363
Views
88
CrossRef citations to date
0
Altmetric
Review

CSF biomarkers for Alzheimer’s disease: use in early diagnosis and evaluation of drug treatment

Pages 661-672 | Published online: 09 Jan 2014

References

  • Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303–308 (1999).
  • DeCarli C. Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. Lancet Neurol. 2, 15–21 (2003).
  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer’s disease and Down’s syndrome. Proc. Natl Acad. Sci. USA 82, 4245–4249 (1985).
  • Kang J, Lemaire HG, Unterbeck A et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736 (1987).
  • Vassar R, Bennett BD, Babu-Khan S et al. β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741 (1999).
  • Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398, 513–517 (1999).
  • Li YM, Xu M, Lai MT et al. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, 689–694 (2000).
  • Yu G, Nishimura M, Arawaka S et al. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature 407(6800), 48–54 (2000).
  • Francis R, McGrath G, Zhang J et al. Aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation. Dev. Cell 3, 85–97 (2002).
  • Goutte C, Tsunozaki M, Hale VA, Priess JR. APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos. Proc. Natl Acad. Sci. USA 99, 775–779 (2002).
  • Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein (tau) in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA83, 4913–4917 (1986).
  • Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J. 8, 393–399 (1989).
  • Buée L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev. 33, 95–130 (2000).
  • Iqbal K, Alonso AD, Gondal JA et al. Mechanism of neurofibrillary degeneration and pharmacologic therapeutic approach. J. Neural. Transm. Suppl. 59, 213–222 (2000).
  • Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging 21, 453–478 (2004).
  • Tourtellotte WW, Haerer AF, Heller GL, Soners JE. Post-lumbar puncture headaches. Charles C Thomas, IL, USA (1964).
  • Vandam LD, Dripps RD. Long-term follow-up of patients who received 10,098 spinal anesthetics. JAMA 161, 586–591 (1956).
  • Andreasen N, Minthon L, Davidsson P et al. Evaluation of CSF-tau and CSF-Aβ42 as diagnostic markers for Alzheimer’s disease in clinical practice. Arch. Neurol. 58, 373–379 (2001).
  • Blennow K, Wallin A, Häger O. Low frequency of post-lumbar puncture headache in demented patients. Acta Neurol. Scand. 88, 221–223 (1993).
  • Hampel H, Buerger K, Kohnken R et al. Tracking of Alzheimer’s disease progression with cerebrospinal fluid tau protein phosphorylated at threonine 231. Ann. Neurol. 49, 545–546 (2001).
  • Hesse C, Rosengren L, Vanmechelen E et al. Cerebrospinal fluid markers for Alzheimer’s disease evaluated after acute ischemic stroke. J. Alzheimers Dis. 2, 199–206 (2000).
  • Otto M, Wiltfang J, Tumani H et al. Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. Neurosci. Lett. 225, 210–212 (1997).
  • Haass C, Schlossmacher MG, Hung AY et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325 (1992).
  • Van Nostrand WE, Wagner SL, Shankle WR et al. Decreased levels of soluble amyloid β-protein precursor in cerebrospinal fluid of live Alzheimer’s disease patients. Proc. Natl Acad. Sci. USA 89, 2551–2555 (1992).
  • Farlow M, Ghetti B, Benson MD, Farrow JS, van Nostrand WE, Wagner SL. Low cerebrospinal-fluid concentrations of soluble amyloid β-protein precursor in hereditary Alzheimer’s disease. Lancet 340, 453–454 (1992).
  • Tabaton M, Nunzi MG, Xue R, Usiak M, Autilio-Gambetti L, Gambetti P. Soluble amyloid β-protein is a marker of Alzheimer amyloid in brain but not in cerebrospinal fluid. Biochem. Biophys. Res. Commun. 200, 1598–1603 (1994).
  • Motter, R, Vigo-Pelfrey, C, Kholodenko D et al. Reduction of β-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann. Neurol. 38, 643–648 (1995).
  • Jarrett JT, Berger EP, Lansbury PT. The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32, 4693–4697 (1993).
  • Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monocloncals: evidence that an initially deposited species is Aβ42(43). Neurone 13, 45–53 (1994).
  • Vanderstichele H, Blennow K, D’Heuvaert ND et al. Development of a specific diagnostic test for measurement of β-amyloid1–42 in CSF. In: Progress in Alzheimer’s and Parkinson’s diseases. Fisher A, Hanin I, Yoshida M (Eds), Plenum Press, NY, USA, 773–778 (1998).
  • Blennow K, Vanmechelen E, Hampel H. CSF total tau, Aβ42 and phosphorylated tau protein as biomarkers for Alzheimer’s disease. Mol. Neurobiol. 24, 87–97 (2001).
  • Sjögren M, Davidsson P, Wallin A et al. Decreased CSF β-amyloid42 in Alzheimer’s disease and amyotrophic lateral sclerosis may reflect mismetabolism of β-amyloid induced by separate mechanisms. Dementia Geriatr. Cogn. Disord. 13, 112–118 (2002).
  • Holmberg B, Johnels B, Blennow K, Rosengren L. Cerebrospinal fluid Aβ42 is reduced in multiple system atrophy but normal in Parkinson’s disease and progressive supranuclear palsy. Mov. Disord. 18, 186–190 (2003).
  • Kanai M, Matsubara E, Isoe K et al. Longitudinal study of cerebrospinal fluid levels of tau, Aβ1–40, and Aβ1–42(43) in Alzheimer’s disease: a study in Japan. Ann. Neurol. 44, 17–26 (1998).
  • Shoji M, Matsubara E, Kanai M et al. Combination assay of CSF tau, Aβ1–40 and Aβ1–42(43) as a biochemical marker of Alzheimer’s disease. J. Neurol. Sci. 158, 134–140 (1998).
  • Fukuyama R, Mizuno T, Mori S, Nakajima K, Fushiki S, Yanagisawa K. Age-dependent change in the levels of Aβ40 and Aβ42 in cerebrospinal fluid from control subjects, and a decrease in the ratio of Aβ42 to Aβ40 level in cerebrospinal fluid from Alzheimer’s disease patients. Eur. Neurol. 43, 155–160 (2000).
  • Lewczuk P, Esselmann H, Otto M et al. Neurochemical diagnosis of Alzheimer’s dementia by CSF Aβ42, Aβ42/Aβ40 ratio and total tau. Neurobiol. Aging 25, 273–281 (2004).
  • Wiltfang J, Esselmann H, Bibl M et al. Highly conserved and disease-specific patterns of carboxyterminally truncated Aβ peptides 1–37/38/39 in addition to 1–40/42 in Alzheimer’s disease and in patients with chronic neuroinflammation. J. Neurochem. 81, 481–496 (2002).
  • Höglund K, Syversen S, Lewczuk P, Wallin A, Wiltfang J, Blennow K. The effect of statin treatment on a highly conserved and disease-specific peptide pattern of Aβ peptides in patients with Alzheimer’s disease. Exp. Brain Res. 164(2), 205–214 (2005).
  • Lewczuk P, Esselmann H, Meyer M et al. The amyloid-β (Aβ) peptide pattern in cerebrospinal fluid in Alzheimer’s disease: evidence of a novel carboxyterminally elongated Aβ peptide. Rapid Commun. Mass Spectrom. 17, 1291–1296 (2003).
  • Klein WL. Aβ toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem. Int. 41, 345–352 (2002).
  • Georganopoulou DG, Chang L, Nam JM et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc. Natl Acad. Sci. USA 102, 2273–2276 (2005).
  • Blennow K, Nellgård B. Amyloid β1–42 and tau in CSF after severe traumatic brain injury. Neurology 62, 159–160 (2003).
  • Vandermeeren M, Mercken M, Vanmechelen E et al. Detection of τ proteins in normal and Alzheimer’s disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay. J. Neurochem. 61, 1828–1834 (1993).
  • Blennow K, Wallin A, Ågren H, Spenger C, Siegfried J, Vanmechelen E. Tau protein in cerebrospinal fluid: a biochemical diagnostic marker for axonal degeneration in Alzheimer’s disease? Mol. Chem. Neuropathol. 26, 231–245 (1995).
  • Vigo-Pelfrey C, Seubert P, Barbour R et al. Elevation of microtubule-associated protein tau in the cerebrospinal fluid of patients with Alzheimer’s disease. Neurology 45, 788–793 (1995).
  • Vanmechelen E, Vanderstichele H, Davidsson P et al. Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci. Lett. 285, 49–52 (2000).
  • Ishiguro K, Ohno H, Arai H et al. Phosphorylated tau in human cerebrospinal fluid is a diagnostic marker for Alzheimer’s disease. Neurosci. Lett. 270, 91–94 (1999).
  • Kohnken R, Buerger K, Zinkowski R et al. Detection of tau phosphorylated at threonine 231 in cerebrospinal fluid of Alzheimer’s disease patients. Neurosci. Lett. 287, 187–190 (2000).
  • Hu YY, He SS, Wang X et al. Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer’s disease patients: an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am. J. Pathol. 160, 1269–1278 (2002).
  • Hampel H, Buerger K, Zinkowski R et al. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer’s disease: a comparative cerebrospinal fluid study. Arch. Gen. Psychiatr. 61, 95–102 (2004).
  • Hesse C, Rosengren L, Andreasen N et al. Transient increase in CSF total tau but not phospho-tau after acute stroke. Neurosci. Lett. 297, 187–190 (2001).
  • Riemenschneider M, Wagenpfeil S, Vanderstichele H et al. Phospho-tau/total tau ratio in cerebrospinal fluid discriminates Creutzfeldt–Jakob disease from other dementias. Mol. Psychiatr. 8, 343–347 (2003).
  • Blennow K, Hampel H. CSF markers for incipient Alzheimer’s disease. Lancet Neurol. 2, 605–613 (2003).
  • Maddalena A, Papassotiropoulos A, Muller-Tillmanns B et al. Biochemical diagnosis of Alzheimer’s disease by measuring the cerebrospinal fluid ratio of phosphorylated tau protein to β-amyloid peptide42. Arch. Neurol. 60, 1202–1206 (2003).
  • Riemenschneider M, Lautenschlager N, Wagenpfeil S, Diehl J, Drzezga A, Kurz A. Cerebrospinal fluid tau and β-amyloid 42 proteins identify Alzheimer’s disease in subjects with mild cognitive impairment. Arch. Neurol. 59, 1729–1734 (2002).
  • Sjögren M, Minthon L, Davidsson P et al. CSF levels of tau, β-amyloid1–42 and GAP-43 in frontotemporal dementia, other types of dementia and normal aging. J. Neural. Transm. 107, 563–579 (2000).
  • Kapaki E, Paraskevas GP, Zalonis I, Zournas C. CSF tau protein and β-amyloid1–42 in Alzheimer’s disease diagnosis: discrimination from normal ageing and other dementias in the Greek population. Eur. J. Neurol. 10, 119–128 (2003).
  • Andreasen N, Hesse C, Davidsson P et al. Cerebrospinal fluid β-amyloid1–42 in Alzheimer’s disease: differences between early- and late-onset Alzheimer’s disease and stability during the course of disease. Arch. Neurol. 56, 673–680 (1999).
  • Andreasen N, Vanmechelen E, Van de Voorde A et al. Cerebrospinal fluid tau protein as a biochemical marker for Alzheimer’s disease: a community-based follow-up study. J. Neurol. Neurosurg. Psychiatr. 64, 298–305 (1998).
  • Sjögren M, Davidsson P, Tullberg M et al. Both total and hyperphosphorylated tau are increased in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatr. 70, 624–630 (2001).
  • Sjögren M, Davidsson P, Gottfries J et al. The cerebrospinal fluid levels of tau, growth-associated protein-43 and soluble amyloid precursor protein correlate in Alzheimer’s disease, reflecting a common pathophysiological process. Dement. Geriatr. Cogn. Disord. 12, 257–264 (2001).
  • Gomez-Tortosa E, Gonzalo I, Fanjul S et al. Cerebrospinal fluid markers in dementia with lewy bodies compared with Alzheimer’s disease. Arch. Neurol. 60, 1218–1222 (2003).
  • Wallin A, Sjögren M, Davidsson P, Blennow K. Decreased cerebrospinal fluid acetylcholinesterase in patients with subcortical ischemic vascular dementia. Dement. Geriatr. Cogn. Disord. 16, 200–207 (2003).
  • Andreasen N, Minthon L, Clarberg A et al. Sensitivity, specificity and stability of CSF t-tau in AD in a community-based patient sample. Neurology 53, 1488–1494 (1999).
  • Parnetti L, Lanari A, Amici S, Gallai V, Vanmechelen E, Hulstaert F. CSF phosphorylated tau is a possible marker for discriminating Alzheimer’s disease from dementia with Lewy bodies. Phospho-Tau International Study Group. Neurol. Sci. 22, 77–78 (2001).
  • Buerger K, Zinkowski R, Teipel SJ et al. Differential diagnosis of Alzheimer’s disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch. Neurol. 59, 1267–1272 (2002).
  • Kanemaru K, Kameda N, Yamanouchi H. Decreased CSF amyloid β42 and normal tau levels in dementia with Lewy bodies. Neurology 54, 1875–1876 (2000).
  • Olsson A, Vanderstichele H, Andreasen N et al. Simultaneous measurement of β-amyloid1–42, total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clin. Chem. 51, 336–345 (2005).
  • Zetterberg H, Blennow K. Elevated total tau/phospho-tau ratio in autopsy-proven Creutzfeldt–Jakob disease with negative 14-3-3 test results. Neurol. Sci. 25, 301–302 (2004).
  • Hulstaert F, Blennow K, Ivanoiu A et al. Improved discrimination of AD patients using β-amyloid1–42 and tau levels in CSF. Neurology 52, 1555–1562 (1999).
  • Galasko D, Chang L, Motter R et al. High cerebrospinal fluid tau and low amyloid β42 levels in the clinical diagnosis of Alzheimer’s disease and relation to apolipoprotein E genotype. Arch. Neurol. 55, 937–945 (1998).
  • Sunderland T, Linker G, Mirza N et al. Decreased β-amyloid1–42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer’s disease. JAMA 289, 2094–2103 (2003).
  • Arai H, Nakagawa T, Kosaka Y et al. Elevated cerebrospinal fluid tau protein level as a predictor of dementia in memory-impaired patients. Alzheimer’s Res. 3, 211–213 (1997).
  • Buerger K, Teipel SJ, Zinkowski R et al. CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects. Neurology 59, 627–629 (2002).
  • Ivanoiu A, Sindic CJ. Cerebrospinal fluid Tau protein and amyloid β42 in mild cognitive impairment: prediction of progression to Alzheimer’s disease and correlation with the neuropsychological examination. Neurocase 11, 32–39 (2005).
  • Andreasen N, Minthon L, Vanmechelen E et al. CSF-tau and CSF-Aβ42 as predictors of development of Alzheimer’s disease in patients with mild cognitive impairment. Neurosci. Lett. 273, 5–8 (1999).
  • Zetterberg H, Wahlund LO, Blennow K. Cerebrospinal fluid markers for prediction of Alzheimer’s disease. Neurosci. Lett. 352, 67–69 (2003).
  • Sjögren M, Vanderstichele H, Ågren H et al. Tau and Aβ42 in cerebrospinal fluid from healthy adults 21–93 years of age: establishment of reference values. Clin. Chem. 47, 1776–1781 (2001).
  • Schoonenboom NS, Mulder C, Vanderstichele H et al. Effects of processing and storage conditions on amyloid β1–42 and tau concentrations in cerebrospinal fluid: implications for use in clinical practice. Clin. Chem. 51, 189–195 (2005).
  • Vanderstichele H, Van Kerschaver E, Hesse C et al. Standardization of measurement of β-amyloid1–42 in cerebrospinal fluid and plasma. Amyloid 7, 245–258 (2000).
  • Davidsson P, Blennow K, Andreasen N, Eriksson B, Minthon L, Hesse C. Differential increase in cerebrospinal fluid-acetylcholinesterase after treatment with acetylcholinesterase inhibitors in patients with Alzheimer’s disease. Neurosci. Lett. 300, 157–160 (2001).
  • Parnetti L, Amici S, Lanari A et al. Cerebrospinal fluid levels of biomarkers and activity of acetylcholinesterase (AChE) and butyrylcholinesterase in AD patients before and after treatment with different AChE inhibitors. Neurol. Sci. 23(Suppl. 2), S95–S96 (2002).
  • Amici S, Lanari A, Romani R, Antognelli C, Gallai V, Parnetti L. Cerebrospinal fluid acetylcholinesterase activity after long-term treatment with donepezil and rivastigmine. Mech. Ageing Dev. 122, 2057–2062 (2001).
  • Maelicke A, Albuquerque EX. Allosteric modulation of nicotinic acetylcholine receptors as a treatment strategy for Alzheimer’s disease. Eur. J. Pharmacol. 393, 165–170 (2000).
  • Giacobini E. Invited review: cholinesterase inhibitors for Alzheimer’s disease therapy: from tacrine to future applications. Neurochem. Int. 32, 413–419 (1998).
  • Anderson JJ, Holtz G, Baskin PP et al. Reductions in β-amyloid concentrations in vivo by the γ-secretase inhibitors BMS-289948 and BMS-299897. Biochem. Pharmacol. 69, 689–698 (2005).
  • Gilman S, Koller M, Black RS et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64, 1153–1562 (2005).
  • Zhukareva V, Trojanowski JQ, Lee VM. Assessment of pathological tau proteins in frontotemporal dementias: qualitative and quantitative approaches. Am. J. Geriatr. Psychiatr. 12, 136–145 (2004).
  • Price JL, Morris JC. Tangles and plaques in nondemented aging and ‘preclinical’ Alzheimer’s disease. Ann. Neurol. 45, 358–368 (1999).
  • Mikolaenko I, Pletnikova O, Kawas CH et al. α-synuclein lesions in normal aging, Parkinson’s disease, and Alzheimer’s disease: evidence from the Baltimore Longitudinal Study of Aging (BLSA). J. Neuropathol. Exp. Neurol. 64, 156–162 (2005).
  • Kotzbauer PT, Trojanowsk JQ, Lee VM. Lewy body pathology in Alzheimer’s disease. J. Mol. Neurosci. 17, 225–232 (2001).
  • Jellinger KA. Diagnostic accuracy of Alzheimer’s disease: a clinicopathological study. Acta Neuropathol. 91, 219–220 (1996).
  • Kosunen O, Soininen H, Paljärvi L et al. Diagnostic accuracy of Alzheimer’s disease: a neuropathological study. Acta Neuropathol. 91, 185–193 (1996).
  • Best JD, Jay MT, Otu F et al. Quantitative measurement of changes in amyloid-β40 in the rat brain and cerebrospinal fluid following treatment with the γ-secretase inhibitor LY-411575 [N2-[(2S)-2-(3,5-Difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-l-alaninamide]. J. Pharmacol. Exp. Ther. 313, 902–908 (2005).
  • Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom. Rev. 23, 34–44 (2004).
  • Carrette O, Demalte I, Scherl A et al. A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics 3, 1486–1494 (2003).
  • Davies H, Lomas L, Austen B. Profiling of amyloid β peptide variants using SELDI Protein Chip arrays. Biotechniques 27, 1258–1261 (1999).
  • Hagman C, Ramstrom M, Jansson M, James P, Hakansson P, Bergquist J. Reproducibility of tryptic digestion investigated by quantitative fourier transform ion cyclotron resonance mass spectrometry. J. Proteome Res. 4, 394–399 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.