155
Views
66
CrossRef citations to date
0
Altmetric
Review

Reverse-phase protein microarrays: application to biomarker discovery and translational medicine

, , , , &
Pages 625-633 | Published online: 09 Jan 2014

References

  • Liotta LA, Espina V, Mehta AI et al. Protein microarrays: Meeting analytical challenges for clinical applications. Cancer Cell3(4), 317–325 (2003).
  • Petricoin E, Wulfkuhle J, Espina V, Liotta LA. Clinical proteomics: revolutionizing disease detection and patient tailoring therapy. J. Proteome Res.3(2), 209–217 (2004).
  • Petricoin EF, Liotta LA. Proteomic approaches in cancer risk and response assessment. Trends Mol. Med.10(2), 59–64 (2004).
  • Petricoin EF, Bichsel V, Calvert V et al. Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J. Clin. Oncol.23(15), 3614–3621 (2005).
  • Petricoin EF III, Espina V, Araujo RP et al. Phosphoprotein pathway mapping: akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res.67(7), 3431–3440 (2007).
  • Chan SM, Ermann J, Su L, Fathman CG, Utz PJ. Protein microarrays for multiplex analysis of signal transduction pathways. Nat. Med.10(12), 1390–1396 (2004).
  • Meric-Bernstam F, Mills GB. Mammalian target of rapamycin. Semin. Oncol.31(6 Suppl. 16), 10–17; discussion 33 (2004).
  • Schmelzle K, White FM. Phosphoproteomics approaches to elucidate cellular signaling networks. Curr. Opin. Biotechnol.17(4), 406–414 (2006).
  • Emmert-Buck MR, Bonner RF, Smith PD et al. Laser capture microdissection. Science274(5289), 998–1001 (1996).
  • Bonner RF, Emmert-Buck M, Cole K et al. Laser capture microdissection: molecular analysis of tissue. Science278(5342), 1481–1483 (1997).
  • Chandrasekharappa SC, Guru SC, Manickam P et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science276(5311), 404–407 (1997).
  • Liotta LA, Kohn EC. Stromal therapy: the next step in ovarian cancer treatment. J. Natl Cancer Inst.94(15), 1113–1114 (2002).
  • Liotta LA, Kohn EC. The microenvironment of the tumour–host interface. Nature411(6835), 375–379 (2001).
  • Haab BB. Antibody arrays in cancer research. Mol. Cell. Proteomics4(4), 377–383 (2005).
  • Lal SP, Christopherson RI, dos Remedios CG. Antibody arrays: an embryonic but rapidly growing technology. Drug Discov. Today7(18 Suppl.), S143–S149 (2002).
  • Steinitz M, Tamir S. An improved method to create nitrocellulose particles suitable for the immobilization of antigen and antibody. J. Immunol. Methods187(1), 171–177 (1995).
  • Knickerbocker T, Chen JR, Thadhani R, MacBeath G. An integrated approach to prognosis using protein microarrays and nonparametric methods. Mol. Syst. Biol.3, 123 (2007).
  • Kusnezow W, Syagailo YV, Ruffer S et al. Optimal design of microarray immunoassays to compensate for kinetic limitations: theory and experiment. Mol. Cell. Proteomics5(9), 1681–1696 (2006).
  • Templin MF, Stoll D, Schrenk M et al. Protein microarray technology. Trends Biotechnol.20(4), 160–166 (2002).
  • Zhu H, Snyder M. Protein chip technology. Curr. Opin. Chem. Biol.7(1), 55–63 (2003).
  • Miller JC, Zhou H, Kwekel J et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics3(1), 56–63 (2003).
  • Knezevic V, Leethanakul C, Bichsel VE et al. Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics1(10), 1271–1278 (2001).
  • Paweletz CP, Charboneau L, Bichsel VE et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene20(16), 1981–1989 (2001).
  • Hultschig C, Kreutzberger J, Seitz H et al. Recent advances of protein microarrays. Curr. Opin. Chem. Biol.10(1), 4–10 (2006).
  • Song S, Li B, Wang L et al. A cancer protein microarray platform using antibody fragments and its clinical applications. Mol. Biosyst.3(2), 151–158 (2007).
  • Wilson DS, Nock S. Recent developments in protein microarray technology. Angew. Chem. Int. Ed. Engl.42(5), 494–500 (2003).
  • Haab BB. Applications of antibody array platforms. Curr. Opin. Biotechnol.17(4), 415–421 (2006).
  • Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA. Clinical proteomics: translating benchside promise into bedside reality. Nat. Rev. Drug Discov.1(9), 683–695 (2002).
  • Charboneau L. Utility of reverse phase protein arrays: applications to signaling pathways and human body arrays. Brief. Funct. Genomic. Proteomic.1(3), 305–315 (2002).
  • Belluco C, Mammano E, Petricoin E et al. Kinase substrate protein microarray analysis of human colon cancer and hepatic metastasis. Clin. Chim. Acta357(2), 180–183 (2005).
  • Gulmann C, Espina V, Petricoin E III et al. Proteomic analysis of apoptotic pathways reveals prognostic factors in follicular lymphoma. Clin. Cancer Res.11(16), 5847–5855 (2005).
  • Rapkiewicz A, Espina V, Zujewski JA et al. The needle in the haystack: application of breast fine-needle aspirate samples to quantitative protein microarray technology. Cancer111(3), 173–184 (2007).
  • Sheehan KM, Calvert VS, Kay EW et al. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol. Cell. Proteomics4(4), 346–355 (2005).
  • Wulfkuhle JD, Aquino JA, Calvert VS et al. Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics3(11), 2085–2090 (2003).
  • Ekins RP. Multi-analyte immunoassay. J. Pharm. Biomed. Anal.7(2), 155–168 (1989).
  • Kusnezow W, Syagailo YV, Goychuk I, Hoheisel JD, Wild DG. Antibody microarrays: the crucial impact of mass transport on assay kinetics and sensitivity. Expert Rev. Mol. Diagn.6(1), 111–124 (2006).
  • Kusnezow W, Syagailo YV, Ruffer S et al. Kinetics of antigen binding to antibody microspots: strong limitation by mass transport to the surface. Proteomics6(3), 794–803 (2006).
  • Bobrow MN, Harris TD, Shaughnessy KJ, Litt GJ. Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J. Immunol. Methods125(1–2), 279–285 (1989).
  • Bobrow MN, Shaughnessy KJ, Litt GJ. Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J. Immunol. Methods137(1), 103–112 (1991).
  • Hunyady B, Krempels K, Harta G, Mezey E. Immunohistochemical signal amplification by catalyzed reporter deposition and its application in double immunostaining. J. Histochem. Cytochem.44(12), 1353–1362 (1996).
  • King G, Payne S, Walker F, Murray GI. A highly sensitive detection method for immunohistochemistry using biotinylated tyramine. J. Pathol.183(2), 237–241 (1997).
  • Tibes R, Qiu Y, Lu Y et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol. Cancer Ther.5(10), 2512–2521 (2006).
  • Miller LD, Long PM, Wong L et al. Optimal gene expression analysis by microarrays. Cancer Cell2(5), 353–361 (2002).
  • Seong SY. Microimmunoassay using a protein chip: optimizing conditions for protein immobilization. Clin. Diagn. Lab. Immunol.9(4), 927–930 (2002).
  • Tonkinson JL, Stillman BA. Nitrocellulose: a tried and true polymer finds utility as a post-genomic substrate. Front Biosci.7, C1–C12 (2002).
  • Nijdam AJ, Ming-Cheng Cheng M, Geho DH et al. Physicochemically modified silicon as a substrate for protein microarrays. Biomaterials28(3), 550–558 (2007).
  • Espina V, Geho D, Mehta AI et al. Pathology of the future: molecular profiling for targeted therapy. Cancer Invest.23(1), 36–46 (2005).
  • Grubb RL, Calvert VS, Wulkuhle JD et al. Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics3(11), 2142–2146 (2003).
  • Iyengar P, Espina V, Williams TW et al. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J. Clin. Invest.115(5), 1163–1176 (2005).
  • Paweletz CP, Trock B, Pennanen M et al. Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarkers to aid in the diagnosis of breast cancer. Dis. Markers17(4), 301–307 (2001).
  • Menard C, Susil RC, Choyke P et al. An interventional magnetic resonance imagingtechnique for the molecular characterization of intraprostatic dynamic contrast enhancement. Mol. Imaging4(1), 63–66 (2005).
  • Becker KF, Schott C, Hipp S et al. Quantitative protein analysis from formalin-fixed tissues: implications for translational clinical research and nanoscale molecular diagnosis. J. Pathol.211(3), 370–378 (2007).
  • Fan YH, Hu Z, Li C et al.In vitro expression levels of cell-cycle checkpoint proteins are associated with cellular DNA repair capacity in peripheral blood lymphocytes: a multivariate analysis. J. Proteome Res.6(4), 1560–1567 (2007).
  • Shankavaram UT, Reinhold WC, Nishizuka S et al. Transcript and portein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol. Cancer Ther.6(3), 820–832 (2007).
  • Machida K, Thompson CM, Dierck K et al. High-throughput phosphotyrosine profiling using SH2 domains. Mol. Cell26(6), 899–915 (2007).
  • Jones RB, Gordus A, Krall JA, MacBeath G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature439(7073), 168–174 (2006).
  • Yokoyama T, Kondo Y, Kondo S. Roles of mTOR and STAT3 in autophagy induced by telomere 3´ overhang-specific DNA oligonucleotides. Autophagy3(5), 496–498 (2007).
  • Aoki H, Iwado E, Eller MS et al. Telomere 3´ overhang-specific DNA oligonucleotides induce autophagy in malignant glioma cells. FASEB J. (2007) (Epub ahead of print).
  • Liotta LA, Kohn EC, Petricoin EF. Clinical proteomics: personalized molecular medicine. JAMA286(18), 2211–2214 (2001).
  • Zhang Q, Bhola NE, Lui VW et al. Antitumor mechanisms of combined gastrin-releasing peptide receptor and epidermal growth factor receptor targeting in head and neck cancer. Mol. Cancer Ther.6(4), 1414–1424 (2007).
  • Major SM, Nishizuka S, Morita D et al. AbMiner: a bioinformatic resource on available monoclonal antibodies and corresponding gene identifiers for genomic, proteomic, and immunologic studies. BMC Bioinformatics7, 192 (2006).
  • Huang D, Casale GP, Tian J et al. Quantitative fluorescence imaging analysis for cancer biomarker discovery: application to beta-catenin in archived prostate specimens. Cancer Epidemiol. Biomarkers Prev.16(7), 1371–1381 (2007).

Websites

  • AbMiner http://discover.nci.nih.gov/tools.jsp
  • Alliance for Cellular Signaling (AfCS Antibody Database) www.signaling-gateway.org/data/antibody/cgi-bin/targets.cgi
  • PhosphoSite® www.phosphosite.org
  • Antibody/Epitope Registry Database http://phm.utoronto.ca/∼jeffh/AERD.htm
  • Aloka G, Chakravarty A. Surrogate markers: their role in regulatory process www.fda.gov/cder/Offices/Biostatistics/Chakravarty_376/sld016.htm

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.