788
Views
273
CrossRef citations to date
0
Altmetric
Review

Multicolor quantum dots for molecular diagnostics of cancer

, , , &
Pages 231-244 | Published online: 09 Jan 2014

References

  • Jemal A, Murray T, Ward E et al. Cancer statistics, 2005. CA Cancer J. Clin. 55(1), 10–30 (2005).
  • Service RF. Nanotechnology takes aim at cancer. Science 310, 1132–1134 (2005).
  • Jain RK, Stroh M. Zooming in and out with quantum dots. Nature Biotechnol. 22(8), 959–960 (2004).
  • Alivisatos AP. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100(31), 13226–13239 (1996).
  • Yin Y, Alivisatos AP. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).
  • Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996).
  • Murphy CJ, Coffer JL. Quantum dots: a primer. Appl. Spectrosc. 56(1), 16A–27A (2002).
  • Sapra S, Sarma DD. Evolution of the electronic structure with size in II–VI semiconductor nanocrystals. Phys. Rev. B 69(12), 125304 (2004).
  • Pietryga J, Schaller R, Werder D, Stewart M, Klimov V, Hollingsworth J. Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. J. Am. Chem. Soc. 126(38), 11752–11753 (2004).
  • Zhong XH, Feng YY, Knoll W, Han MY. Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 125(44), 13559–13563 (2003).
  • Zhong XH, Han MY, Dong Z, White TJ, Knoll W. Composition-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability. J. Am. Chem. Soc. 125(28), 8589–8594 (2003).
  • Qu LH, Peng XG. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 124(9), 2049–2055 (2002).
  • Kim S, Fisher B, Eisler HJ, Bawendi M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 125(38), 11466–11467 (2003).
  • Smith A, Gao XH, Nie S. Quantum-dot nanocrystals for in-vivo molecular and cellular imaging. Photochem. Photobiol. 80, 377–385 (2004).
  • Leatherdale C, Woo W, Mikulec F, Bawendi M. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106(31), 7619–7622 (2002).
  • Chan WCW, Nie SM. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385), 2016–2018 (1998).
  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385), 2013–2016 (1998).
  • Dahan M, Laurence T, Pinaud F et al. Time-gated biological imaging by use of colloidal quantum dots. Opt. Lett. 26(11), 825–827 (2001).
  • Bailey RE, Nie SM. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125(23), 7100–7106 (2003).
  • Yu WW, Wang YA, Peng XG. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals. Chem. Mater. 15(22), 4300–4308 (2003).
  • Wu XY, Liu HJ, Liu JQ et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol. 21(1), 41–46 (2003).
  • Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599), 1759–1762 (2002).
  • Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol. 22(8), 969–976 (2004).
  • Kirchner C, Liedl T, Kudera S et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5(2), 331–338 (2005).
  • Pellegrino T, Manna L, Kudera S et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett. 4(4), 703–707 (2004).
  • Mattoussi H, Mauro JM, Goldman ER et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122(49), 12142–12150 (2000).
  • Goldman ER, Balighian ED, Mattoussi H et al. Avidin: a natural bridge for quantum dot–antibody conjugates. J. Am. Chem. Soc. 124(22), 6378–6382 (2002).
  • Goldman ER, Anderson GP, Tran PT, Mattoussi H, Charles PT, Mauro JM. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem. 74(4), 841–847 (2002).
  • Hernandez J, Thompson I. Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker. Cancer 101(5), 894–904 (2004).
  • Goessl C. Noninvasive molecular detection of cancer – the bench and the bedside. Curr. Med. Chem. 10(8), 691–706 (2003).
  • Bakalova R, Zhelev Z, Ohba H, Baba Y. Quantum dot-based western blot technology for ultrasensitive detection of tracer proteins. J. Am. Chem. Soc. 127(26), 9328–9329 (2005).
  • Goldman ER, Clapp AR, Anderson GP et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem. 76(3), 684–688 (2004).
  • Makrides S, Gasbarro C, Bello J. Bioconjugation of quantum dot luminescent probes for western blot analysis. Biotechniques 39(4), 501–506 (2005).
  • Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Mater. 2(9), 630–638 (2003).
  • Medintz IL, Trammell SA, Mattoussi H, Mauro JM. Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. J. Am. Chem. Soc. 126(1), 30–31 (2004).
  • Penn SG, He L, Natan MJ. Nanoparticles for bioanalysis. Curr. Opin. Chem. Biol. 7(5), 609–615 (2003).
  • Gerion D, Chen FQ, Kannan B et al. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal. Chem. 75(18), 4766–4772 (2003).
  • Zhang CY, Yeh HC, Kuroki MT, Wang TH. Single-quantum-dot-based DNA nanosensor. Nature Mater. 4(11), 826–831 (2005).
  • Han MY, Gao XH, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnol. 19(7), 631–635 (2001).
  • Gao XH, Nie S. Doping mesoporous materials with multicolor quantum dots. J. Phys. Chem. B 107, 11575–11578 (2003).
  • Gao XH, Nie SM. Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry. Anal. Chem. 76, 2406–2410 (2004).
  • Xu HX, Sha MY, Wong EY et al. Multiplexed SNP genotyping using the Qbead™ system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Res. 31(8), e43 (2003).
  • Rosenthal SJ. Bar-coding biomolecules with fluorescent nanocrystals. Nature Biotechnol. 19(7), 621–622 (2001).
  • Pathak S, Choi SK, Arnheim N, Thompson ME. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 123(17), 4103–4104 (2001).
  • Xiao Y, Barker PE. Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res. 32(3), e28 (2004).
  • Matsuno A, Itoh J, Takekoshi S, Nagashima T, Osamura RY. Three-dimensional imaging of the intracellular localization of growth hormone and prolactin and their mRNA using nanocrystal (quantum dot) and confocal laser scanning microscopy techniques. J. Histochem. Cytochem. 53(7), 833–838 (2005).
  • Sukhanova A, Devy M, Venteo L et al. Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal. Biochem. 324(1), 60–67 (2004).
  • Dressler C, Minet O, Beuthan J et al. Microscopical heat stress investigations under application of quantum dots. J. Biomed. Optics 10(4), 041209 (2005).
  • Giepmans BNG, Deerinck TJ, Smarr BL, Jones YZ, Ellisman MH. Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots. Nature Methods 2(10), 743–749 (2005).
  • Nisman R, Dellaire G, Ren Y, Li R, Bazett-Jones DP. Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J. Histochem. Cytochem. 52(1), 13–18 (2004).
  • Ness JM, Akhtar RS, Latham CB, Roth KA. Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection. J. Histochem. Cytochem. 51(8), 981–987 (2003).
  • Sukhanova A, Venteo L, Devy J et al. Highly stable fluorescent nanocrystals as a novel class of labels for immunohistochemical analysis of paraffin-embedded tissue sections. Lab. Investig. 82(9), 1259–1261 (2002).
  • Lidke DS, Nagy P, Heintzmann R et al. Quantum dot ligands provide new insights into ErbB/Her receptor-mediated signal transduction. Nature Biotechnol. 22(2), 198–203 (2004).
  • Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302(5644), 442–445 (2003).
  • Derfus AM, Chan WCW, Bhatia SN. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater. 16(12), 961–966 (2004).
  • Lidke DS, Lidke KA, Rieger B, Jovin TM, Arndt-Jovin DJ. Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors. J. Cell Biol. 170(4), 619–626 (2005).
  • Parak WJ, Boudreau R, Le Gros M et al. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv. Mater. 14(12), 882–885 (2002).
  • Pellegrino T, Parak W, Boudreau R et al. Quantum dot-based cell motility assay. Diferentiation 71(9–10), 542–548 (2003).
  • Weissleder R. A clearer vision for in vivo imaging. Nature Biotechnol. 19(4), 316–317 (2001).
  • Frangioni JV. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
  • Kim S, Lim YT, Soltesz EG et al. Near-infrared fluorescent Type II quantum dots for sentinel lymph node mapping. Nature Biotechnol. 22(1), 93–97 (2004).
  • Larson DR, Zipfel WR, Williams RM et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624), 1434–1436 (2003).
  • Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imaging 2(1), 50–64 (2003).
  • Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS. Noninvasive imaging of quantum dots in mice. Bioconjug. Chem. 15(1), 79–86 (2004).
  • Roberts M, Bentley M, Harris J. Chemistry for peptide and protein PEGylation. Adv. Drug Delivery. Rev. 54(4), 459–476 (2002).
  • Stroh M, Zimmer JP, Duda DG et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature Med. 11(6), 678–682 (2005).
  • Parungo C, Ohnishi S, Kim S et al. Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J. Thorac. Cardiovasc. Surg. 129(4), 844–850 (2005).
  • Soltesz E, Kim S, Laurence R et al. Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann. Thorac. Surg. 79(1), 269–277 (2005).
  • Parungo C, Colson Y, Kim S et al. Sentinel lymph node mapping of the pleural space. Chest 127(5), 1799–1804 (2005).
  • Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA 99(20), 12617–12621 (2002).
  • Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4(1), 11–18 (2004).
  • Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnol. 21(1), 47–51 (2003).
  • Voura E, Jaiswal J, Mattoussi H, Simon S. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nature Med. 10(9), 993–998 (2004).
  • Wang DS, He JB, Rosenzweig N, Rosenzweig Z. Superparamagnetic Fe2O3 beads–CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett. 4(3), 409–413 (2004).
  • Bakalova R, Ohba H, Zhelev Z et al. Quantum dot anti-CD conjugates: are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Lett. 4(9), 1567–1573 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.