22
Views
4
CrossRef citations to date
0
Altmetric
Review

Molecular approaches towards characterization, monitoring and targeting of viral-associated hematological malignancies

&
Pages 831-841 | Published online: 09 Jan 2014

References

  • Abruzzo LV, Rosales CM, Medeiros LJ et al. Epstein–Barr virus-positive B-cell lymphoproliferative disorders arising in immunodeficient patients previously treated with fludarabine for low-grade B-cell neoplasms. Am. J. Surg. Pathol.26(5), 630–636 (2002).
  • Ghobrial IM, Otteman LA, White WL. An EBV-positive lymphoproliferative disorder after therapy with alemtuzumab. N. Engl. J. Med.349(26), 2570–2572 (2003).
  • Ahmed N, Heslop HE. Viral lymphomagenesis. Curr. Opin. Hematol.13(4), 254–259 (2006).
  • Thompson MP, Kurzrock R. Epstein–Barr virus and cancer. Clin. Cancer Res.10(3), 803–821 (2004).
  • Schelcher C, Valencia S, Delecluse HJ, Hicks M, Sinclair AJ. Mutation of a single amino acid residue in the basic region of the Epstein–Barr virus (EBV) lytic cycle switch protein Zta (BZLF1) prevents reactivation of EBV from latency. J. Virol.79(21), 13822–13828 (2005).
  • Koehne G, Smith KM, Ferguson TL et al. Quantitation, selection, and functional characterization of Epstein–Barr virus-specific and alloreactive T cells detected by intracellular interferon-γ production and growth of cytotoxic precursors. Blood99(5), 1730–1740 (2002).
  • Sample J, Young L, Martin B, Chatman T, Kieff E, Rickinson A. Epstein–Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J. Virol.64(9), 4084–4092 (1990).
  • Cohen JI, Picchio GR, Mosier DE. Epstein–Barr virus nuclear protein 2 is a critical determinant for tumor growth in SCID mice and for transformation in vitro. J. Virol.66(12), 7555–7559 (1992).
  • Kaye KM, Izumi KM, Li H et al. An Epstein–Barr virus that expresses only the first 231 LMP1 amino acids efficiently initiates primary B-lymphocyte growth transformation. J. Virol.73(12), 10525–10530 (1999).
  • Sugimoto M, Tahara H, Ide T, Furuichi Y. Steps involved in immortalization and tumorigenesis in human B-lymphoblastoid cell lines transformed by Epstein–Barr virus. Cancer Res.64(10), 3361–3364 (2004).
  • Altmann M, Hammerschmidt W. Epstein–Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis. PLoS Biol.3(12), E404 (2005).
  • Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E. The Epstein–Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell80(3), 389–399 (1995).
  • Brinkmann MM, Schulz TF. Regulation of intracellular signalling by the terminal membrane proteins of members of the Gammaherpesvirinae. J. Gen. Virol.87(Pt 5), 1047–1074 (2006).
  • Middleton T, Sugden B. Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epstein–Barr virus replication protein EBNA1. J. Virol.68(6), 4067–4071 (1994).
  • Niller HH, Salamon D, Banati F, Schwarzmann F, Wolf H, Minarovits J. The LCR of EBV makes Burkitt’s lymphoma endemic. Trends Microbiol.12(11), 495–499 (2004).
  • Lin J, Johannsen E, Robertson E, Kieff E. Epstein–Barr virus nuclear antigen 3C putative repression domain mediates coactivation of the LMP1 promoter with EBNA-2. J. Virol.76(1), 232–242 (2002).
  • Kashuba E, Mattsson K, Pokrovskaja K et al. EBV-encoded EBNA-5 associates with P14ARF in extranucleolar inclusions and prolongs the survival of P14ARF-expressing cells. Int. J. Cancer105(5), 644–653 (2003).
  • Casola S, Otipoby KL, Alimzhanov M et al. B cell receptor signal strength determines B cell fate. Nat. Immunol.5(3), 317–327 (2004).
  • Fukuda M, Longnecker R. Epstein–Barr virus (EBV) latent membrane protein 2A regulates B-cell receptor-induced apoptosis and EBV reactivation through tyrosine phosphorylation. J. Virol.79(13), 8655–8660 (2005).
  • Mancao C, Altmann M, Jungnickel B, Hammerschmidt W. Rescue of “crippled” germinal center B cells from apoptosis by Epstein–Barr virus. Blood106(13), 4339–4344 (2005).
  • Nanbo A, Yoshiyama H, Takada K. Epstein–Barr virus-encoded poly(A)- RNA confers resistance to apoptosis mediated through Fas by blocking the PKR pathway in human epithelial intestine 407 cells. J. Virol.79(19), 12280–12285 (2005).
  • Clybouw C, McHichi B, Mouhamad S et al. EBV infection of human B lymphocytes leads to down-regulation of Bim expression: relationship to resistance to apoptosis. J. Immunol.175(5), 2968–2973 (2005).
  • Thornburg NJ, Kulwichit W, Edwards RH, Shair KH, Bendt KM, Raab-Traub N. LMP1 signaling and activation of NF-κB in LMP1 transgenic mice. Oncogene25(2), 288–297 (2006).
  • Capello D, Rossi D, Gaidano G. Post-transplant lymphoproliferative disorders: molecular basis of disease histogenesis and pathogenesis. Hematol. Oncol.23(2), 61–67 (2005).
  • Bechtel D, Kurth J, Unkel C, Kuppers R. Transformation of BCR-deficient germinal-center B cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood106(13), 4345–4350 (2005).
  • Kim LH, Peh SC, Poppema S. Expression of retinoblastoma protein and P16 proteins in classic Hodgkin lymphoma: relationship with expression of p53 and presence of Epstein–Barr virus in the regulation of cell growth and death. Hum. Pathol.37(1), 92–100 (2006).
  • Brink AA, Dukers DF, van den Brule AJ et al. Presence of Epstein–Barr virus latency type III at the single cell level in post-transplantation lymphoproliferative disorders and AIDS related lymphomas. J. Clin. Pathol.50(11), 911–918 (1997).
  • Yin CC, Medeiros LJ, Abruzzo LV, Jones D, Farhood AI, Thomazy VA. EBV-associated B- and T-cell posttransplant lymphoproliferative disorders following primary EBV infection in a kidney transplant recipient. Am. J. Clin. Pathol.123(2), 222–228 (2005).
  • Hsu JL, Glaser SL. Epstein–Barr virus-associated malignancies: epidemiologic patterns and etiologic implications. Crit. Rev. Oncol. Hematol.34(1), 27–53 (2000).
  • Chadburn A, Cesarman E, Knowles DM. Molecular pathology of posttransplantation lymphoproliferative disorders. Semin. Diagn. Pathol.14(1), 15–26 (1997).
  • Sharma V. Current perspectives on cytokines for anti-retroviral therapy in AIDS related B-cell lymphomas. Curr. Drug Targets Infect. Disord.3(2), 137–149 (2003).
  • Carbone A, Gloghini A. AIDS-related lymphomas: from pathogenesis to pathology. Br. J. Haematol.130(5), 662–670 (2005).
  • Oyama T, Ichimura K, Suzuki R et al. Senile EBV+ B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients. Am. J. Surg. Pathol.27(1), 16–26 (2003).
  • Tai YC, Kim LH, Peh SC. High frequency of EBV association and 30-bp deletion in the LMP-1 gene in CD56 lymphomas of the upper aerodigestive tract. Pathol. Int.54(3), 158–166 (2004).
  • Nagato T, Kobayashi H, Kishibe K et al. Expression of interleukin-9 in nasal natural killer/T-cell lymphoma cell lines and patients. Clin. Cancer Res.11(23), 8250–8257 (2005).
  • Jarrett RF. Risk factors for Hodgkin’s lymphoma by EBV status and significance of detection of EBV genomes in serum of patients with EBV-associated Hodgkin’s lymphoma. Leuk. Lymphoma44(Suppl. 3), S27–S32 (2003).
  • Chang KC, Khen NT, Jones D, Su IJ. Epstein–Barr virus is associated with all histological subtypes of Hodgkin lymphoma in Vietnamese children with special emphasis on the entity of lymphocyte predominance subtype. Hum. Pathol.36(7), 747–755 (2005).
  • Berger C, Day P, Meier G, Zingg W, Bossart W, Nadal D. Dynamics of Epstein–Barr virus DNA levels in serum during EBV-associated disease. J. Med. Virol.64(4), 505–512 (2001).
  • Ivers LC, Kim AY, Sax PE. Predictive value of polymerase chain reaction of cerebrospinal fluid for detection of Epstein–Barr virus to establish the diagnosis of HIV-related primary central nervous system lymphoma. Clin. Infect. Dis.38(11), 1629–1632 (2004).
  • Niedobitek G, Herbst H. In situ detection of Epstein–Barr virus and phenotype determination of EBV-infected cells. Methods Mol. Biol.326, 115–137 (2006).
  • Hassan R, White LR, Stefanoff CG et al. Epstein–Barr Virus (EBV) detection and typing by PCR: a contribution to diagnostic screening of EBV-positive Burkitt’s lymphoma. Diagn. Pathol.1, 17 (2006).
  • Le QT, Jones CD, Yau TK et al. A comparison study of different PCR assays in measuring circulating plasma epstein-barr virus DNA levels in patients with nasopharyngeal carcinoma. Clin. Cancer Res.11(16), 5700–5707 (2005).
  • Niesters HG, van Esser J, Fries E, Wolthers KC, Cornelissen J, Osterhaus AD. Development of a real-time quantitative assay for detection of Epstein–Barr virus. J. Clin. Microbiol.38(2), 712–715 (2000).
  • Stevens SJ, Verschuuren EA, Pronk I et al. Frequent monitoring of Epstein–Barr virus DNA load in unfractionated whole blood is essential for early detection of posttransplant lymphoproliferative disease in high-risk patients. Blood97(5), 1165–1171 (2001).
  • Stevens SJ, Pronk I, Middeldorp JM. Toward standardization of Epstein–Barr virus DNA load monitoring: unfractionated whole blood as preferred clinical specimen. J. Clin. Microbiol.39(4), 1211–1216 (2001).
  • van Esser JW, van der Holt B, Meijer E et al. Epstein–Barr virus (EBV) reactivation is a frequent event after allogeneic stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell--depleted SCT. Blood98(4), 972–978 (2001).
  • Meij P, van Esser JW, Niesters HG et al. Impaired recovery of Epstein–Barr virus (EBV) – specific CD8+ T lymphocytes after partially T-depleted allogeneic stem cell transplantation may identify patients at very high risk for progressive EBV reactivation and lymphoproliferative disease. Blood101(11), 4290–4297 (2003).
  • Lin JC, Wang WY, Chen KY et al. Quantification of plasma Epstein–Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N. Engl. J. Med.350(24), 2461–2470 (2004).
  • Fan H, Kim SC, Chima CO et al. Epstein–Barr viral load as a marker of lymphoma in AIDS patients. J. Med. Virol.75(1), 59–69 (2005).
  • Chang Y, Cesarman E, Pessin MS et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science266(5192), 1865–1869 (1994).
  • Huang YQ, Li JJ, Zhang WG, Feiner D, Friedman-Kien AE. Transcription of human herpesvirus-like agent (HHV-8) in Kaposi’s sarcoma. J. Clin. Invest.97(12), 2803–2806 (1996).
  • Wheat WH, Cool CD, Morimoto Y et al. Possible role of human herpesvirus 8 in the lymphoproliferative disorders in common variable immunodeficiency. J. Exp. Med.202(4), 479–484 (2005).
  • Russo JJ, Bohenzky RA, Chien MC et al. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl Acad. Sci. USA93(25), 14862–14867 (1996).
  • Means RE, Choi JK, Nakamura H, Chung YH, Ishido S, Jung JU. Immune evasion strategies of Kaposi’s sarcoma-associated herpesvirus. Curr. Top. Microbiol. Immunol.269, 187–201 (2002).
  • Ottinger M, Christalla T, Nathan K, Brinkmann MM, Viejo-Borbolla A, Schulz TF. The Kaposi’s sarcoma-associated herpesvirus LANA-1 interacts with the short variant of BRD4 and releases cells from a BRD4- and BRD2/RING3- induced G1 cell cycle arrest. J. Virol.80(21), 10772–10786 (2006).
  • Ballestas ME, Chatis PA, Kaye KM. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science284(5414), 641–644 (1999).
  • Bais C, Van Geelen A, Eroles P et al. Kaposi’s sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/ KDR. Cancer Cell3(2), 131–143 (2003).
  • Prakash O, Tang ZY, Peng X et al. Tumorigenesis and aberrant signaling in transgenic mice expressing the human herpesvirus-8 K1 gene. J. Natl Cancer Inst.94(12), 926–935 (2002).
  • Oksenhendler E, Boulanger E, Galicier L et al. High incidence of Kaposi sarcoma-associated herpesvirus-related non-Hodgkin lymphoma in patients with HIV infection and multicentric Castleman disease. Blood99(7), 2331–2336 (2002).
  • Amin HM, Medeiros LJ, Manning JT, Jones D. Dissolution of the lymphoid follicle is a feature of the HHV8+ variant of plasma cell Castleman’s disease. Am. J. Surg. Pathol.27(1), 91–100 (2003).
  • An J, Lichtenstein AK, Brent G, Rettig MB. The Kaposi sarcoma-associated herpesvirus (KSHV) induces cellular interleukin 6 expression: role of the KSHV latency-associated nuclear antigen and the AP1 response element. Blood99(2), 649–654 (2002).
  • Nishimoto N, Kanakura Y, Aozasa K et al. Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood106(8), 2627–2632 (2005).
  • Knowles DM, Inghirami G, Ubriaco A, Dalla-Favera R. Molecular genetic analysis of three AIDS-associated neoplasms of uncertain lineage demonstrates their B-cell derivation and the possible pathogenetic role of the Epstein–Barr virus. Blood73(3), 792–799 (1989).
  • Nador RG, Cesarman E, Chadburn A et al. Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi’s sarcoma-associated herpes virus. Blood88(2), 645–656 (1996).
  • Klein U, Gloghini A, Gaidano G et al. Gene expression profile analysis of AIDS-related primary effusion lymphoma (PEL) suggests a plasmablastic derivation and identifies PEL-specific transcripts. Blood101(10), 4115–4121 (2003).
  • Deloose ST, Smit LA, Pals FT, Kersten MJ, van Noesel CJ, Pals ST. High incidence of Kaposi sarcoma-associated herpesvirus infection in HIV-related solid immunoblastic/plasmablastic diffuse large B-cell lymphoma. Leukemia19(5), 851–855 (2005).
  • Carbone A, Gloghini A, Vaccher E, Marchetti G, Gaidano G, Tirelli U. KSHV/HHV-8 associated lymph node based lymphomas in HIV seronegative subjects. Report of two cases with anaplastic large cell morphology and plasmablastic immunophenotype. J. Clin. Pathol.58(10), 1039–1045 (2005).
  • Engels EA, Pittaluga S, Whitby D et al. Immunoblastic lymphoma in persons with AIDS-associated Kaposi’s sarcoma: a role for Kaposi’s sarcoma-associated herpesvirus. Mod. Pathol.16(5), 424–429 (2003).
  • Chen L, Lagunoff M. Establishment and maintenance of Kaposi’s sarcoma-associated herpesvirus latency in B cells. J. Virol.79(22), 14383–14391 (2005).
  • Si H, Robertson ES. Kaposi’s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen induces chromosomal instability through inhibition of p53 function. J. Virol.80(2), 697–709 (2006).
  • Jones D, Ballestas ME, Kaye KM et al. Primary-effusion lymphoma and Kaposi’s sarcoma in a cardiac-transplant recipient. N. Engl. J. Med.339(7), 444–449 (1998).
  • Wilson KS, McKenna RW, Kroft SH, Dawson DB, Ansari Q, Schneider NR. Primary effusion lymphomas exhibit complex and recurrent cytogenetic abnormalities. Br. J. Haematol.116(1), 113–121 (2002).
  • Lan K, Kuppers DA, Robertson ES. Kaposi’s sarcoma-associated herpesvirus reactivation is regulated by interaction of latency-associated nuclear antigen with recombination signal sequence-binding protein Jκ, the major downstream effector of the Notch signaling pathway. J. Virol.79(6), 3468–3478 (2005).
  • Muromoto R, Okabe K, Fujimuro M et al. Physical and functional interactions between STAT3 and Kaposi’s sarcoma-associated herpesvirus-encoded LANA. FEBS Lett.580(1), 93–98 (2006).
  • Staskus KA, Sun R, Miller G et al. Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. J. Virol.73(5), 4181–4187 (1999).
  • Stebbing J, Sanitt A, Nelson M, Powles T, Gazzard B, Bower M. A prognostic index for AIDS-associated Kaposi’s sarcoma in the era of highly active antiretroviral therapy. Lancet367(9521), 1495–1502 (2006).
  • Boulanger E, Gerard L, Gabarre J et al. Prognostic factors and outcome of human herpesvirus 8-associated primary effusion lymphoma in patients with AIDS. J. Clin. Oncol.23(19), 4372–4380 (2005).
  • Simonelli C, Tedeschi R, Gloghini A et al. Characterization of immunologic and virological parameters in HIV-infected patients with primary effusion lymphoma during antiblastic therapy and highly active antiretroviral therapy. Clin. Infect. Dis.40(7), 1022–1027 (2005).
  • Engels EA, Biggar RJ, Marshall VA et al. Detection and quantification of Kaposi’s sarcoma-associated herpesvirus to predict AIDS-associated Kaposi’s sarcoma. AIDS17(12), 1847–1851 (2003).
  • Rollison DE, Helzlsouer KJ, Halsey NA, Shah KV, Viscidi RP. Markers of past infection with simian virus 40 (SV40) and risk of incident non-Hodgkin lymphoma in a Maryland cohort. Cancer Epidemiol. Biomarkers Prev.14(6), 1448–1452 (2005).
  • Shivapurkar N, Harada K, Reddy J et al. Presence of simian virus 40 DNA sequences in human lymphomas. Lancet359(9309), 851–852 (2002).
  • Butel JS, Vilchez RA, Jorgensen JL, Kozinetz CA. Association between SV40 and non-Hodgkin’s lymphoma. Leuk. Lymphoma44(Suppl. 3), S33–S39 (2003).
  • Nakatsuka S, Liu A, Dong Z et al. Simian virus 40 sequences in malignant lymphomas in Japan. Cancer Res.63(22), 7606–7608 (2003).
  • Vilchez RA, Lopez-Terrada D, Middleton JR et al. Simian virus 40 tumor antigen expression and immunophenotypic profile of AIDS-related non-Hodgkin’s lymphoma. Virology342(1), 38–46 (2005).
  • Capello D, Rossi D, Gaudino G, Carbone A, Gaidano G. Simian virus 40 infection in lymphoproliferative disorders. Lancet361(9351), 88–89 (2003).
  • Schuler F, Dolken SC, Hirt C et al. No evidence for simian virus 40 DNA sequences in malignant non-Hodgkin lymphomas. Int. J. Cancer118(2), 498–504 (2006).
  • MacKenzie J, Wilson KS, Perry J, Gallagher A, Jarrett RF. Association between simian virus 40 DNA and lymphoma in the United Kingdom. J. Natl Cancer Inst.95(13), 1001–1003 (2003).
  • Brousset P, de Araujo V, Gascoyne RD. Immunohistochemical investigation of SV40 large T antigen in Hodgkin and non-Hodgkin’s lymphoma. Int. J. Cancer112(3), 533–535 (2004).
  • Engels EA, Chen J, Hartge P et al. Antibody responses to simian virus 40 T antigen: a case-control study of non-Hodgkin lymphoma. Cancer Epidemiol. Biomarkers Prev.14(2), 521–524 (2005).
  • Rollison DE, Page WF, Crawford H et al. Case-control study of cancer among US Army veterans exposed to simian virus 40-contaminated adenovirus vaccine. Am. J. Epidemiol.160(4), 317–324 (2004).
  • Engels EA. Does simian virus 40 cause non-Hodgkin lymphoma? A review of the laboratory and epidemiological evidence. Cancer Invest.23(6), 529–536 (2005).
  • McNees AL, White ZS, Zanwar P, Vilchez RA, Butel JS. Specific and quantitative detection of human polyomaviruses BKV, JCV, and SV40 by real time PCR. J. Clin. Virol.34(1), 52–62 (2005).
  • Li X, Liu X, Li CY et al. Recombinant adeno-associated virus mediated RNA interference inhibits metastasis of nasopharyngeal cancer cells in vivo and in vitro by suppression of Epstein–Barr virus encoded LMP-1. Int. J. Oncol.29(3), 595–603 (2006).
  • Montaner S, Sodhi A, Ramsdell AK et al. The Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor as a therapeutic target for the treatment of Kaposi’s sarcoma. Cancer Res.66(1), 168–174 (2006).
  • Corte-Real S, Collins C, Aires da Silva F et al. Intrabodies targeting the Kaposi sarcoma-associated herpesvirus latency antigen inhibit viral persistence in lymphoma cells. Blood106(12), 3797–3802 (2005).
  • Klass CM, Krug LT, Pozharskaya VP, Offermann MK. The targeting of primary effusion lymphoma cells for apoptosis by inducing lytic replication of human herpesvirus 8 while blocking virus production. Blood105(10), 4028–4034 (2005).
  • Bollard CM, Aguilar L, Straathof KC et al. Cytotoxic T lymphocyte therapy for Epstein–Barr virus+ Hodgkin’s disease. J. Exp. Med.200(12), 1623–1633 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.