac troponin T gene. J Mot Cell Cardiol. 30, 1247–1253 (1998).
  • Hunkeler NM, Kullman J, Murphy AM. Troponin I isoform expression in human heart. Circ. Res. 69,1409–1414 (1991).
  • Solaro RJ, Van Eyk J. Altered interactions among thin filament proteins modulate cardiac function. J. Mol. Cell Cardiol. 28, 217–230 (1996).
  • Watkins H, Rosenzweig T, Hwang D et al. Characteristic and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl. J Med. 326, 1106–1114 (1992).
  • Watkins H, Conner D, Thierfelder et al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nature Genet. 11,434 437 (1995).
  • Nimura H, Bachinski LL, Sangwatanaroh S et al. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl. I Med. 338,1248–1257 (1998).
  • Moolman JC, Corfield VA, Posen B. Sudden death due to troponin T mutations. jAm. Coll Cardiol. 29,549–555 (1997).
  • Charron P Dubourg 0, Desnos M et al. Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to cardiac myosin binding protein C gene. Circulation 97, 2230–2236 (1998).
  • Marian AJ, Yu Q-T, Workman R, Greve G, Roberts R Angiotensin-converting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death. Lancet 342,1085–1086 (1993).
  • Yoneya K, Okamoto H, Machida M et al. Angiotensin-converting enzyme gene polymorphism in Japanese patients with hypertrophic cardiomyopathy. Am. Heart 130,1089–1093 (1995).
  • Tesson F, Dufour C, Moolman JC et al. The influence of the angiotensin I converting enzyme genotype in familial hypertrophic cardiomyopathy varies with the disease gene mutation. J Mot Cell Cardiol. 29,831–838 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.