248
Views
10
CrossRef citations to date
0
Altmetric
Review

High-throughput screening using siRNA (RNAi) libraries

, , , &
Pages 281-291 | Published online: 09 Jan 2014

References

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature391, 806–811 (1998).
  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411, 494–498 (2001).
  • Tuschl T. RNA interference and small interfering RNAs. Chembiochem2, 239–245 (2001).
  • Cullen BR. RNA interference: antiviral defense and genetic tool. Nat. Immunol.3, 597–599 (2002).
  • St Johnston D. The art and design of genetic screens: Drosophila melanogaster.Nat. Rev. Genet.3, 176–188 (2002).
  • Yamamura K. Overview of transgenic and gene knockout mice. Prog. Exp. Tumor Res.35, 13–24 (1999).
  • Cazenave C, Loreau N, Thuong NT, Toulme JJ, Helene C. Enzymatic amplification of translation inhibition of rabbit β-globin mRNA mediated by anti-messenger oligodeoxynucleotides covalently linked to intercalating agents. Nucleic Acids Res.15, 4717–4736 (1987).
  • Opalinska JB, Gewirtz AM. Nucleic-acid therapeutics: basic principles and recent applications. Nat. Rev. Drug Discov.1, 503–514 (2002).
  • Zhang HY, Mao J, Zhou D. mRNA Accessible Site Tagging (MAST): a novel high throughput method for selecting effective antisense oligonucleotides. Nucleic Acids Res.31, e72 (2003).
  • Lee NS, Dohjima T, Bauer G et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol.20, 500–505 (2002).
  • Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev.16, 948–958 (2002).
  • Xia H, Mao Q, Paulson HL, Davidson BL. siRNA-mediated gene silencing in vitro and in vivo.Nat. Biotechnol.20, 1006–1010 (2002).
  • Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl Acad. Sci. USA99, 6047–6052 (2002).
  • Sui G, Soohoo C, Affar el B et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl Acad. Sci. USA99, 5515–5520 (2002).
  • Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science296, 550–553 (2002).
  • Castanotto D, Li H, Rossi JJ. Functional siRNA expression from transfected PCR products. RNA8, 1454–1460 (2002).
  • Abbas-Terki T, Blanco-Bose W, Deglon N, Pralong W, Aebischer P. Lentiviral-mediated RNA interference. Hum. Gene. Ther.13, 2197–2201 (2002).
  • Stewart SA, Dykxhoorn DM, Palliser D et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA9, 493–501 (2003).
  • Chen M, Zhang L, Zhang HY et al. A universal plasmid library encoding all permutations of small interfering RNA. Proc. Natl Acad. Sci. USA102, 2356–2361 (2005).
  • Zheng L, Liu J, Batalov S et al. An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc. Natl Acad. Sci. USA101, 135–140 (2004).
  • Barton GM, Medzhitov R. Retroviral delivery of small interfering RNA into primary cells. Proc. Natl Acad. Sci. USA99, 14943–14945 (2002).
  • van de Wetering M, Oving I, Muncan V et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO. Rep.4, 609–615 (2003).
  • Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol.Cell.9, 1327–1333 (2002).
  • Hosono T, Mizuguchi H, Katayama K et al. RNA interference of PPARγ using fiber-modified adenovirus vector efficiently suppresses preadipocyte-to-adipocyte differentiation in 3T3-L1 cells. Gene348, 157–165 (2005).
  • Li MJ, Bauer G, Michienzi A et al. Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol. Ther.8, 196–206 (2003).
  • Du C, Ge B, Liu Z, Fu K, Chan WC, McKeithan TW. PCR-based generation of shRNA libraries from cDNAs. BMC Biotechnol.6, 28 (2006).
  • Seyhan AA, Vlassov AV, Ilves H et al. Complete, gene-specific siRNA libraries: production and expression in mammalian cells. RNA11, 837–846 (2005).
  • Sen G, Wehrman TS, Myers JW, Blau HM. Restriction enzyme-generated siRNA (REGS) vectors and libraries. Nat. Genet.36, 183–189 (2004).
  • Shirane D, Sugao K, Namiki S, Tanabe M, Iino M, Hirose K. Enzymatic production of RNAi libraries from cDNAs. Nat. Genet.36, 190–196 (2004).
  • Luo B, Heard AD, Lodish HF. Small interfering RNA Production by Enzymatic Engineering of DNA (SPEED). Proc. Natl Acad. Sci. USA101, 5494–5499 (2004).
  • Calegari F, Haubensak W, Yang D, Huttner WB, Buchholz F. Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proc. Natl Acad. Sci. USA99, 14236–14240 (2002).
  • Buchholz F, Kittler R, Slabicki M, Theis M. Enzymatically prepared RNAi libraries. Nat. Methods.3, 696–700 (2006).
  • Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature408, 325–330 (2000).
  • Kamath RS, Fraser AG, Dong Y et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature421, 231–237 (2003).
  • Boutros M, Kiger AA, Armknecht S et al. Heidelberg Fly Array Consortium. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science303, 832–835 (2004).
  • Subramaniam C, Veazey P, Redmond S et al. Chromosome-wide analysis of gene function by RNA interference in the african trypanosome. Eukaryot. Cell.5, 1539–1549 (2006).
  • Akashi H, Matsumoto S, Taira K. Gene discovery by ribozyme and siRNA libraries. Nat. Rev. Mol. Cell. Biol.6, 413–422 (2005).
  • Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature431, 371–378 (2004).
  • Ito M, Kawano K, Miyagishi M, Taira K. Genome-wide application of RNAi to the discovery of potential drug targets. FEBS Lett.579, 5988–5995 (2005).
  • Liang Z. High-throughput screening using genome-wide siRNA libraries. Drugs8, 924–926 (2005).
  • Sachse C, Krausz E, Kronke A et al. High-throughput RNA interference strategies for target discovery and validation by using synthetic short interfering RNAs: functional genomics investigations of biological pathways. Methods Enzymol.392, 242–277 (2005).
  • Vanhecke D, Janitz M. Functional genomics using high-throughput RNA interference. Drug Discov. Today10, 205–212 (2005).
  • Westbrook TF, Stegmeier F, Elledge SJ. Dissecting cancer pathways and vulnerabilities with RNAi. Cold Spring Harb. Symp. Quant. Biol.70, 435–444 (2005).
  • Zhao HF, L’Abbe D, Jolicoeur N et al. High-throughput screening of effective siRNAs from RNAi libraries delivered via bacterial invasion. Nat. Methods.2, 967–973 (2005).
  • Chang K, Elledge SJ, Hannon GJ. Lessons from nature: microRNA-based shRNA libraries. Nat. Methods.3, 707–714 (2006).
  • Lents NH, Baldassare JJ. RNA interference takes flight: a new RNAi screen reveals cell cycle regulators in Drosophila cells. Trends Endocrinol. Metab.17, 173–174 (2006).
  • Moffat J, Sabatini DM. Building mammalian signalling pathways with RNAi screens. Nat. Rev. Mol. Cell. Biol.7, 177–187 (2006).
  • Root DE, Hacohen N, Hahn WC, Lander ES, Sabatini DM. Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat. Methods.3, 715–719 (2006).
  • Ngo VN, Davis RE, Lamy L et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature441, 106–110 (2006).
  • Friedman A, Perrimon N. A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature444, 230–234 (2006).
  • Muller P, Kuttenkeuler D, Gesellchen V, Zeidler MP, Boutros M. Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature436, 871–875 (2005).
  • Kiger B, Baum S, Jones MR et al. A functional genomic analysis of cell morphology using RNA interference. J. Biol.2(4), 27 (2003).
  • Bettencourt-Dias M, Giet R, Sinka R et al. Genome-wide survey of protein kinases required for cell cycle progression. Nature432, 980–987 (2004).
  • Aza-Blanc P, Cooper CL, Wagner K, Batalov S, Deveraux QL, Cooke MP. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol. Cell12, 627–637 (2003).
  • Pelkmans L, Fava E, Grabner H et al. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature436, 78–86 (2005).
  • Espeseth AS, Huang Q, Gates A et al. A genome wide analysis of ubiquitin ligases in APP processing identifies a novel regulator of BACE1 mRNA levels. Mol. Cell. Neurosci.33, 227–235 (2006).
  • Kittler R, Putz G, Pelletier L et al. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature432, 1036–1040 (2004).
  • Berns K, Hijmans EM, Mullenders J et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature428, 431–437 (2004).
  • Llanos S, Efeyan A, Monsech J, Dominguez O, Serrano M. A high-throughput loss-of-function screening identifies novel p53 regulators. Cell Cycle5, 1880–1885 (2006).
  • Paddison PJ, Silva JM, Conklin DS et al. A resource for large-scale RNA-interference-based screens in mammals. Nature428, 427–431 (2004).
  • Westbrook TF, Martin ES, Schlabach MR et al. A genetic screen for candidate tumor suppressors identifies REST. Cell121, 837–848 (2005).
  • Silva JM, Li MZ, Chang K et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat. Genet.37, 1281–1288 (2005).
  • Mukherji M, Bell R, Supekova L et al. Genome-wide functional analysis of human cell-cycle regulators. Proc. Natl Acad. Sci. USA103, 14819–14824 (2006).
  • Nguyen DG, Wolff KC, Yin H, Caldwell JS, Kuhen KL. “UnPAKing” human immunodeficiency virus (HIV) replication: using small interfering RNA screening to identify novel cofactors and elucidate the role of group I PAKs in HIV infection. J. Virol.80, 130–137 (2006).
  • Moffat J, Grueneberg DA, Yang X et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell124, 1283–1298 (2006).
  • Kolfschoten IG, van Leeuwen B, Berns K et al. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell121, 849–858 (2005).
  • Brummelkamp TR, Fabius AW, Mullenders J et al. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat. Chem. Biol.2, 202–206 (2006).
  • Collins CS, Hong J, Sapinoso L et al. A small interfering RNA screen for modulators of tumor cell motility identifies MAP4K4 as a promigratory kinase. Proc. Natl Acad. Sci. USA103, 3775–3780 (2006).
  • Bartz SR, Zhang Z, Burchard J et al. Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol. Cell. Biol.26, 9377–9386 (2006).
  • Sonnichsen B, Koski LB, Walsh A et al. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans.Nature434, 462–469 (2005).
  • Hamilton B, Dong Y, Shindo M et al. A systematic RNAi screen for longevity genes in C. elegans.Genes Dev.19, 1544–1555 (2005).
  • Kambris Z, Brun S, Jang IH et al. Drosophila immunity: a large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr. Biol.16, 808–813 (2006).
  • Saxena S, Jonsson ZO, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J. Biol. Chem.278, 44312–44319 (2003).
  • Jackson AL Linsley PS. Noise amidst the silence: off-target effects of siRNAs? Trends Genet.20, 521–524 (2004).
  • Ding H, Schwarz DS, Keene A et al. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell2, 209–217 (2003).
  • Snove O Jr, Holen T. Many commonly used siRNAs risk off-target activity. Biochem. Biophys. Res. Commun.319, 256–263 (2004).
  • Jackson AL, Burchard J, Schelter J et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA12, 1179–1187 (2006).
  • Chang FH, Lee CH, Chen MT et al. Surfection: a new platform for transfected cell arrays. Nucleic Acids Res.32, e33 (2004).
  • Mousses S, Caplen NJ, Cornelison R et al. RNAi microarray analysis in cultured mammalian cells. Genome Res.13, 2341–2347 (2003).
  • Erfle H, Simpson JC, Bastiaens PI, Pepperkok R. siRNA cell arrays for high-content screening microscopy. Biotechniques37, 454–462 (2004).
  • Vanhecke D, Janitz M. High-throughput gene silencing using cell arrays. Oncogene23, 8353–8358 (2004).
  • Bailey SN, Ali SM, Carpenter AE, Higgins CO, Sabatini DMR. Microarrays of lentiviruses for gene function screens in immortalized and primary cells. Nat. Methods3, 117–122 (2006).
  • Sims D, Bursteinas B, Gao Q, Zvelebil M, Baum B. FLIGHT: database and tools for the integration and cross-correlation of large-scale RNAi phenotypic datasets. Nucleic Acids Res.34, D479–D483 (2006).
  • Horn T, Arziman Z, Berger J, Boutros M. GenomeRNAi: a database for cell-based RNAi phenotypes. Nucleic Acids Res.35, D492–D497 (2007).

Website

  • Minimum information about an RNAi study http://miare.sourceforge.net/HomePage

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.