1,129
Views
89
CrossRef citations to date
0
Altmetric
Review

Advances in addressing technical challenges of point-of-care diagnostics in resource-limited settings

, , , , &
Pages 449-459 | Received 22 Oct 2015, Accepted 13 Jan 2016, Published online: 24 Feb 2016

References

  • WHO. Global summary of the HIV/AIDS epidemic; 2014 Dec [cited 2015 Sep 13]. Available from: http://www.who.int/hiv/data/epi_core_july2015.png?ua=1
  • Gandhi NR, Shah NS, Andrews JR, et al. HIV coinfection in multidrug- and extensively drug-resistant tuberculosis results in high early mortality. Am J Respir Crit Care Med. 2010;181(1):80–86.
  • Williams BG, Dye C. Antiretroviral drugs for tuberculosis control in the era of HIV/AIDS. Science. 2003;301(5639):1535–1537.
  • WHO. WHO Risk Assessment as of 23 February 2015; 2015 [cited 2015 Sep 14. Available from: http://www.who.int/influenza/human_animal_interface/influenza_h7n9/RiskAssessment_H7N9_23Feb20115.pdf?ua=1
  • WHO Ebola Response Team. Ebola virus disease in West Africa–the first 9 months of the epidemic and forward projections. N Engl J Med. 2014;371(16):1481–1495.
  • WHO. Middle East respiratory syndrome coronavirus (MERS-CoV) maps and epicurves; 2015 [cited 2015 Sep 14]. Available from: http://www.who.int/csr/disease/coronavirus_infections/maps-epicurves-31aug-6sep/en/
  • Wang S, Xu F, Demirci U. Advances in developing HIV-1 viral load assays for resource-limited settings. Biotechnol Adv. 2010;28(6):770–781.
  • Mani V, Wang S, Inci F, et al. Emerging technologies for monitoring drug-resistant tuberculosis at the point-of-care. Adv Drug Deliv Rev. 2014;78:105–117.
  • Shafiee H, Wang S, Inci F, et al. Emerging technologies for point-of-care management of HIV infection. Annu Rev Med. 2015;66:387–405.
  • Yildiz UH, Inci F, Wang S, et al. Recent advances in micro/nanotechnologies for global control of hepatitis B infection. Biotechnol Adv. 2015;33(1):178–190.
  • Wang S, Inci F, De Libero G, et al. Point-of-care assays for tuberculosis: role of nanotechnology/microfluidics. Biotechnol Adv. 2013;31(4):438–449.
  • Jani IV, Peter TF. How point-of-care testing could drive innovation in global health. N Engl J Med. 2013;368(24):2319–2324.
  • Yager P, Domingo GJ, Gerdes J. Point-of-care diagnostics for global health. Annu Rev Biomed Eng. 2008;10:107–144.
  • Mabey D, Peeling RW, Ustianowski A, et al. Diagnostics for the developing world. Nat Rev Microbiol. 2004;2(3):231–240.
  • Carrilho E, Martinez AW, Whitesides GM. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem. 2009;81(16):7091–7095.
  • Martinez AW, Phillips ST, Whitesides GM. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A. 2008;105(50):19606–19611.
  • Shafiee H, Asghar W, Inci F, et al. Paper and flexible substrates as materials for biosensing platforms to detect multiple biotargets. Sci Rep. 2015;5:8719.
  • Wang S, Zhao X, Khimji I, et al. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care. Lab Chip. 2011;11(20):3411–3418.
  • Wang S, Esfahani M, Gurkan UA, et al. Efficient on-chip isolation of HIV subtypes. Lab Chip. 2012;12(8):1508–1515.
  • Wang S, Inci F, Chaunzwa TL, et al. Portable microfluidic chip for detection of Escherichia coli in produce and blood. Int J Nanomedicine. 2012;7:2591–2600.
  • Wang S, Tasoglu S, Chen PZ, et al. Micro-a-fluidics ELISA for rapid CD4 cell count at the point-of-care. Sci Rep. 2014;4:3796.
  • Moon S, Keles HO, Ozcan A, et al. Integrating microfluidics and lensless imaging for point-of-care testing. Biosens Bioelectron. 2009;24(11):3208–3214.
  • Moon S, Gurkan UA, Blander J, et al. Enumeration of CD4+ T-cells using a portable microchip count platform in Tanzanian HIV-infected patients. PLoS One. 2011;6(7):e21409.
  • Shafiee H, Jahangir M, Inci F, et al. Acute on‐chip HIV detection through label‐free electrical sensing of viral nano‐lysate. Small. 2013;9(15):2553–2563.
  • Shafiee H, Lidstone EA, Jahangir M, et al. Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Sci Rep. 2014;4:4116.
  • Tokel, Onur, Fatih Inci, and Utkan Demirci. “Advances in plasmonic technologies for point of care applications.” Chemical Reviews. 2014;114(11):5728–5752.
  • Lissandrello C, Inci F, Francom M, et al. Nanomechanical motion of Escherichia coli adhered to a surface. Appl Phys Lett. 2014;105(11):113701.
  • Tokel O, Yildiz UH, Inci F, et al. Portable microfluidic integrated plasmonic platform for pathogen detection. Sci Rep. 2015;5:9152.
  • De La Rica R, Stevens MM. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol. 2012;7(12):821–824.
  • Baeumner AJ, Pretz J, Fang S. A universal nucleic acid sequence biosensor with nanomolar detection limits. Anal Chem. 2004;76(4):888–894.
  • Mertens J, Rogero C, Calleja M, et al. Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat Nanotechnol. 2008;3(5):301–307.
  • Posthuma-Trumpie GA, Korf J, van Amerongen A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem. 2009;393(2):569–582.
  • Davies PD, Pai M. The diagnosis and misdiagnosis of tuberculosis. Int J Tuberc Lung Dis. 2008;12(11):1226–1234.
  • Tostmann A, Kik SV, Kalisvaart NA, et al. Tuberculosis transmission by patients with smear-negative pulmonary tuberculosis in a large cohort in the Netherlands. Clin Infect Dis. 2008;47(9):1135–1142.
  • Dowdy DW, Steingart KR, Pai M, et al. Serological testing versus other strategies for diagnosis of active tuberculosis in India: a cost-effectiveness analysis. PLoS Med. 2011;8(8):e1001074.
  • Steingart KR, Flores LL, Dendukuri N, et al. Commercial serological tests for the diagnosis of active pulmonary and extrapulmonary tuberculosis: an updated systematic review and meta-analysis. PLoS Med. 2011;8(8):e1001062.
  • Lawn SD, Kerkhoff AD, Vogt M, et al. Diagnostic accuracy of a low-cost, urine antigen, point-of-care screening assay for HIV-associated pulmonary tuberculosis before antiretroviral therapy: a descriptive study. Lancet Infect Dis. 2012;12(3):201–209.
  • Rosenberg NE, Kamanga G, Phiri S, et al. Detection of acute HIV infection: a field evaluation of the determine® HIV-1/2 Ag/Ab combo test. J Infect Dis. 2012;205(4):528–534.
  • Tasoglu S, Cumhur Tekin H, Inci F, et al. Advances in nanotechnology and microfluidics for human papillomavirus diagnostics. Proc IEEE. 2015;103(2):161–178.
  • Wong AP, Gupta M, Shevkoplyas SS, et al. Egg beater as centrifuge: isolating human blood plasma from whole blood in resource-poor settings. Lab Chip. 2008;8(12):2032–2037.
  • Jiang L, Mancuso M, Lu Z, et al. Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics. Sci Rep. 2014;4:4137.
  • Mensing C. Helping patients choose the right blood glucose meter. Nurse Pract. 2004;29(5):43–45.
  • Haemokinesis Ltd. Group Legible Immunohaematology Format; 2015 [cited 2015 Sep 14]. Available from: http://www.haemokinesis.com/products/glif-abd
  • Yeo W-H, Liu S, Chung J-H, et al. Rapid detection of Mycobacterium tuberculosis cells by using microtip-based immunoassay. Anal Bioanal Chem. 2009;393(6–7):1593–1600.
  • Wang Y, Nugen SR. Development of fluorescent nanoparticle-labeled lateral flow assay for the detection of nucleic acids. Biomed Microdevices. 2013;15(5):751–758.
  • Inci F, Filippini C, Baday M, et al. Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE2RD) for diagnostics. Proc Natl Acad Sci U S A. 2015;112(32):E4354–E4363.
  • Inci F, Tokel O, Wang S, et al. Nanoplasmonic quantitative detection of intact viruses from unprocessed whole blood. ACS Nano. 2013;7(6):4733–4745.
  • Gaster RS, Hall DA, Nielsen CH, et al. Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat Med. 2009;15(11):1327–1332.
  • Dimov IK, Basabe-Desmonts L, Garcia-Cordero JL, et al. Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). Lab Chip. 2011;11(5):845–850.
  • Chin CD, Laksanasopin T, Cheung YK, et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med. 2011;17(8):1015–1019.
  • Martinez AW, Phillips ST, Whitesides GM, et al. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2010;82(1):3–10.
  • Lisowski P, Zarzycki PK. Microfluidic paper-based analytical devices (muPADs) and micro total analysis systems (muTAS): development, applications and future trends. Chromatographia. 2013;76:1201–1214.
  • Pollock NR, Rolland JP, Kumar S, et al. A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci Transl Med. 2012;4(152):152ra129.
  • Chinnasamy T, Segerink LI, Nystrand M, et al. Point-of-care vertical flow allergen microarray assay: proof of concept. Clin Chem. 2014;60(9):1209–1216.
  • Mudanyali O, Dimitrov S, Sikora U, et al. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip. 2012;12(15):2678–2686.
  • Sobieranski, AC, Inci F, Cumhur Tekin H, et al. Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution. Light Sci Appl. 2015;4(10):e346.
  • Al-Soud WA, Radstrom P. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol. 2001;39(2):485–493.
  • Wang S, Sarenac D, Chen MH, et al. Simple filter microchip for rapid separation of plasma and viruses from whole blood. Int J Nanomedicine. 2012;7:5019–5028.
  • Tripathi S, Kumar Y, Prabhakar A, et al. Passive blood plasma separation at the microscale: a review of design principles and microdevices. J Micromech Microeng. 2015;25(8):83001.
  • Lukacs Z, Dietrich A, Ganschow R, et al. Simultaneous determination of HIV antibodies, hepatitis C antibodies, and hepatitis B antigens in dried blood spots–a feasibility study using a multi-analyte immunoassay. Clin Chem Lab Med. 2005;43(2):141–145.
  • Boom R, Sol CJA, Salimans MMM, et al. Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990;28(3):495–503.
  • Govindarajan AV, Ramachandran S, Vigil GD, et al. A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip. 2012;12(1):174–181.
  • Rodriguez NM, Linnes JC, Fan A, et al. Paper-based RNA extraction, in situ isothermal amplification, and lateral flow detection for low-cost, rapid diagnosis of influenza A (H1N1) from clinical specimens. Anal Chem. 2015;87(15):7872–7879.
  • Curtis KA, Rudolph DL, Nejad I, et al. Isothermal amplification using a chemical heating device for point-of-care detection of HIV-1. PLoS One. 2012;7(2):e31432.
  • LaBarre P, Hawkins KR, Gerlach J, et al. A simple, inexpensive device for nucleic acid amplification without electricity-toward instrument-free molecular diagnostics in low-resource settings. PLoS One. 2011;6(5):e19738.
  • Easley CJ, Karlinsey JM, Bienvenue JM, et al. A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc Natl Acad Sci U S A. 2006;103(51):19272–19277.
  • Jangam SR, Agarwal AK, Sur K, et al. A point-of-care PCR test for HIV-1 detection in resource-limited settings. Biosens Bioelectron. 2013;42:69–75.
  • Boehme CC, Nabeta P, Hillemann D, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med. 2010;363(11):1005–1015.
  • Wade D, Daneau G, Aboud S, et al. WHO multicenter evaluation of FACSCount CD4 and Pima CD4 T-cell count systems: instrument performance and misclassification of HIV-infected patients. J Acquir Immune Defic Syndr. 2014;66(5):E98–E107.
  • Pinto IC, Sabido M, Pereira AB, et al. Field evaluation of a point-of-care CD4 analyzer for monitoring HIV patients in the interior of the Amazon Region, Brazil. PLoS One. 2015;10(4):e0121400.
  • Glencross DK, Coetzee LM, Faal M, et al. Performance evaluation of the Pima point-of-care CD4 analyser using capillary blood sampling in field tests in South Africa. J Int AIDS Soc. 2012;15(1):3.
  • Mwau M, Kadima S, Mwende J, et al. Technical performance evaluation of the MyT4 point of care technology for CD4+ T cell enumeration. PLoS One. 2014;9(9):e107410.
  • Peng WK, Kong TF, Ng CS, et al. Micromagnetic resonance relaxometry for rapid label-free malaria diagnosis. Nat Med. 2014;20(9):1069–1073.
  • Kong TF, Ye W, Peng WK, et al. Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection. Sci Rep. 2015;5:11425.
  • Kumar AA, Patton MR, Hennek JW, et al. Density-based separation in multiphase systems provides a simple method to identify sickle cell disease. Proc Natl Acad Sci U S A. 2014;111(41):14864–14869.
  • Durmus NG, Tekin C, Guven S, et al. Magnetic levitation of single cells. Proc Natl Acad Sci U S A. 2015;112(28):E3661–E3668.
  • Tasoglu S, Khoory JA, Tekin HC, et al. Levitational image cytometry with temporal resolution. Adv Mater. 2015;27(26):3901–3908.
  • Derda R, Gitaka J, Klapperich CM, et al. Enabling the development and deployment of next generation point-of-care diagnostics. PLoS Negl Trop Dis. 2015;9(5):e0003676.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.