147
Views
31
CrossRef citations to date
0
Altmetric
Review

Recent development in pharmacogenomics: from candidate genes to genome-wide association studies

&
Pages 371-393 | Published online: 09 Jan 2014

References

  • Cartwright CP. Pharmacogenetics: the Dx perspective. Expert Rev. Mol. Diagn.1(4), 371–376 (2001).
  • Roses AD. Pharmacogenetics place in modern medical science and practice. Life Sci.70(13), 1471–1480 (2002).
  • Roses AD. Pharmacogenetics and the practice of medicine. Nature405(6788), 857–865 (2000).
  • Lin M, Aquilante C, Johnson JA, Wu R. Sequencing drug response with HapMap. Pharmacogenomics J.5(3), 149–156 (2005).
  • Stoughton RB, Friend SH. How molecular profiling could revolutionize drug discovery. Nat. Rev. Drug Discov.4(4), 345–350 (2005).
  • Phillips KA, Van Bebber SL. Measuring the value of pharmacogenomics. Nat. Rev. Drug Discov.4(6), 500–509 (2005).
  • Wilkinson GR. Drug metabolism and variability among patients in drug response. N. Engl. J. Med.352(21), 2211–2221 (2005).
  • Voora D, Eby C, Linder MW et al. Prospective dosing of warfarin based on cytochrome P-450 2C9 genotype. Thromb. Haemost.93(4), 700–705 (2005).
  • Totah RA, Rettie AE. Cytochrome P450 2C8: substrates, inhibitors, pharmacogenetics, and clinical relevance. Clin. Pharmacol. Ther.77(5), 341–352 (2005).
  • de Leon J, Susce MT, Pan RM et al. The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J. Clin. Psychiatry66(1), 15–27 (2005).
  • Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA279(15), 1200–1205 (1998).
  • Dormann H, Neubert A, Criegee-Rieck M et al. Readmissions and adverse drug reactions in internal medicine: the economic impact. J. Int. Med.255(6), 653–663 (2004).
  • Hakonarson H, Thorvaldsson S, Helgadottir A et al. Effects of a 5-lipoxygenase-activating protein inhibitor on biomarkers associated with risk of myocardial infarction: a randomized trial. JAMA293(18), 2245–2256 (2005).
  • Drazen JM, Silverman EK, Lee TH. Heterogeneity of therapeutic responses in asthma. Br. Med. Bull.56(4), 1054–1070 (2000).
  • Xie HG, Kim RB, Wood AJ, Stein CM. Molecular basis of ethnic differences in drug disposition and response. Annu. Rev. Pharmacol. Toxicol.41, 815–850 (2001).
  • No authors listed. Worldwide variations in the prevalence of asthma symptoms: the International Study of Asthma and Allergies in Childhood (ISAAC). Eur. Respir. J.12(2), 315–335 (1998).
  • Eder W, Ege MJ, von Mutius E. The asthma epidemic. N. Engl. J. Med.355(21), 2226–2235 (2006).
  • Van Eerdewegh P, Little RD, Dupuis J et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature418(6896), 426–430 (2002).
  • Zhang Y, Leaves NI, Anderson GG et al. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat. Genet.34(2), 181–186 (2003).
  • Laitinen T, Polvi A, Rydman P et al. Characterization of a common susceptibility locus for asthma-related traits. Science304(5668), 300–304 (2004).
  • Hakonarson H, Gulcher JR, Stefansson K. deCODE genetics, Inc. Pharmacogenomics4(2), 209–215 (2003).
  • McLeod HL. Pharmacogenetics: more than skin deep. Nat. Genet.29(3), 247–248 (2001).
  • Fenech A, Hall IP. Pharmacogenetics of asthma. Br. J. Clin. Pharmacol.53(1), 3–15 (2002).
  • Hall IP. Pharmacogenetics, pharmacogenomics and airway disease. Respir. Res.3, 10 (2002).
  • Roses AD. Pharmacogenetics and future drug development and delivery. Lancet355(9212), 1358–1361 (2000).
  • Hakonarson H, Wjst M. Current concepts on the genetics of asthma. Curr. Opin. Pediatr.13(3), 267–277 (2001).
  • Bateman ED. Measuring asthma control. Curr. Opin. Allergy Clin. Immunol.1(3), 211–216 (2001).
  • Bateman ED, Boushey HA, Bousquet J et al. Can guideline-defined asthma control be achieved? The Gaining Optimal Asthma ControL study. Am. J. Respir. Crit. Care Med.170(8), 836–844 (2004).
  • Szefler SJ, Martin RJ, King TS et al. Significant variability in response to inhaled corticosteroids for persistent asthma. J. Allergy Clin. Immunol.109(3), 410–418 (2002).
  • Ledford D, Apter A, Brenner AM et al. Osteoporosis in the corticosteroid-treated patient with asthma. J. Allergy Clin. Immunol.102(3), 353–362 (1998).
  • Wong CA, Walsh LJ, Smith CJ et al. Inhaled corticosteroid use and bone-mineral density in patients with asthma. Lancet355(9213), 1399–1403 (2000).
  • Baylink DJ. Glucocorticoid-induced osteoporosis. N. Engl. J. Med.309(5), 306–308 (1983).
  • Garbe E, LeLorier J, Boivin JF, Suissa S. Inhaled and nasal glucocorticoids and the risks of ocular hypertension or open-angle glaucoma. JAMA277(9), 722–727 (1997).
  • Garbe E, Boivin JF, LeLorier J, Suissa S. Selection of controls in database case–control studies: glucocorticoids and the risk of glaucoma. J. Clin. Epidemiol.51(2), 129–135 (1998).
  • Cumming RG, Mitchell P, Leeder SR. Use of inhaled corticosteroids and the risk of cataracts. N. Engl. J. Med.337(1), 8–14 (1997).
  • Chinchilli VM. General principles for systematic reviews and meta-analyses and a critique of a recent systematic review of long-acting β-agonists. J. Allergy Clin. Immunol.119(2), 303–306 (2007).
  • Choudhry S, Ung N, Avila PC et al. Pharmacogenetic differences in response to albuterol between Puerto Ricans and Mexicans with asthma. Am. J. Respir. Crit. Care Med.171(6), 563–570 (2005).
  • Litonjua AA, Silverman EK, Tantisira KG et al. β2-adrenergic receptor polymorphisms and haplotypes are associated with airways hyperresponsiveness among nonsmoking men. Chest126(1), 66–74 (2004).
  • Chalmers GW, Macleod KJ, Little SA et al. Influence of cigarette smoking on inhaled corticosteroid treatment in mild asthma. Thorax57(3), 226–230 (2002).
  • Palmer LJ, Cookson WO. Using single nucleotide polymorphisms as a means to understanding the pathophysiology of asthma. Respir. Res.2(2), 102–112 (2001).
  • Gray IC, Campbell DA, Spurr NK. Single nucleotide polymorphisms as tools in human genetics. Hum. Mol. Genet.9(16), 2403–2408 (2000).
  • Schork NJ, Fallin D, Lanchbury JS. Single nucleotide polymorphisms and the future of genetic epidemiology. Clin. Genet.58(4), 250–264 (2000).
  • Sears MR. Asthma treatment: inhaled β-agonists. Can. Respir. J.5(Suppl. A), 54A–59A (1998).
  • Hancox RJ, Sears MR, Taylor DR. Polymorphism of the β2-adrenoceptor and the response to long-term β2-agonist therapy in asthma. Eur. Respir. J.11(3), 589–593 (1998).
  • Billington CK, Penn RB. Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir. Res.4, 2 (2003).
  • Drysdale CM, McGraw DW, Stack CB et al. Complex promoter and coding region β2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc. Natl Acad. Sci. USA97(19), 10483–10488 (2000).
  • Reihsaus E, Innis M, MacIntyre N, Liggett SB. Mutations in the gene encoding for the β2-adrenergic receptor in normal and asthmatic subjects. Am. J. Respir. Cell Mol. Biol.8(3), 334–339 (1993).
  • Martinez FD, Graves PE, Baldini M, Solomon S, Erickson R. Association between genetic polymorphisms of the β2-adrenoceptor and response to albuterol in children with and without a history of wheezing. J. Clin. Invest.100(12), 3184–3188 (1997).
  • Kotani Y, Nishimura Y, Maeda H, Yokoyama M. β2-adrenergic receptor polymorphisms affect airway responsiveness to salbutamol in asthmatics. J. Asthma36(7), 583–590 (1999).
  • Lima JJ, Thomason DB, Mohamed MH et al. Impact of genetic polymorphisms of the β2-adrenergic receptor on albuterol bronchodilator pharmacodynamics. Clin. Pharmacol. Ther.65(5), 519–525 (1999).
  • Tan S, Hall IP, Dewar J, Dow E, Lipworth B. Association between β2-adrenoceptor polymorphism and susceptibility to bronchodilator desensitisation in moderately severe stable asthmatics. Lancet350(9083), 995–999 (1997).
  • Cho SH, Oh SY, Bahn JW et al. Association between bronchodilating response to short-acting β-agonist and non-synonymous single-nucleotide polymorphisms of β-adrenoceptor gene. Clin. Exp. Allergy35(9), 1162–1167 (2005).
  • Kukreti R, Bhatnagar P, B-Rao C et al. β2-adrenergic receptor polymorphisms and response to salbutamol among Indian asthmatics*. Pharmacogenomics6(4), 399–410 (2005).
  • Israel E. Assessment of therapeutic index of inhaled steroids. Lancet356(9229), 527–528 (2000).
  • Israel E, Chinchilli VM, Ford JG et al. Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet364(9444), 1505–1512 (2004).
  • Jackson CM, Lipworth B. Benefit–risk assessment of long-acting β2-agonists in asthma. Drug Saf.27(4), 243–270 (2004).
  • Abramson MJ, Walters J, Walters EH. Adverse effects of β-agonists: are they clinically relevant? Am. J. Respir. Med.2(4), 287–297 (2003).
  • Tsai HJ, Shaikh N, Kho JY et al. β2-adrenergic receptor polymorphisms: pharmacogenetic response to bronchodilator among African American asthmatics. Hum. Genet.119(5), 547–557 (2006).
  • Snyder EM, Beck KC, Dietz NM et al. Influence of β2-adrenergic receptor genotype on airway function during exercise in healthy adults. Chest129(3), 762–770 (2006).
  • Silverman EK, Kwiatkowski DJ, Sylvia JS et al. Family-based association analysis of β2-adrenergic receptor polymorphisms in the childhood asthma management program. J. Allergy Clin. Immunol.112(5), 870–876 (2003).
  • Shah RR. Pharmacogenetics in drug regulation: promise, potential and pitfalls. Philos. Trans. R. Soc. Lond. B Biol. Sci.360(1460), 1617–1638 (2005).
  • Goldstein DB. The genetics of human drug response. Philos. Trans. R. Soc. Lond. B Biol. Sci.360(1460), 1571–1572 (2005).
  • Silverman ES, Du J, De Sanctis GT et al. Egr-1 and Sp1 interact functionally with the 5-lipoxygenase promoter and its naturally occurring mutants. Am. J. Respir. Cell Mol. Biol.19(2), 316–323 (1998).
  • Drazen JM, Silverman ES. Genetic determinants of 5-lipoxygenase transcription. Int. Arch. Allergy Immunol.118(2–4), 275–278 (1999).
  • Sampson AP, Cowburn AS, Sladek K et al. Profound overexpression of leukotriene C4 synthase in bronchial biopsies from aspirin-intolerant asthmatic patients. Int. Arch. Allergy Immunol.113(1–3), 355–357 (1997).
  • Sampson AP, Siddiqui S, Buchanan D et al. Variant LTC(4) synthase allele modifies cysteinyl leukotriene synthesis in eosinophils and predicts clinical response to zafirlukast. Thorax55(Suppl. 2), S28–S31 (2000).
  • Currie GP, Lima JJ, Sylvester JE et al. Leukotriene C4 synthase polymorphisms and responsiveness to leukotriene antagonists in asthma. Br. J. Clin. Pharmacol.56(4), 422–426 (2003).
  • Sanak M, Simon HU, Szczeklik A. Leukotriene C4 synthase promoter polymorphism and risk of aspirin-induced asthma. Lancet350(9091), 1599–1600 (1997).
  • Deykin A, Wechsler ME, Boushey HA et al. Combination therapy with a long-acting β-agonist and a leukotriene antagonist in moderate asthma. Am. J. Respir. Crit. Care Med.175(3), 228–234 (2007).
  • Clinical trial of low-dose theophylline and montelukast in patients with poorly controlled asthma. Am. J. Respir. Crit. Care Med.175(3), 235–242 (2007).
  • Lazarus SC, Lee T, Kemp JP et al. Safety and clinical efficacy of zileuton in patients with chronic asthma. Am. J. Manag. Care4(6), 841–848 (1998).
  • Barnes PJ. Efficacy of inhaled corticosteroids in asthma. J. Allergy Clin. Immunol.102(4 Pt 1), 531–538 (1998).
  • Gagliardo R, Chanez P, Vignola AM et al. Glucocorticoid receptor α and β in glucocorticoid dependent asthma. Am. J. Respir. Crit. Care Med.162(1), 7–13 (2000).
  • Sher ER, Leung DY, Surs W et al. Steroid-resistant asthma. Cellular mechanisms contributing to inadequate response to glucocorticoid therapy. J. Clin. Invest.93(1), 33–39 (1994).
  • Chan MT, Leung DY, Szefler SJ, Spahn JD. Difficult-to-control asthma: clinical characteristics of steroid-insensitive asthma. J. Allergy Clin. Immunol.101(5), 594–601 (1998).
  • Chikanza LC, Panayi GS. The effects of hydrocortisone on in vitro lymphocyte proliferation and interleukin-2 and -4 production in corticosteroid sensitive and resistant subjects. Eur. J. Clin. Invest.23(12), 845–850 (1993).
  • Sousa AR, Lane SJ, Cidlowski JA, Staynov DZ, Lee TH. Glucocorticoid resistance in asthma is associated with elevated in vivo expression of the glucocorticoid receptor β-isoform. J. Allergy Clin. Immunol.105(5), 943–950 (2000).
  • Lane SJ, Lee TH. Mechanisms of corticosteroid resistance in asthmatic patients. Int. Arch. Allergy Immunol.113(1–3), 193–195 (1997).
  • Leung DY, Chrousos GP. Is there a role for glucocorticoid receptor β in glucocorticoid-dependent asthmatics? Am. J. Respir. Crit. Care Med.162(1), 1–3 (2000).
  • Tantisira KG, Lake S, Silverman ES et al. Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Hum. Mol. Genet.13(13), 1353–1359 (2004).
  • Hakonarson H, Bjornsdottir US, Halapi E et al. Profiling of genes expressed in peripheral blood mononuclear cells predicts glucocorticoid sensitivity in asthma patients. Proc. Natl Acad. Sci. USA102(41), 14789–14794 (2005).
  • Hakonarson H, Halapi E, Whelan R et al. Association between IL-1β/TNF-α-induced glucocorticoid-sensitive changes in multiple gene expression and altered responsiveness in airway smooth muscle. Am. J. Respir. Cell Mol. Biol.25(6), 761–771 (2001).
  • Kim MH, Agrawal DK. Effect of interleukin-1β and tumor necrosis factor-α on the expression of G-proteins in CD4+ T-cells of atopic asthmatic subjects. J. Asthma39(5), 441–448 (2002).
  • Roth M, Black JL. Transcription factors in asthma: are transcription factors a new target for asthma therapy? Curr. Drug Targets7(5), 589–595 (2006).
  • D’Acquisto F, Ianaro A. From willow bark to peptides: the ever widening spectrum of NF-κB inhibitors. Curr. Opin. Pharmacol.6(4), 387–392 (2006).
  • Vermeire S, Pierik M, Hlavaty T et al. Association of organic cation transporter risk haplotype with perianal penetrating Crohn’s disease but not with susceptibility to IBD. Gastroenterology129(6), 1845–1853 (2005).
  • Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature411(6837), 599–603 (2001).
  • Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature411(6837), 603–606 (2001).
  • Rioux JD, Daly MJ, Silverberg MS et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat. Genet.29(2), 223–228 (2001).
  • Peltekova VD, Wintle RF, Rubin LA et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat. Genet.36(5), 471–475 (2004).
  • Duerr RH, Taylor KD, Brant SR et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314(5804), 1461–1463 (2006).
  • Hue S, Ahern P, Buonocore S et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J. Exp. Med.203(11), 2473–2483 (2006).
  • Kullberg MC, Jankovic D, Feng CG et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J. Exp. Med.203(11), 2485–2494 (2006).
  • Baldassano RN, Bradfield JP, Monos DS et al. Association of variants of the interleukin-23 receptor (IL23R) gene with susceptibility to pediatric Crohn’s disease. Clin. Gastroenterol. Hepatol. (2007) (In Press).
  • Oppmann B, Lesley R, Blom B et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity13(5), 715–725 (2000).
  • Becker C, Wirtz S, Blessing M et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J. Clin. Invest.112(5), 693–706 (2003).
  • Hampe J, Franke A, Rosenstiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet.39(2), 207–211 (2007).
  • Patterson M, Cardon L. Replication publication. PLoS Biol.3(9), e327 (2005).
  • Baldassano RN, Bradfield JP, Monos DS et al. Association of the T300A non-synonymous variant of the ATG16L1 gene with susceptibility to pediatric Crohn’s disease. Gut (2007) (In Press).
  • Helgadottir A, Manolescu A, Thorleifsson G et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat. Genet.36(3), 233–239 (2004).
  • Ford-Hutchinson AW. Leukotriene B4 in inflammation. Crit. Rev. Immunol.10(1), 1–12 (1990).
  • Dahlen B, Kumlin M, Ihre E, Zetterstrom O, Dahlen SE. Inhibition of allergen-induced airway obstruction and leukotriene generation in atopic asthmatic subjects by the leukotriene biosynthesis inhibitor BAYx 1005. Thorax52(4), 342–347 (1997).
  • Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N. Engl. J. Med.347(20), 1557–1565 (2002).
  • Morrow DA, Braunwald E. Future of biomarkers in acute coronary syndromes: moving toward a multimarker strategy. Circulation108(3), 250–252 (2003).
  • Pearson TA, Mensah GA, Alexander RW et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation107(3), 499–511 (2003).
  • Malik I, Danesh J, Whincup P et al. Soluble adhesion molecules and prediction of coronary heart disease: a prospective study and meta-analysis. Lancet358(9286), 971–976 (2001).
  • Tselepis AD, John Chapman M. Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated phospholipase A2, platelet activating factor-acetylhydrolase. Atherosclerosis3(4), 57–68 (2002).
  • Helgadottir A, Manolescu A, Helgason A et al. A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nat. Genet.38(1), 68–74 (2006).
  • Bamshad M, Wooding S, Salisbury BA, Stephens JC. Deconstructing the relationship between genetics and race. Nat. Rev. Genet.5(8), 598–609 (2004).
  • Jorde LB, Wooding SP. Genetic variation, classification and ‘race’. Nat. Genet.36(11 Suppl.), S28–S33 (2004).
  • Royal CD, Dunston GM. Changing the paradigm from ‘race’ to human genome variation. Nat. Genet.36(11 Suppl.), S5–S7 (2004).
  • Maitland-van der Zee AH, Turner ST, Schwartz GL et al. A multilocus approach to the antihypertensive pharmacogenetics of hydrochlorothiazide. Pharmacogenet. Genomics15(5), 287–293 (2005).
  • McNamara DM. Pharmacogenetics in heart failure: genomic markers of endothelial and neurohumoral function. Congest. Heart Fail.10(6), 302–308 (2004).
  • Liljedahl U, Kahan T, Malmqvist K et al. Single nucleotide polymorphisms predict the change in left ventricular mass in response to antihypertensive treatment. J. Hypertens.22(12), 2321–2328 (2004).
  • Vadlamani L, Iyengar S. Tumor necrosis factor α polymorphism in heart failure/cardiomyopathy. Congest. Heart Fail.10(6), 289–292 (2004).
  • Mellen PB, Herrington DM. Pharmacogenomics of blood pressure response to antihypertensive treatment. J. Hypertens.23(7), 1311–1325 (2005).
  • Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature414(6865), 782–787 (2001).
  • Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by β-catenin and glycogen synthase kinase-3β. J. Biol. Chem.280(2), 1457–1464 (2005).
  • Rich SS. Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes39(11), 1315–1319 (1990).
  • Tattersall RB. Mild familial diabetes with dominant inheritance. Q J. Med.43(170), 339–357 (1974).
  • Tattersal RB, Fajans SS. Prevalence of diabetes and glucose intolerance in 199 offspring of thirty-seven conjugal diabetic parents. Diabetes24(5), 452–462 (1975).
  • Froguel P, Zouali H, Vionnet N et al. Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N. Engl. J. Med.328(10), 697–702 (1993).
  • Frayling TM, Bulamn MP, Ellard S et al. Mutations in the hepatocyte nuclear factor-1α gene are a common cause of maturity-onset diabetes of the young in the U.K. Diabetes46(4), 720–725 (1997).
  • Hattersley AT, Beards F, Ballantyne E et al. Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat. Genet.19(3), 268–270 (1998).
  • Grimsby J, Sarabu R, Corbett WL et al. Allosteric activators of glucokinase: potential role in diabetes therapy. Science301(5631), 370–373 (2003).
  • Matschinsky FM, Magnuson MA, Zelent D et al. The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy. Diabetes55(1), 1–12 (2006).
  • Hattersley AT, Turner RC, Permutt MA et al. Linkage of type 2 diabetes to the glucokinase gene. Lancet339(8805), 1307–1310 (1992).
  • Njolstad PR, Sovik O, Cuesta-Munoz A et al. Neonatal diabetes mellitus due to complete glucokinase deficiency. N. Engl. J. Med.344(21), 1588–1592 (2001).
  • Heiervang E, Folling I, Sovik O et al. Maturity-onset diabetes of the young. Studies in a Norwegian family. Acta Paediatr. Scand.78(1), 74–80 (1989).
  • Sovik O, Njolstad P, Folling I et al. Hyperexcitability to sulphonylurea in MODY3. Diabetologia41(5), 607–608 (1998).
  • Pearson ER, Liddell WG, Shepherd M, Corrall RJ, Hattersley AT. Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor-1α gene mutations: evidence for pharmacogenetics in diabetes. Diabet. Med.17(7), 543–545 (2000).
  • Shepherd M, Pearson ER, Houghton J et al. No deterioration in glycemic control in HNF-1α maturity-onset diabetes of the young following transfer from long-term insulin to sulphonylureas. Diabetes Care26(11), 3191–3192 (2003).
  • Gloyn AL, Pearson ER, Antcliff JF et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med.350(18), 1838–1849 (2004).
  • Codner E, Flanagan S, Ellard S, Garcia H, Hattersley AT. High-dose glibenclamide can replace insulin therapy despite transitory diarrhea in early-onset diabetes caused by a novel R201L Kir6.2 mutation. Diabetes Care28(3), 758–759 (2005).
  • Klupa T, Edghill EL, Nazim J et al. The identification of a R201H mutation in KCNJ11, which encodes Kir6.2, and successful transfer to sustained-release sulphonylurea therapy in a subject with neonatal diabetes: evidence for heterogeneity of β cell function among carriers of the R201H mutation. Diabetologia48(5), 1029–1031 (2005).
  • Sagen JV, Raeder H, Hathout E et al. Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes53(10), 2713–2718 (2004).
  • Zung A, Glaser B, Nimri R, Zadik Z. Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2. J. Clin. Endocrinol. Metab.89(11), 5504–5507 (2004).
  • Altshuler D, Hirschhorn JN, Klannemark M et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of Type 2 diabetes. Nat. Genet.26(1), 76–80 (2000).
  • Gloyn AL, Weedon MN, Owen KR et al. Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with Type 2 diabetes. Diabetes52(2), 568–572 (2003).
  • Florez JC, Burtt N, de Bakker PI et al. Haplotype structure and genotype–phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes53(5), 1360–1368 (2004).
  • Sladek R, Rocheleau G, Rung J et al. A genome-wide association study identifies novel risk loci for Type 2 diabetes. Nature445(7130), 881–885 (2007).
  • Grant SF, Thorleifsson G, Reynisdottir I et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of Type 2 diabetes. Nat. Genet.38(3), 320–323 (2006).
  • Florez JC, Jablonski KA, Bayley N et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N. Engl. J. Med.355(3), 241–250 (2006).
  • Damcott CM, Pollin TI, Reinhart LJ et al. Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with Type 2 diabetes in the Amish: replication and evidence for a role in both insulin secretion and insulin resistance. Diabetes55(9), 2654–2659 (2006).
  • Groves CJ, Zeggini E, Minton J et al. Association analysis of 6,736 U.K. subjects provides replication and confirms TCF7L2 as a Type 2 diabetes susceptibility gene with a substantial effect on individual risk. Diabetes55(9), 2640–2644 (2006).
  • Scott LJ, Bonnycastle LL, Willer CJ et al. Association of transcription factor 7-like 2 (TCF7L2) variants with Type 2 diabetes in a Finnish sample. Diabetes55(9), 2649–2653 (2006).
  • Zhang C, Qi L, Hunter DJ et al. Variant of transcription factor 7-like 2 (TCF7L2) gene and the risk of Type 2 diabetes in large cohorts of U.S. women and men. Diabetes55(9), 2645–2648 (2006).
  • Cauchi S, Meyre D, Dina C et al. Transcription factor TCF7L2 genetic study in the French population: expression in human β-cells and adipose tissue and strong association with Type 2 diabetes. Diabetes55(10), 2903–2908 (2006).
  • Saxena R, Gianniny L, Burtt NP et al. Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with Type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes55(10), 2890–2895 (2006).
  • Chandak GR, Janipalli CS, Bhaskar S et al. Common variants in the TCF7L2 gene are strongly associated with Type 2 diabetes mellitus in the Indian population. Diabetologia50(1), 63–67 (2007).
  • Humphries SE, Gable D, Cooper JA et al. Common variants in the TCF7L2 gene and predisposition to Type 2 diabetes in UK European Whites, Indian Asians and Afro-Caribbean men and women. J. Mol. Med.84(12), 1–10 (2006).
  • van Vliet-Ostaptchouk JV, Shiri-Sverdlov R, Zhernakova A et al. Association of variants of transcription factor 7-like 2 (TCF7L2) with susceptibility to Type 2 diabetes in the Dutch Breda cohort. Diabetologia50(1), 59–62 (2007).
  • Helgason A, Palsson S, Thorleifsson G et al. Refining the impact of TCF7L2 gene variants on Type 2 diabetes and adaptive evolution. Nat. Genet.39(2), 218–225 (2007).
  • Bennett RG, Hamel FG, Duckworth WC. An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures. Diabetes52(9), 2315–2320 (2003).
  • Farris W, Mansourian S, Chang Y et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo.Proc. Natl Acad. Sci. USA100(7), 4162–4167 (2003).
  • Sacks FM, Pfeffer MA, Moye LA et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N. Engl. J. Med.335(14), 1001–1009 (1996).
  • Downs JR, Clearfield M, Weis S et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA279(20), 1615–1622 (1998).
  • Shepherd J, Cobbe SM, Ford I et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N. Engl. J. Med.333(20), 1301–1307 (1995).
  • Zannis VI, Just PW, Breslow JL. Human apolipoprotein E isoprotein subclasses are genetically determined. Am. J. Hum. Genet.33(1), 11–24 (1981).
  • Ordovas JM, Lopez-Miranda J, Perez-Jimenez F et al. Effect of apolipoprotein E and A-IV phenotypes on the low density lipoprotein response to HMG CoA reductase inhibitor therapy. Atherosclerosis113(2), 157–166 (1995).
  • Kuivenhoven JA, Jukema JW, Zwinderman AH et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. The Regression Growth Evaluation Statin Study Group. N. Engl. J. Med.338(2), 86–93 (1998).
  • de Maat MP, Kastelein JJ, Jukema JW et al. -455G/A polymorphism of the β-fibrinogen gene is associated with the progression of coronary atherosclerosis in symptomatic men: proposed role for an acute-phase reaction pattern of fibrinogen. REGRESS group. Arterioscler. Thromb. Vasc. Biol.18(2), 265–271 (1998).
  • Jukema JW, van Boven AJ, Groenemeijer B et al. The Asp9 Asn mutation in the lipoprotein lipase gene is associated with increased progression of coronary atherosclerosis. REGRESS Study Group, Interuniversity Cardiology Institute, Utrecht, The Netherlands. Regression Growth Evaluation Statin Study. Circulation94(8), 1913–1918 (1996).
  • Poirier J, Minnich A, Davignon J. Apolipoprotein E, synaptic plasticity and Alzheimer’s disease. Ann. Med.27(6), 663–670 (1995).
  • Richard F, Helbecque N, Neuman E et al. APOE genotyping and response to drug treatment in Alzheimer’s disease. Lancet349(9051), 539 (1997).
  • Rennert NJ, Charney P. Preventing cardiovascular disease in diabetes and glucose intolerance: evidence and implications for care. Prim. Care30(3), 569–592 (2003).
  • Dominiczak MH. Obesity, glucose intolerance and diabetes and their links to cardiovascular disease. Implications for laboratory medicine. Clin. Chem. Lab. Med.41(9), 1266–1278 (2003).
  • Hauner H, Meier M, Jockel KH, Frey UH, Siffert W. Prediction of successful weight reduction under sibutramine therapy through genotyping of the G-protein β3 subunit gene (GNB3) C825T polymorphism. Pharmacogenetics13(8), 453–459 (2003).
  • Friedman JM. Modern science versus the stigma of obesity. Nat. Med.10(6), 563–569 (2004).
  • Lyon HN, Hirschhorn JN. Genetics of common forms of obesity: a brief overview. Am. J. Clin. Nutr.82(1 Suppl.), 215S–217S (2005).
  • Knowler WC, Pettitt DJ, Saad MF, Bennett PH. Diabetes mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabetes Metab. Rev.6(1), 1–27 (1990).
  • Zimmet P, Dowse G, Finch C, Serjeantson S, King H. The epidemiology and natural history of NIDDM – lessons from the South Pacific. Diabetes Metab. Rev.6(2), 91–124 (1990).
  • Stunkard AJ, Foch TT, Hrubec Z. A twin study of human obesity. JAMA256(1), 51–54 (1986).
  • Borjeson M. The aetiology of obesity in children. A study of 101 twin pairs. Acta Paediatr. Scand.65(3), 279–287 (1976).
  • Hebebrand J, Friedel S, Schauble N, Geller F, Hinney A. Perspectives: molecular genetic research in human obesity. Obes. Rev.4(3), 139–146 (2003).
  • Farooqi IS, O’Rahilly S. New advances in the genetics of early onset obesity. Int. J. Obes.29(10), 1149–1152 (2005).
  • Bell CG, Walley AJ, Froguel P. The genetics of human obesity. Nat. Rev. Genet.6(3), 221–234 (2005).
  • Schousboe K, Willemsen G, Kyvik KO et al. Sex differences in heritability of BMI: a comparative study of results from twin studies in eight countries. Twin Res.6(5), 409–421 (2003).
  • Herbert A, Gerry NP, McQueen MB et al. A common genetic variant is associated with adult and childhood obesity. Science312(5771), 279–283 (2006).
  • Loos RJ, Barroso I, O’Rahilly S, Wareham NJ. Comment on “A common genetic variant is associated with adult and childhood obesity”. Science315(5809), 187; author reply 187 (2007).
  • Dina C, Meyre D, Samson C et al. Comment on “A common genetic variant is associated with adult and childhood obesity”. Science315(5809), 187; author reply 187 (2007).
  • Rosskopf D, Bornhorst A, Rimmbach C et al. Comment on “A common genetic variant is associated with adult and childhood obesity”. Science315(5809), 187; author reply 187 (2007).
  • Frayling TM, Timpson NJ, Weedon MN et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science316(5826), 889–894 (2007).
  • Riggs BL, Melton LJ III. Involutional osteoporosis. N. Engl. J. Med.314(26), 1676–1686 (1986).
  • Melton LJ III, Chrischilles EA, Cooper C, Lane AW, Riggs BL. Perspective. How many women have osteoporosis? J. Bone Miner. Res.7(9), 1005–1010 (1992).
  • Ray NF, Chan JK, Thamer M, Melton LJ III. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J. Bone Miner. Res.12(1), 24–35 (1997).
  • Hollingworth W, Todd CJ, Parker MJ. The cost of treating hip fractures in the twenty-first century. J. Public Health Med.17(3), 269–276 (1995).
  • Cooper C, Campion G, Melton LJ III. Hip fractures in the elderly: a world-wide projection. Osteoporos. Int.2(6), 285–289 (1992).
  • Heaney RP, Abrams S, Dawson-Hughes B et al. Peak bone mass. Osteoporos. Int.11(12), 985–1009 (2000).
  • Mora S, Gilsanz V. Establishment of peak bone mass. Endocrinol. Metab. Clin. North Am.32(1), 39–63 (2003).
  • Krall EA, Dawson-Hughes B. Heritable and life-style determinants of bone mineral density. J. Bone Miner. Res.8(1), 1–9 (1993).
  • Gueguen R, Jouanny P, Guillemin F et al. Segregation analysis and variance components analysis of bone mineral density in healthy families. J. Bone Miner. Res.10(12), 2017–2022 (1995).
  • Seeman E, Hopper JL, Bach LA et al. Reduced bone mass in daughters of women with osteoporosis. N. Engl. J. Med.320(9), 554–558 (1989).
  • Soroko SB, Barrett-Connor E, Edelstein SL, Kritz-Silverstein D. Family history of osteoporosis and bone mineral density at the axial skeleton: the Rancho Bernardo Study. J. Bone Miner. Res.9(6), 761–769 (1994).
  • Morrison NA, Qi JC, Tokita A et al. Prediction of bone density from vitamin D receptor alleles. Nature367(6460), 284–287 (1994).
  • Cooper GS, Umbach DM. Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis. J. Bone Miner. Res.11(12), 1841–1849 (1996).
  • Sainz J, Van Tornout JM, Loro ML et al. Vitamin D-receptor gene polymorphisms and bone density in prepubertal American girls of Mexican descent. N. Engl. J. Med.337(2), 77–82 (1997).
  • Ferrari SL, Rizzoli R, Slosman DO, Bonjour JP. Do dietary calcium and age explain the controversy surrounding the relationship between bone mineral density and vitamin D receptor gene polymorphisms? J. Bone Miner. Res.13(3), 363–370 (1998).
  • Matsuyama T, Ishii S, Tokita A et al. Vitamin D receptor genotypes and bone mineral density. Lancet345(8959), 1238–1239 (1995).
  • Hunter D, Major P, Arden N et al. A randomized controlled trial of vitamin D supplementation on preventing postmenopausal bone loss and modifying bone metabolism using identical twin pairs. J. Bone Miner. Res.15(11), 2276–2283 (2000).
  • Howard G, Nguyen T, Morrison N et al. Genetic influences on bone density: physiological correlates of vitamin D receptor gene alleles in premenopausal women. J. Clin. Endocrinol. Metab.80(9), 2800–2805 (1995).
  • Massart F, Reginster JY, Brandi ML. Genetics of menopause-associated diseases. Maturitas40(2), 103–116 (2001).
  • Gennari L, Becherini L, Falchetti A et al. Genetics of osteoporosis: role of steroid hormone receptor gene polymorphisms. J. Steroid. Biochem. Mol. Biol.81(1), 1–24 (2002).
  • Han KO, Moon IG, Kang YS et al. Nonassociation of estrogen receptor genotypes with bone mineral density and estrogen responsiveness to hormone replacement therapy in Korean postmenopausal women. J. Clin. Endocrinol. Metab.82(4), 991–995 (1997).
  • Deng HW, Li J, Li JL et al. Change of bone mass in postmenopausal Caucasian women with and without hormone replacement therapy is associated with vitamin D receptor and estrogen receptor genotypes. Hum. Genet.103(5), 576–585 (1998).
  • Kobayashi N, Fujino T, Shirogane T et al. Estrogen receptor α polymorphism as a genetic marker for bone loss, vertebral fractures and susceptibility to estrogen. Maturitas41(3), 193–201 (2002).
  • Ongphiphadhanakul B, Chanprasertyothin S, Payatikul P et al. Oestrogen-receptor-α gene polymorphism affects response in bone mineral density to oestrogen in post-menopausal women. Clin. Endocrinol.52(5), 581–585 (2000).
  • Kinuta K, Tanaka H, Moriwake Tet al. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology141(4), 1317–1324 (2000).
  • Salmen T, Heikkinen AM, Mahonen A et al. Early postmenopausal bone loss is associated with PvuII estrogen receptor gene polymorphism in Finnish women: effect of hormone replacement therapy. J. Bone Miner. Res.15(2), 315–321 (2000).
  • Salmen T, Heikkinen AM, Mahonen A et al. The protective effect of hormone-replacement therapy on fracture risk is modulated by estrogen receptor α genotype in early postmenopausal women. J. Bone Miner. Res.15(12), 2479–2486 (2000).
  • Grant SF, Reid DM, Blake G et al. Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen Type I α1 gene. Nat. Genet.14(2), 203–205 (1996).
  • Uitterlinden AG, Burger H, Huang Q et al. Relation of alleles of the collagen Type Iα1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N. Engl. J. Med.338(15), 1016–1021 (1998).
  • Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet.33(2), 177–182 (2003).
  • Mann V, Hobson EE, Li B et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J. Clin. Invest.107(7), 899–907 (2001).
  • Qureshi AM, Herd RJ, Blake GM, Fogelman I, Ralston SH. COLIA1 Sp1 polymorphism predicts response of femoral neck bone density to cyclical etidronate therapy. Calcif. Tissue Int.70(3), 158–163 (2002).
  • Little RD, Carulli JP, Del Mastro RG et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet.70(1), 11–19 (2002).
  • Boyden LM, Mao J, Belsky J et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med.346(20), 1513–1521 (2002).
  • Johnson ML, Gong G, Kimberling W et al. Linkage of a gene causing high bone mass to human chromosome 11 (11q12–13). Am. J. Hum. Genet.60(6), 1326–1332 (1997).
  • Gong Y, Slee RB, Fukai N et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell107(4), 513–523 (2001).
  • Wang L, Nguyen TV, McLaughlin RW et al. Human thiopurine S-methyltransferase pharmacogenetics: variant allozyme misfolding and aggresome formation. Proc. Natl Acad. Sci. USA102(26), 9394–9399 (2005).
  • Stanulla M, Schaeffeler E, Flohr T et al. Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA293(12), 1485–1489 (2005).
  • Gearry RB, Barclay ML. Azathioprine and 6-mercaptopurine pharmacogenetics and metabolite monitoring in inflammatory bowel disease. J. Gastroenterol. Hepatol.20(8), 1149–1157 (2005).
  • McLeod HL, Krynetski EY, Relling MV, Evans WE. Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia14(4), 567–572 (2000).
  • Schaeffeler E, Fischer C, Brockmeier D et al. Comprehensive analysis of thiopurine S-methyltransferase phenotype–genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics14(7), 407–417 (2004).
  • Etienne MC, Formento JL, Chazal M et al. Methylenetetrahydrofolate reductase gene polymorphisms and response to fluorouracil-based treatment in advanced colorectal cancer patients. Pharmacogenetics14(12), 785–792 (2004).
  • Huang Y. Pharmacogenetics/genomics of membrane transporters in cancer chemotherapy. Cancer Metastasis Rev.26(1), 183–201 (2007).
  • Slamon DJ, Clark GM, Wong SG et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science235(4785), 177–182 (1987).
  • Slamon DJ, Godolphin W, Jones LA et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science244(4905), 707–712 (1989).
  • Hynes NE. Amplification and overexpression of the erbB-2 gene in human tumors: its involvement in tumor development, significance as a prognostic factor, and potential as a target for cancer therapy. Semin. Cancer Biol.4(1), 19–26 (1993).
  • Hynes NE, Stern DF. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim. Biophys. Acta1198(2–3), 165–184 (1994).
  • Ross JS, Fletcher JA. The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Oncologist3(4), 237–252 (1998).
  • Bast RC Jr, Ravdin P, Hayes DF et al. 2000 update of recommendations for the use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American Society of Clinical Oncology. J. Clin. Oncol.19(6), 1865–1878 (2001).
  • Savage DG, Antman KH. Imatinib mesylate – a new oral targeted therapy. N. Engl. J. Med.346(9), 683–693 (2002).
  • Shawver LK, Slamon D, Ullrich A. Smart drugs: tyrosine kinase inhibitors in cancer therapy. Cancer Cell1(2), 117–123 (2002).
  • Shtivelman E, Lifshitz B, Gale RP, Roe BA, Canaani E. Alternative splicing of RNAs transcribed from the human abl gene and from the bcr–abl fused gene. Cell47(2), 277–284 (1986).
  • Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350(21), 2129–2139 (2004).
  • Paez JG, Janne PA, Lee JC et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304(5676), 1497–1500 (2004).
  • Vandel P, Talon JM, Haffen E, Sechter D. Pharmacogenetics and drug therapy in psychiatry – the role of the CYP2D6 polymorphism. Curr. Pharm. Des.13(2), 241–250 (2007).
  • Giacomini KM, Brett CM, Altman RB et al. The pharmacogenetics research network: from SNP discovery to clinical drug response. Clin. Pharmacol. Ther.81(3), 328–345 (2007).
  • Chowbay B, Zhou S, Lee EJ. An interethnic comparison of polymorphisms of the genes encoding drug-metabolizing enzymes and drug transporters: experience in Singapore. Drug. Metab. Rev.37(2), 327–378 (2005).
  • Szekeres T, Haushofer A. Clinical pharmacogenetics of immunosuppressive drugs in organ transplantation. Pharmacogenomics6(2), 163–168 (2005).
  • Guo Y, Zhang Y, Wang Y et al. Role of CYP2C9 and its variants (CYP2C9*3 and CYP2C9*13) in the metabolism of lornoxicam in humans. Drug Metab. Dispos.33(6), 749–753 (2005).
  • Ferraro TN, Buono RJ. The relationship between the pharmacology of antiepileptic drugs and human gene variation: an overview. Epilepsy Behav.7(1), 18–36 (2005).
  • Tate SK, Depondt C, Sisodiya SM et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc. Natl Acad. Sci. USA102(15), 5507–5512 (2005).
  • Sink KM, Holden KF, Yaffe K. Pharmacological treatment of neuropsychiatric symptoms of dementia: a review of the evidence. JAMA293(5), 596–608 (2005).
  • Reynolds GP, Templeman LA, Zhang ZJ. The role of 5-HT2C receptor polymorphisms in the pharmacogenetics of antipsychotic drug treatment. Prog. Neuropsychopharmacol.29(6), 1021–1028 (2005).
  • Wilffert B, Zaal R, Brouwers JR. Pharmacogenetics as a tool in the therapy of schizophrenia. Pharm. World. Sci.27(1), 20–30 (2005).
  • Lepper ER, Nooter K, Verweij J et al. Mechanisms of resistance to anticancer drugs: the role of the polymorphic ABC transporters ABCB1 and ABCG2. Pharmacogenomics6(2), 115–138 (2005).
  • Hulot JS, Villard E, Maguy A et al. A mutation in the drug transporter gene ABCC2 associated with impaired methotrexate elimination. Pharmacogenet. Genomics15(5), 277–285 (2005).
  • Carlborg O, Haley CS. Epistasis: too often neglected in complex trait studies? Nat. Rev. Genet.5(8), 618–625 (2004).
  • Marchini J, Donnelly P, Cardon LR. Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat. Genet.37(4), 413–417 (2005).
  • Nagel RL. Epistasis and the genetics of human diseases. C. R. Biol.328(7), 606–615 (2005).
  • Moore JH. The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum. Hered.56(1–3), 73–82 (2003).
  • Ober C. Perspectives on the past decade of asthma genetics. J. Allergy Clin. Immunol.116(2), 274–278 (2005).
  • Zambelli-Weiner A, Ehrlich E, Stockton ML et al. Evaluation of the CD14/-260 polymorphism and house dust endotoxin exposure in the Barbados Asthma Genetics Study. J. Allergy Clin. Immunol.115(6), 1203–1209 (2005).
  • Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene–gene and gene–environment interactions. Bioinformatics19(3), 376–382 (2003).
  • Palmer LJ, Cardon LR. Shaking the tree: mapping complex disease genes with linkage disequilibrium. Lancet366(9492), 1223–1234 (2005).
  • Hattersley AT, McCarthy MI. What makes a good genetic association study? Lancet366(9493), 1315–1323 (2005).
  • Cardon LR, Bell JI. Association study designs for complex diseases. Nat. Rev. Genet.2(2), 91–99 (2001).
  • Ioannidis JP. Genetic associations: false or true? Trends Mol. Med.9(4), 135–138 (2003).
  • Glazier AM, Nadeau JH, Aitman TJ. Finding genes that underlie complex traits. Science298(5602), 2345–2349 (2002).
  • Page GP, George V, Go RC, Page PZ, Allison DB. “Are we there yet?”: deciding when one has demonstrated specific genetic causation in complex diseases and quantitative traits. Am. J. Hum. Genet.73(4), 711–719 (2003).
  • Cordell HJ, Clayton DG. Genetic association studies. Lancet366(9491), 1121–1131 (2005).
  • Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet.6(2), 95–108 (2005).
  • Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theoretical and practical concerns. Nat. Rev. Genet.6(2), 109–118 (2005).
  • Syvanen AC. Toward genome-wide SNP genotyping. Nat. Genet.37(Suppl.), S5–S10 (2005).
  • Klein RJ, Zeiss C, Chew EY et al. Complement factor H polymorphism in age-related macular degeneration. Science308(5720), 385–389 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.