87
Views
5
CrossRef citations to date
0
Altmetric
Review

Diagnostic biomarkers are hidden in the infected host’s epigenome

&
Pages 625-637 | Published online: 09 Jan 2014

References

  • Wong AH, Gottesman II, Petronis A. Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum. Mol. Genet. 14 (Spec No 1), R11–R18 (2005).
  • Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science 286(5439), 481–486 (1999).
  • Zhu J, Adli M, Zou JY et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152(3), 642–654 (2013).
  • Mulero-Navarro S, Esteller M. Epigenetic biomarkers for human cancer: the time is now. Crit. Rev. Oncol. Hematol. 68(1), 1–11 (2008).
  • Jopling C, Boue S, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat. Rev. Mol. Cell Biol. 12(2), 79–89 (2011).
  • Cantone I, Fisher AG. Epigenetic programming and reprogramming during development. Nat. Struct. Mol. Biol. 20(3), 282–289 (2013).
  • Masaki T, Qu J, Cholewa-Waclaw J, Burr K, Raaum R, Rambukkana A. Reprogramming adult Schwann cells to stem cell-like cells by leprosy bacilli promotes dissemination of infection. Cell 152(1-2), 51–67 (2013).
  • Wolff CF. Theoretica generationis. (1759).
  • Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 128(4), 669–681 (2007).
  • Chodavarapu RK, Feng S, Bernatavichute YV et al. Relationship between nucleosome positioning and DNA methylation. Nature 466(7304), 388–392 (2010).
  • Ferguson-Smith AC, Greally JM, Martienssen RA. Epigenomics. Springer, Berlin, Germany (2009).
  • Ernst J, Kheradpour P, Mikkelsen TS et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473(7345), 43–49 (2011).
  • Visel A, Rubin EM, Pennacchio LA. Genomic views of distant-acting enhancers. Nature 461(7261), 199–205 (2009).
  • Ostuni R, Piccolo V, Barozzi I et al. Latent enhancers activated by stimulation in differentiated cells. Cell 152(1–2), 157–171 (2013).
  • Dunham I. An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414), 57–74 (2012).
  • Shames DS, Minna JD, Gazdar AF. DNA methylation in health, disease, and cancer. Curr. Mol. Med. 7(1), 85–102 (2007).
  • Pasque V, Jullien J, Miyamoto K, Halley-Stott RP, Gurdon JB. Epigenetic factors influencing resistance to nuclear reprogramming. Trends Genet. 27(12), 516–525 (2011).
  • Jaenisch R. Stem cells, pluripotency and nuclear reprogramming. J. Thromb. Haemost. 7(Suppl. 1), 21–23 (2009).
  • Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5), 861–872 (2007).
  • Hanna J, Saha K, Pando B et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462(7273), 595–601 (2009).
  • Kleinnijenhuis J, Quintin J, Preijers F et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl Acad. Sci. USA 109(43), 17537–17542 (2012).
  • Swaim LE, Connolly LE, Volkman HE, Humbert O, Born DE, Ramakrishnan L. Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect. Immun. 74(11), 6108–6117 (2006).
  • Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 12(11), 1035–1044 (2011).
  • Murphy KM, Stockinger B. Effector T cell plasticity: flexibility in the face of changing circumstances. Nat. Immunol. 11(8), 674–680 (2010).
  • Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11(10), 889–896 (2010).
  • Murphy KP. Janeway’s Immunobiology (7th Edition). Garland Science, London, UK (2008).
  • Reiner SL. Epigenetic control in the immune response. Hum. Mol. Genet. 14(Spec No 1), R41–R46 (2005).
  • Bird JJ, Brown DR, Mullen AC et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9(2), 229–237 (1998).
  • Grogan JL, Mohrs M, Harmon B, Lacy DA, Sedat JW, Locksley RM. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14(3), 205–215 (2001).
  • Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2(12), 933–944 (2002).
  • Martino DJ, Prescott SL. Silent mysteries: epigenetic paradigms could hold the key to conquering the epidemic of allergy and immune disease. Allergy 65(1), 7–15 (2010).
  • Kogut MH, Chiang HI, Swaggerty CL, Pevzner IY, Zhou H. Gene expression analysis of Toll-like receptor pathways in heterophils from genetic chicken lines that differ in their susceptibility to Salmonella enteritidis. Front. Genet. 3, 121 (2012).
  • Ansel KM, Lee DU, Rao A. An epigenetic view of helper T cell differentiation. Nat. Immunol. 4(7), 616–623 (2003).
  • Lal G, Bromberg JS. Epigenetic mechanisms of regulation of FOXP3 expression. Blood 114(18), 3727–3735 (2009).
  • Wilson CB, Rowell E, Sekimata M. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol. 9(2), 91–105 (2009).
  • Fernández-Morera JL, Calvanese V, Rodríguez-Rodero S, Menéndez-Torre E, Fraga MF. Epigenetic regulation of the immune system in health and disease. Tissue Antigens 76(6), 431–439 (2010).
  • Bayarsaihan D. Epigenetic mechanisms in inflammation. J. Dent. Res. 90(1), 9–17 (2011).
  • Huehn J, Polansky JK, Hamann A. Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat. Rev. Immunol. 9(2), 83–89 (2009).
  • Bocker MT, Hellwig I, Breiling A, Eckstein V, Ho AD, Lyko F. Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood 117(19), e182–e189 (2011).
  • Ohkura N, Hamaguchi M, Morikawa H et al. T cell receptor stimulation-induced epigenetic changes and FOXP3 expression are independent and complementary events required for Treg cell development. Immunity 37(5), 785–799 (2012).
  • Meissner A, Mikkelsen TS, Gu H et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205), 766–770 (2008).
  • Natoli G. Maintaining cell identity through global control of genomic organization. Immunity 33(1), 12–24 (2010).
  • Del RM. Genome-wide profiling of methylation identifies novel targets with aberrant hypermethylation and reduced expression in low-risk myelodysplastic syndromes. Leukemia (2012).
  • Elo LL, Järvenpää H, Tuomela S et al. Genome-wide profiling of interleukin-4 and STAT6 transcription factor regulation of human Th2 cell programming. Immunity 32(6), 852–862 (2010).
  • Janson PCJ. Profiling of CD4(+) T cells with epigenetic immune lineage analysis. J. Immunol. 186(1), 92–102 (2011).
  • Schoenborn JR, Dorschner MO, Sekimata M et al. Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-gamma. Nat. Immunol. 8(7), 732–742 (2007).
  • Mikkelsen TS, Ku M, Jaffe DB et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153), 553–560 (2007).
  • Seita J, Weissman IL. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip. Rev. Syst. Biol. Med. 2(6), 640–653 (2010).
  • Kondilis-Mangum HD, Wade PA. Epigenetics and the adaptive immune response. Mol. Aspects Med. 34(4), 813–825 (2013).
  • Ramírez J, Lukin K, Hagman J. From hematopoietic progenitors to B cells: mechanisms of lineage restriction and commitment. Curr. Opin. Immunol. 22(2), 177–184 (2010).
  • Zhang JLA. Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell 149(2), 467–482 (2012).
  • Ramming A, Druzd D, Leipe J, Schulze-Koops H, Skapenko A. Maturation-related histone modifications in the PU.1 promoter regulate Th9-cell development. Blood 119(20), 4665–4674 (2012).
  • Zhang JW. Harnessing of the nucleosome-remodeling-deacetylase complex controls lymphocyte development and prevents leukemogenesis. Nature Immunol. 13(1), 86–94 (2012).
  • Pham TH, Benner C, Lichtinger M et al. Dynamic epigenetic enhancer signatures reveal key transcription factors associated with monocytic differentiation states. Blood 119(24), e161–e171 (2012).
  • Barneda-Zahonero B, Roman-Gonzalez L, Collazo O, Mahmoudi T, Parra M. Epigenetic regulation of B lymphocyte differentiation, transdifferentiation, and reprogramming. Comp. Funct. Genomics 2012, 564381 (2012).
  • Fernández-Sánchez A, Baragaño Raneros A, Carvajal Palao R et al. DNA demethylation and histone H3K9 acetylation determine the active transcription of the NKG2D gene in human CD8+ T and NK cells. Epigenetics 8(1), 66–78 (2013).
  • Suarez-Alvarez B, Rodriguez RM, Fraga MF, López-Larrea C. DNA methylation: a promising landscape for immune system-related diseases. Trends Genet. 28(10), 506–514 (2012).
  • Bröske AM, Vockentanz L, Kharazi S et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat. Genet. 41(11), 1207–1215 (2009).
  • Shaknovich R, Cerchietti L, Tsikitas L et al. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation. Blood 118(13), 3559–3569 (2011).
  • Reynaud D, Demarco IA, Reddy KL et al. Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros. Nat. Immunol. 9(8), 927–936 (2008).
  • Decker T, Pasca di Magliano M, McManus S et al. Stepwise activation of enhancer and promoter regions of the B cell commitment gene Pax5 in early lymphopoiesis. Immunity 30(4), 508–520 (2009).
  • Kaiko GE, Horvat JC, Beagley KW, Hansbro PM. Immunological decision-making: how does the immune system decide to mount a helper T-cell response? Immunology 123(3), 326–338 (2008).
  • Nakayamada S, Takahashi H, Kanno Y, O’Shea JJ. Helper T cell diversity and plasticity. Curr. Opin. Immunol. 24(3), 297–302 (2012).
  • Akimzhanov AM, Yang XO, Dong C. Chromatin remodeling of interleukin-17 (IL-17)-IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J. Biol. Chem. 282(9), 5969–5972 (2007).
  • Ansel KM, Djuretic I, Tanasa B, Rao A. Regulation of Th2 differentiation and IL4 locus accessibility. Annu. Rev. Immunol. 24, 607–656 (2006).
  • Lee GR, Kim ST, Spilianakis CG, Fields PE, Flavell RA. T helper cell differentiation: regulation by cis elements and epigenetics. Immunity 24(4), 369–379 (2006).
  • Wei G, Wei L, Zhu J et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30(1), 155–167 (2009).
  • Bowdridge S, Gause WC. Regulation of alternative macrophage activation by chromatin remodeling. Nat. Immunol. 11(10), 879–881 (2010).
  • Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature 496(7446), 445–455 (2013).
  • Fields PE, Lee GR, Kim ST, Bartsevich VV, Flavell RA. Th2-specific chromatin remodeling and enhancer activity in the Th2 cytokine locus control region. Immunity 21(6), 865–876 (2004).
  • Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 383(6603), 787–793 (1996).
  • Murphy E, Shibuya K, Hosken N et al. Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J. Exp. Med. 183(3), 901–913 (1996).
  • Mullen AC, Hutchins AS, Villarino AV et al. Cell cycle controlling the silencing and functioning of mammalian activators. Curr. Biol. 11(21), 1695–1699 (2001).
  • Takemoto N, Koyano-Nakagawa N, Yokota T, Arai N, Miyatake S, Arai K. Th2-specific DNase I-hypersensitive sites in the murine IL-13 and IL-4 intergenic region. Int. Immunol. 10(12), 1981–1985 (1998).
  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245–254 (2003).
  • Bruniquel D, Schwartz RH. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat. Immunol. 4(3), 235–240 (2003).
  • Weng NP, Araki Y, Subedi K. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat. Rev. Immunol. 12(4), 306–315 (2012).
  • Oldstone MB. Molecular mimicry and autoimmune disease. Cell 50(6), 819–820 (1987).
  • Cournoyer D, Caskey CT. Gene therapy of the immune system. Annu. Rev. Immunol. 11, 297–329 (1993).
  • Fischer A, Cavazzana-Calvo M, De Saint Basile G et al. Naturally occurring primary deficiencies of the immune system. Annu. Rev. Immunol. 15, 93–124 (1997).
  • Tada T. The immune system as a supersystem. Annu. Rev. Immunol. 15, 1–13 (1997).
  • Rathmell JC, Thompson CB. The central effectors of cell death in the immune system. Annu. Rev. Immunol. 17, 781–828 (1999).
  • Staudt LM, Brown PO. Genomic views of the immune system. Annu. Rev. Immunol. 18, 829–859 (2000).
  • Marrack P, Kappler J, Kotzin BL. Autoimmune disease: why and where it occurs. Nat. Med. 7(8), 899–905 (2001).
  • van Crevel R, Ottenhoff TH, van der Meer JW. Innate immunity to Mycobacterium tuberculosis. Clin. Microbiol. Rev. 15(2), 294–309 (2002).
  • Pardoll D. Does the immune system see tumors as foreign or self? Annu. Rev. Immunol. 21, 807–839 (2003).
  • Portela A, Esteller M. Epigenetic modifications and human disease. Nat. Biotechnol. 28(10), 1057–1068 (2010).
  • Josefowicz SZ, Wilson CB, Rudensky AY. Cutting edge: TCR stimulation is sufficient for induction of Foxp3 expression in the absence of DNA methyltransferase 1. J. Immunol. 182(11), 6648–6652 (2009).
  • Kuballa P, Nolte WM, Castoreno AB, Xavier RJ. Autophagy and the immune system. Annu. Rev. Immunol. 30, 611–646 (2012).
  • Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of Treg-mediated T cell suppression. Front. Immunol. 3, 51 (2012).
  • de la Rica L. Identification of novel markers in rheumatoid arthritis through integrated analysis of DNA methylation and microRNA expression. J. Autoimmunity 41, 6–16 (2013).
  • Morris AC, Spangler WE, Boss JM. Methylation of class II trans-activator promoter IV: a novel mechanism of MHC class II gene control. J. Immunol. 164(8), 4143–4149 (2000).
  • Zika E, Fauquier L, Vandel L, Ting JP. Interplay among coactivator-associated arginine methyltransferase 1, CBP, and CIITA in IFN-gamma-inducible MHC-II gene expression. Proc. Natl Acad. Sci. USA 102(45), 16321–16326 (2005).
  • Zika E, Ting JP. Epigenetic control of MHC-II: interplay between CIITA and histone-modifying enzymes. Curr. Opin. Immunol. 17(1), 58–64 (2005).
  • Accolla RS, De Lerma Barbaro A, Mazza S, Casoli C, De Maria A, Tosi G. The MHC class II transactivator: prey and hunter in infectious diseases. Trends Immunol. 22(10), 560–563 (2001).
  • Mehta NT, Truax AD, Boyd NH, Greer SF. Early epigenetic events regulate the adaptive immune response gene CIITA. Epigenetics 6(4), 516–525 (2011).
  • Wright KL, Ting JP. Epigenetic regulation of MHC-II and CIITA genes. Trends Immunol. 27(9), 405–412 (2006).
  • Toossi Z. Virological and immunological impact of tuberculosis on human immunodeficiency virus type 1 disease. J. Infect. Dis. 188(8), 1146–1155 (2003).
  • Saifuddin M, Spear GT, Chang C, Roebuck KA. Expression of MHC class II in T cells is associated with increased HIV-1 expression. Clin. Exp. Immunol. 121(2), 324–331 (2000).
  • Muhlethaler-Mottet A, Otten LA, Steimle V, Mach B. Expression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA. EMBO J. 16(10), 2851–2860 (1997).
  • Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13(4), 260–270 (2012).
  • Yoo EJ, Park SY, Cho NY, Kim N, Lee HS, Kang GH. Helicobacter pylori-infection-associated CpG island hypermethylation in the stomach and its possible association with polycomb repressive marks. Virchows Arch. 452(5), 515–524 (2008).
  • Arumugam M, Raes J, Pelletier E et al.; MetaHIT Consortium. Enterotypes of the human gut microbiome. Nature 473(7346), 174–180 (2011).
  • Qin J, Li R, Raes J et al.; MetaHIT Consortium. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285), 59–65 (2010).
  • Ogino S, Lochhead P, Chan AT et al. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod. Pathol. 26(4), 465–484 (2013).
  • Yamauchi M. Physical activity, tumor PTGS2 expression, and colorectal cancer survival: a molecular pathological epidemiology (MPE) approach. Cancer Epidemiol. Biomarkers Prev. 22(3), 474 (2013).
  • Nishihara R, Chan AT, Ogino S. Smoking and colorectal cancer risk by tumor genetic and epigenetic subtypes: a molecular pathological epidemiology (MPE) study. Cancer Epidemiol. Biomarkers Prev. 22(3), 473 (2013).
  • Zhou Y, Yuan J, Pan Y et al. T cell CD40LG gene expression and the production of IgG by autologous B cells in systemic lupus erythematosus. Clin. Immunol. 132(3), 362–370 (2009).
  • Lu Q, Wu A, Richardson BC. Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J. Immunol. 174(10), 6212–6219 (2005).
  • Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J. Immunol. 179(9), 6352–6358 (2007).
  • Lu Q, Kaplan M, Ray D et al. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum. 46(5), 1282–1291 (2002).
  • Kaplan MJ, Lu Q, Wu A, Attwood J, Richardson B. Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells. J. Immunol. 172(6), 3652–3661 (2004).
  • Luo Y, Zhao M, Lu Q. Demethylation of promoter regulatory elements contributes to CD70 overexpression in CD4+ T cells from patients with subacute cutaneous lupus erythematosus. Clin. Exp. Dermatol. 35(4), 425–430 (2010).
  • Cao R, Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine[thinsp]27 in histone H3. Curr. Opin. Genet. Dev. 14, 155–164 (2004)
  • Kaneda A, Kaminishi M, Yanagihara K, Sugimura T, Ushijima T. Identification of silencing of nine genes in human gastric cancers. Cancer Res. 62(22), 6645–6650 (2002).
  • Strickland FM, Richardson BC. Epigenetics in human autoimmunity. Epigenetics in autoimmunity - DNA methylation in systemic lupus erythematosus and beyond. Autoimmunity 41(4), 278–286 (2008).
  • Strickland FM, Hewagama A, Lu Q et al. Environmental exposure, estrogen and two X chromosomes are required for disease development in an epigenetic model of lupus. J. Autoimmun. 38(2-3), J135–J143 (2012).
  • Carson WF, Cavassani KA, Dou Y, Kunkel SL. Epigenetic regulation of immune cell functions during post-septic immunosuppression. Epigenetics 6(3), 273–283 (2011).
  • Hamon MA, Cossart P. Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe 4(2), 100–109 (2008).
  • Wen H, Dou Y, Hogaboam CM, Kunkel SL. Epigenetic regulation of dendritic cell-derived interleukin-12 facilitates immunosuppression after a severe innate immune response. Blood 111(4), 1797–1804 (2008).
  • Verma M, Seminara D, Arena FJ, John C, Iwamoto K, Hartmuller V. Genetic and epigenetic biomarkers in cancer: improving diagnosis, risk assessment, and disease stratification. Mol. Diagn. Ther. 10(1), 1–15 (2006).
  • McDevitt MA. Clinical applications of epigenetic markers and epigenetic profiling in myeloid malignancies. Semin. Oncol. 39(1), 109–122 (2012).
  • Valinluck V, Sowers LC. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res. 67(3), 946–950 (2007).
  • Stenvinkel P, Karimi M, Johansson S et al. Impact of inflammation on epigenetic DNA methylation – a novel risk factor for cardiovascular disease? J. Intern. Med. 261(5), 488–499 (2007).
  • Kaufmann SHE. Chapter 12: T-Zellen. Medizinische Mikrobiologie und Infektiologie. Suerbaum SB, Hahn H, Burchard G-D, Kaufmann SHE, Schulz TF (Eds). Springer-Verlag, Berlin, Germany, 74–88 (2012).
  • Waddington CH. The strategy of the genes: a discussion of some aspects of theoretical biology. Allen & Unwin (1957).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.