409
Views
83
CrossRef citations to date
0
Altmetric
Review

Strategies to reduce late-stage drug attrition due to mitochondrial toxicity

, &
Pages 161-175 | Published online: 09 Jan 2014

References

  • Zhou S, Wallace KB. The effect of peroxisome proliferators on mitochondrial bioenergetics. Toxicol. Sci.48, 82–89 (1999).
  • Brunmair B, Lest A, Staniek K et al. Fenofibrate impairs rat mitochondrial function by inhibition of respiratory control complex I. J. Pharmacol. Exp. Ther.311, 109–114 (2004).
  • Brumair B, Staniek K, Gras F et al. Thiazolidinediones like metformin inhibit respiratory complex I. Diabetes53, 1052–1059 (2004).
  • Moreno-Sanchez R, Bravo C, Vasquez C, Ayala G, Silveira LH, Martinez-Lavin M. Inhibition and uncoupling of oxidative phosphorylation by nonsteroidal anti-inflammatory drugs: study in mitochondria, submitochondrial particles, cells, and whole heart. Biochem. Pharmacol.57, 743–752 (1999).
  • Wallace KB, Starkov A. Mitochondrial targets of drug toxicity. Ann. Rev. Pharmacol. Toxicol.40, 353–388 (2000).
  • Chan K, Truong D, Shangari N, O’Brien PJ. Drug-induced mitochondrial toxicity. Expert Opin. Drug Metab. Toxicol.1, 655–669 (2005).
  • Keller BJ. The nongenotoxic hepatocarcinogen Wy-14,643 is an uncoupler of oxidative phosphorylation in vivo.Toxicol. Appl. Pharmacol.119, 52–58 (1993).
  • Mahmud T, Rafi SS, Scott DL, Wrigglesworth JM, Bjarson I. Nonsteroidal anti-inflammatory drugs and uncoupling of mitochondrial oxidative phosphorylation. Arthritis Rheum.39, 1998–2003 (1996).
  • Davies KJA, Doroshow JH. Redox cycling of anthracyclines by cardiac mitochondria. J. Biol. Chem.261, 3060–3067 (1986).
  • Corcoran GB, Mitchell JR. Evidence for redox cycling of acetaminophen and its reactive metabolite by endogenous microsomal systems. Adv. Exp. Med. Biol.136, 1085–1098 (1981).
  • Wallace KB. Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol. Toxicol.93, 105–115 (2003).
  • Fromenty B, Pessayre, D. Inhibition of mitochondrial β-oxidation as a mechanism of hepatotoxicity. Pharmacol. Ther.67, 101–154 (1995).
  • McKee EE, Ferguson M, Bentley AT, Marks TA. Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones. Antimicrob. Agents Chemother.50, 2042–2049 (2006).
  • Pinti M, Salomoni P, Coassarizza A. Anti-HIV drugs and the mitochondria. Biochim. Biophys. Acta.1757, 700–707 (2006).
  • Lund KC, Wallace KB. Direct DNA Pol-γ-independent effects of nucleoside reverse transcriptase inhibitors on mitochondrial bioenergetics. Cardiovasc. Toxicol.4, 217–228 (2004).
  • Kluza J, Gallego MA, Loyens A et al. Cancer cell mitochondria are direct proapoptotic targets for the marine antitumor drug Lamellarin D. Cancer Res.66(6), 3177–3187 (2006).
  • Rolo AP, Oliveira PJ, Moreno AJM, Palmeira CM. Bile acids affect liver mitochondrial bioenergetics: possible relevance for cholestasis therapy. Toxicol. Sci.57, 177–185 (2000).
  • Masubuchi Y, Suda C, Horie T. Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J. Hepatology42, 110–116 (2005).
  • Szewczyk A, Wojtczak L. Mitochondria as a pharmacological target. Pharmacol. Rev.54, 101–127 (2002).
  • Hynes J, Marroquin LD, Ogurtsov VI et al. Investigation of drug-induced mitochondrial toxicity using fluorescence-based oxygen-sensitive probes. Toxicol. Sci.92, 186–200 (2006).
  • Dykens JA. RedOx targets: enzyme systems and drug development strategies for mitochondrial dysfunction. In: Comprehensive Medicinal Chemistry, II. Triggle DJ, Taylor JB (Eds). Elsevier, Oxford, UK. 1053–1087 (2007).
  • Amacher DE. Drug-associated mitochondrial toxicity and its detection. Curr. Med. Chem.12, 1829–1839 (2005).
  • Nulton-Persson AC, Szweda LI, Sadek HA. Inhibition of cardiac mitochondrial respiration by salicylic acid and acetylsalicylate. J. Cardiovasc. Pharmacol.44, 591–495 (2004).
  • Krause MM, Brand MD, Krauss S et al. Nonsteroidal anti-inflammatory drugs and a selective cyclooxygenase 2 inhibitor uncouple mitochondria in intact cells. Arthritis Rheum.48, 1438–1444 (2003).
  • Hinson JA, Reid AB, McCullough SS, James LP. Acetaminophen-induced hepatotoxicity: role of metabolic activation, reactive oxygen/nitrogen species, and mitochondrial permeability transition. Drug Metab. Rev.36, 805–822 (2004).
  • Zhao P, Kalhorn TF, Slattery JT. Selective mitochondrial glutathione depletion by ethanol enhances acetaminophen toxicity in rat liver. Hepatology36, 326–335 (2002).
  • Xia T, Korge P, Weiss JN et al. Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity. Environ. Health Perspect.112, 1347–1358 (2004).
  • Sokol RJ, Dahl R, Devereaux MW, Yerushalmi B, Kobak GE, Gumpricht E. Human hepatic mitochondria generate reactive oxygen species and undergo the permeability transition in response to hydrophobic bile acids. J. Pediatr. Gastroenterol. Nutr.41, 235–243 (2005).
  • Ferreira M, Coxito PM, Sardao VA, Palmeira CM, Oliveira PJ. Bile acids are toxic for isolated cardiac mitochondria: a possible cause for hepatic-derived cardiomyopathies? Cardiovasc. Toxicol.5, 63–73 (2005).
  • Palmeira CM, Rolo AP. Mitochondrially-mediated toxicity of bile acids. Toxicology203, 1–15 (2004).
  • Moyle G. Mechanisms of HIV and nucleoside reverse transcriptase inhibitor injury to mitochondria. Antivir. Ther.10(Suppl. 2), 47–52 (2005).
  • Mokhova EN, Khailova LS. Involvement of mitochondrial inner membrane anion carriers in the uncoupling effect of fatty acids. Biochemistry Mosc.70, 159–163 (2005).
  • Liebecq C, Peters RA. The toxicity of fluoroacetate and the tricarboxylic acid cycle. Biochim. Biophys. Acta.1000, 254–269 (1989).
  • Hu WJ, Chen XM, Meng HD, Meng ZH. Fermented corn flour poisoning in rural areas of China. III. Isolation and identification of main toxin produced by causal microorganisms. Biomed. Environ. Sci.2, 65–71 (1989).
  • Stewart MJ, Steenkamp V. The biochemistry and toxicity of atractyloside: a review. Ther. Drug Monit.22, 641–649 (2000).
  • Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat. Neurosci.1, 366–373 (1998).
  • Korde AS, Sullivan PG, Maragos WF. The uncoupling agent 2,4-dinitrophenol improves mitochondrial homeostasis following striatal quinolinic acid injections. J. Neurotrauma22, 1142–1149 (2005).
  • Villarroya F, Domingo P, Giralt M. Lipodystrophy associated with highly active anti-retroviral therapy for HIV infection: the adipocyte as a target of anti-retroviral-induced mitochondrial toxicity. Trends Pharmacol. Sci.26, 88–93 (2005).
  • Nunez M, Soriano V. Hepatotoxicity of antiretrovirals: incidence, mechanisms and management. Drug Saf.28, 53–66 (2005).
  • Margulis L. Origin of Eukaryotic Cells. Yale University Press, CT, USA (1970).
  • Qu B, Li QT, Wong KP, Ong CN, Halliwell B. Mitochondrial damage by the ‘pro-oxidant’ peroxisomal proliferator clofibrate. Free Radic. Biol. Med.27, 1095–1102 (1999).
  • Scatena R, Martorana GE, Bottoni P, Giardina B. Mitochondrial dysfunction by synthetic ligands of peroxisome proliferator activated receptors (PPARs). IUBMB Life56, 477–482 (2004).
  • Kaufmann P, Torok M, Zahno A, Waldhauser KM, Brecht K, Krahenbuhl S. Toxicity of statins on rat skeletal muscle mitochondria. Cell. Mol. Life. Sci.63(19–20), 2415–2425 (2006).
  • Masubuchi Y, Kano S, Horie T. Mitochondrial permeability transition as a potential determinant of hepatotoxicity of antidiabetic thiazolidinediones. Toxicology222, 233–239 (2006).
  • Smith MT. Mechanisms of troglitazone hepatotoxicity. Chem. Res. Toxicol.16, 679–687 (2003).
  • Ong MM, Latchoumycandane C, Boelsterli UA. Troglitazone-induced hepatic necrosis in an animal model of silent genetic mitochondrial abnormalities. Toxicol. Sci. (2006) (Epub ahead of print).
  • Tiwari A, Bansal V, Chugh A, Mookhtiar K. Statins and myotoxicity: a therapeutic limitation. Expert Opin. Drug Saf.5, 651–666 (2006).
  • Sirvent P, Bordenave S, Vermaelen M et al. Simvastatin induces impairment in skeletal muscle while heart is protected. Biochem. Biophys. Res Comm.338, 1426–1434 (2005).
  • Westwood FR, Bigley A, Randall K, Marsden AM, Scott RC. Statin-induced muscle necrosis in the rat: distribution, development, and fibre selectivity. Toxicol. Pathol.33, 246–257 (2005).
  • Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem. J.343, 281–299 (1999).
  • Schmidt WJ, Alam M. Controversies on new animal models of Parkinson’s disease pro and con: the rotenone model of Parkinson’s disease (PD). J. Neural Transm. (Suppl. 70),273–276 (2006).
  • Kluza J, Marchetti P, Gallego MA et al. Mitochondrial proliferation during apoptosis induced by anticancer agents: effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene23, 7018–7030 (2004).
  • Nohl H, Gille L, Staniek K. The exogenous NADH dehydrogenase of heart mitochondria is the key enzyme responsible for selective cardiotoxicity of anthracyclines. Z. Naturforsch.53, 279–285 (1998).
  • Lu Z, Tao Y, Zhou Z et al. Mitochondrial reactive oxygen species and nitric oxide-mediated cancer cell apoptosis in 2-butylamino-2-demethoxyhypocrellin B photodynamic treatment. Free Rad. Biol. Med.41, 1590–1605 (2006).
  • Dykens JA. Isolated cerebellar and cerebral mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: implications for neurodegeneration. J. Neurochem.63, 584–591 (1994).
  • Dykens JA. Mitochondrial free radical production and the etiology of neurodegenerative disease. In: Neurodegenerative Diseases: Mitochondria and Free Radicals in Pathogenesis. Beal NF, Bodis-Wollner I, Howell N (Eds). John Wiley & Sons, NY, USA, 29–55 (1997).
  • Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: an update and review. Biochim. Biophys. Acta.1757, 509–517 (2006).
  • Dykens JA. Free radicals and mitochondrial dysfunction in excitotoxicity and neurodegenerative diseases. In: Cell Death and Diseases of the Nervous System. Koliatos VE, Ratan RR (Eds). Humana Press, NJ, USA, 45–68 (1999).
  • Reers M, Smiley ST, Mottola-Hartshorn C, Chen A, Lin M, Chen LB. Mitochondrial membrane potential monitored by JC-1 dye. Meth. Enzymol.260, 406–517 (1995).
  • Collins TJ, Berridge MJ, Lipp P, Bootman MD. Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J.21, 1616–1627 (2002).
  • Nandel FS. Safranine-O as membrane potential probe: a mechanistic study using fluorescence spectroscopy. Ind. J. Biochem. Biophys.35, 247–254 (1998)
  • Scaduto RC Jr, Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J.76, 469–477 (1999).
  • Petit PX, O’Connor JE, Grunwald D, Brown SC. Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications. Eur. J. Biochem.194, 389–397 (1990).
  • Petronilli V, Penzo D, Scorrano L, Bernardi P, Di Lisa F. The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J. Biol. Chem.276, 12030–12034 (2001).
  • Miro O, Alonso JR, Jarreta D, Casademont J, Urbano-Marquez A, Cardellach F. Smoking disturbs mitochondrial respiratory chain function and enhances lipid peroxidation on human circulating lymphocytes. Carcinogenesis20, 1331–1336 (1999).
  • Rustin P, Chretien D, Bourgeron T et al. Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta228, 35–51 (1994).
  • Mehta A, Shaha C. Apoptotic death in Leishmania donovani promastigotes in response to respiratory chain inhibition: complex II inhibition results in increased pentamidine cytotoxicity. J. Biol. Chem.279, 11798–11813 (2004).
  • Palmeira CM, Ferreira FM, Rolo AP et al. Histological changes and impairment of liver mitochondrial bioenergetics after long-term treatment with α-naphthyl-isothiocyanate (ANIT). Toxicology190, 185–196 (2003).
  • Al-Nasser IA. In vivo prevention of adriamycin cardiotoxicity by cyclosporin A or FK506. Toxicology131, 175–181 (1998).
  • Salgueiro-Pagadigorria CL, Kelmer-Bracht AM, Bracht A, Ishii-Iwamoto EL. Naproxen affects Ca2+ fluxes in mitochondria, microsomes and plasma membrane vesicles. Chem. Biol. Interact.147, 49–63 (2004).
  • Szabo I, Zoratti M. The mitochondrial megachannel is the permeability transition pore. J. Bioenerg. Biomembr.24, 111–117 (1992).
  • Martens ME, Peterson PL, Lee CP et al. Kearns–Sayre syndrome: biochemical studies of mitochondrial metabolism. Ann. Neurol.24, 630–637 (1998).
  • Lee CP, Martens ME, Jankulovska L, Neymark MA. Defective oxidative metabolism of myodystrophic skeletal muscle mitochondria. Muscle Nerve2, 340–348 (1979).
  • Foster KA, Galeffi F, Gerich FJ, Turner DA, Muller M. Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Prog. Neurobiol.79, 136–171 (2006).
  • Dykens JA, Wiseman RW, Hardin CD. Preservation of phosphagen kinase function during transient hypoxia via enzyme abundance or resistance to oxidative inactivation. J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol.166, 359–368 (1996).
  • Robinson KM, Janes MS, Pehar M et al. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc. Natl Acad. Sci. USA103, 15038–15043 (2006).
  • Richter C. Reactive oxygen and DNA damage in mitochondria. Mutat. Res.275, 249–255 (1992).
  • Kristal BS, Vigneau-Callahan KE, Matson WR. Simultaneous analysis of the majority of low-molecular-weight, redox-active compounds from mitochondria. Anal. Biochem.263, 18–25 (1998).
  • Gardner PR. Superoxide-driven aconitase Fe-s center cycling. Biosci. Rep.17, 33–42 (1997).
  • Zwicker K, Dikalov S, Matuschka S et al. Oxygen radical generation and enzymatic properties of mitochondria in hypoxia/reoxygenation. Arzneimittelforschung48, 629–636 (1998).
  • Shiva S, Oh JY, Landar AL et al. Nitroxia: the pathological consequence of dysfunction in the nitric oxide-cytochrome c oxidase signaling pathway. Free Rad. Biol. Med.38, 297–306 (2005).
  • Mansouri A, Muller FL, Liu Y et al. Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging. Mech. Ageing Dev.127, 298–306 (2006).
  • Votyakova TV, Reynolds IJ. Detection of hydrogen peroxide with amplex red: interference by NADH and reduced glutathione auto-oxidation. Arch. Biochem. Biophys.431, 138–144 (2004).
  • Vanden Berghe P. Fluorescent molecules as tools to study Ca2+ signaling, mitochondrial dynamics and synaptic function in enteric neurons. Verh. K. Acad. Geneeskd. Belg.66, 407–425 (2004).
  • Duchen MR. Mitochondria and Ca2+ in cell physiology and pathophysiology. Cell Calcium28, 339–348 (2000).
  • Monteith GR. Seeing is believing: recent trends in the measurement of Ca2+ in subcellular domains and intracellular organelles. Immunol. Cell Biol.78, 403–407 (2000).
  • Di Lisa F, Bernardi P. Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc. Res.70, 191–199 (2006).
  • Dykens JA, Stout AK. Fluorescent dyes and assessment of mitochondrial membrane potential in FRET modes. Meth.Cell Biol.65, 285–309 (2001).
  • Nicholls DG. Simultaneous monitoring of ionophore- and inhibitor-mediated plasma and mitochondrial membrane potential changes in cultured neurons. J. Biol. Chem.281, 14864–14874 (2006).
  • Reers M, Smith TW, Chen LB. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry30, 4480–4486 (1991).
  • Blattner JR, He L, Lemasters JJ. Screening assays for the mitochondrial permeability transition using a fluorescence multiwell plate reader. Anal. Biochem.295, 220–226 (2001).
  • Dykens JA, Fleck B, Ghosh S, Lewis M, Velicelebi G, Ward M. A novel FRET-based assay of mitochondrial membrane potential in situ. Mitochondria1, 461–473 (2002).
  • Labajova A, Vojtiskova A, Krivakova P, Kofranek J, Drahota Z, Houstek J. Evaluation of mitochondrial membrane potential using a computerized device with a tetraphenylphosphonium-selective electrode. Anal. Biochem.353, 37–42 (2006).
  • Clark LC Jr. Intravascular polarographic and potentiometric electrodes for the study of circulation. Trans. Am. Soc. Artif. Intern. Organs6, 348–354 (1960).
  • Nicholls DG, Ferguson SJ. Bioenergetics 3. Academic Press, CA, USA, 297 (2002).
  • Scheffler I. Mitochondria. John Wiley, NY, USA, 367 (1999).
  • Pon LA, Schon EA. Mitochondria.Meth. Cell. Biol.65, 512 (2001).
  • Calvo S, Jain M, Xie X et al. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat. Genet.38, 576–582 (2006).
  • O’Riordan TC, Buckley D, Ogurtsov V, O’Connor R, Papkovsky DB. A cell viability assay based on monitoring respiration by optical oxygen sensing. Anal. Biochem.278, 221–227 (2000).
  • Papkovsky DB, O’Riordan T, Soini A. Phosphorescent porphyrin probes in biosensors and sensitive bioassays. Biochem. Soc. Trans.28, 74–77 (2000).
  • Hynes J, Hill R, Papkovsky DB. The use of a fluorescence-based oxygen uptake assay in the analysis of cytotoxicity. Toxicol. In Vitro20, 785–792 (2006).
  • Will Y, Hynes J, Ogourtsov VI, Papkovsky DB. Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes. Nat. Meth. (2007) (In Press).
  • Leverve XM, Guigas B, Detaille D et al. Mitochondrial metabolism and type-2 diabetes: a specific target of metformin. Diabetes Metab.29, 6S88–6S94 (2003).
  • Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol. Pharmacol.63, 844–848 (2003).
  • Haouzi D, Lekehal M, Moreau A et al. Cytochrome P450-generated reactive metabolites cause mitochondrial permeability transition, caspase activation, and apoptosis in rat hepatocytes. Hepatology32, 303–311 (2000).
  • Boelsterli UA. Animal models of human disease in drug safety assessment. J. Toxicol. Sci.28, 109–121 (2003).
  • Boelsterli UA. Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Toxicol. Appl. Pharmacol.192, 307–322 (2003).
  • Milazzo L, Piazza M, Sangaletti O et al.13C-methionine breath test: a novel method to detect antiretroviral drug-related mitochondrial toxicity. J. Antimicrob. Chemother.55, 84–89 (2005).
  • Nadanaciva S, Bernal A, Aggeler R, Capaldi R, Will Y. Target identification of drug induced mitochondrial toxicity using immunocapture based OXPHOS activity assays. Toxicol. In Vitro (2007) (In Press).
  • Dykens JA, Carroll AK, Wiley SE, Zhao L, Wen R. Moderation of photoreceptor apoptosis in the S334ter transgenic rat model of retinitis pigmentosa by a novel estradiol analog. Biochem. Pharmacol.68, 1971–1984 (2004).

Websites

  • Guidence for Industry: Antivirval Product Development – Conducting and submitting virology studies to the Agency US Dept Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (2006) www.fda.gov/cder/guidance/7070fnl.pdf
  • Oroboros Instruments www.oroboros.at
  • Hansatech Instruments Ltd www.hansatech-instruments.com
  • YSI Inc. www.ysi.com
  • Luxcel Biosciences Ltd. www.luxcel.com
  • MitoSciences Inc. www.mitosciences.com

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.