224
Views
32
CrossRef citations to date
0
Altmetric
Review

Raman spectroscopy of breast tissues

, , , , , & show all
Pages 149-166 | Published online: 09 Jan 2014

References

  • Parkin DM, Bray F, Ferlay J, Pisani P. Global Cancer Statistics, 2002. CA Cancer J. Clin.55, 74–108 (2005).
  • Jemal A, Clegg LX, Ward E et al. Annual report to the nation on the status of cancer, 1975–2001, with a special feature regarding survival. Cancer101, 3–27 (2004).
  • Boyle P, Autier P, Bartelink H et al. Breast cancer screening. In: IARC Handbook on Cancer Prevention (Report No. 7). Vainio H, Bianchini F (Eds). IARC Press, Lyon, France, 144–1179 (2002).
  • Hewitt M, Breen N, Devesa S. Cancer prevalence and survivorship issues: analyses of the 1992 National Health Interview Survey. J. Natl Cancer Inst.91, 1480–1486 (1999).
  • McPherson K, Steel CM, Dixon JM. Breast cancer – epidemiology, risk factors and genetics. Br. Med. J.321, 624–628 (2000).
  • Parkin DM, Bray F, Devesa S. Cancer burden in the year 2000: the global picture. Eur. J. Cancer37, S4 –S66 (2001).
  • Malley MS, Fletcher SW. U.S. Preventive Services Task Force. Screening for breast cancer with breast self-examination. A critical review.JAMA257, 2196–2203 (1987).
  • Thomas DB, Gao DL, Ray RM et al. Randomized trial of breast self examination in Shanghai: final results. J. Natl Cancer Inst.94, 1445–1457 (2002).
  • Hackshaw AK, Paul EA. Breast self-examination and death from breast cancer: a meta-analysis. Br. J. Cancer88, 1047–1053 (2003).
  • Kosters JP, Gotzsche PC. Regular self-examination or clinical examination for early detection of breast cancer. Cochrane Database Syst. Rev.2, CD003373 (2003).
  • McDonald S, Saslow D, Alciati MH. Performance and reporting of clinical breast examination: a review of the literature. CA Cancer J. Clin.54, 345–361 (2004).
  • Bobo JK, Lee NC, Thames SF. Findings from 752,081 clinical breast examinations reported to a national screening program from 1995 through 1998. J. Natl Cancer Inst.92, 971–976 (2000).
  • Miller AB, Baines CJ, To T, Wall C. Canadian National Breast Screening Study: 1. Breast cancer detection and death rates among women aged 40 to 49 years. Can. Med. Assoc. J.147, 1459–1476 (1992).
  • Miller AB, Baines CJ, To T, Wall C. Canadian National Breast Screening Study: 2. Breast cancer detection and death rates among women aged 50 to 59 years.Can. Med. Assoc. J.147, 1477–1488 (1992).
  • Barton MB, Harris R, Fletcher SW. The rational clinical examination. Does this patient have breast cancer? The screening clinical breast examination: should it be done? How? JAMA282, 1270–1280 (1999).
  • Fletcher SW, O’Malley MS, Pilgrim CA, Gonzalez JJ. How do women compare with internal medicine residents in breast lump detection? A study with silicone models. J. Gen. Intern. Med.4, 277–283 (1989).
  • Ingleby H, Gerson-Cohen J. Comparative Anatomy, Pathology and Roentgenology of the Breast. University of Philadelphia Press, PA, USA (1960).
  • Kerlikowske K, Barclay, J. Outcomes of modern screening mammography. J. Natl Cancer Inst. Monogr.22, 105–110 (1997).
  • Elmore JG, Barton MB, Moceri VM et al. Ten-year risk of false positive screening mammograms and clinical breast examinations. N. Engl. J. Med.338, 1089–1096 (1998).
  • Hindle WH, Davis L, Wright D. Clinical value of mammography for symptomatic women 35 years of age and younger. Am. J. Obstet. Gynecol.180, 1484–1490 (1999).
  • Baines CJ, Dayan R. A tangled web: factors likely to affect the efficacy of screening mammography. J. Natl Cancer Inst.91, 833–838 (1999).
  • Laya MB, Larson EB, Taplin SH, White E. Effect of estrogen replacement therapy on the specificity and sensitivity of screening mammography. J. Natl Cancer Inst.88, 643–649 (1996).
  • Litherland JC, Stallard S, Hole D, Cordiner C. The effect of hormone replacement therapy on the sensitivity of screening mammograms. Clin. Radiol.54, 285–288 (1999).
  • Boetes C, Stoutjesdijk M. MR imaging in screening women at increased risk for breast cancer. Magn. Reson. Imaging Clin. N. Am.9, 357–372 (2001).
  • Morris EA. Review of breast MRI: indications and limitations. Semin. Roentgenol.36, 226–237 (2001).
  • Orel SG, Schnall MD. MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology220, 13–30 (2001).
  • Kuhl CK, Kreft BP, Bieling HB et al. Dynamic breast MRI in premenopausal healthy volunteers: normal values of contrast enhancement and cycle phase dependency. Radiology203, 137–144 (1997).
  • Muller-Schimpfle M, Ohmenhauser K, Stoll P, Dietz K, Claussen CD. Menstrual cycle and age: influence on parenchymal contrast medium enhancement in MR imaging of the breast. Radiology203, 145–149 (1997).
  • Kuhl CK, Rita KS, Leutner CC et al. Breast MR imaging screening in 192 women proved or suspected to be carriers of a breast cancer susceptibility gene: preliminary results. Radiology215, 267–279 (2000).
  • Teh W, Wilson AR. The role of ultrasound in breast cancer screening. A consensus statement by the European Group for Breast Cancer Screening. Eur. J. Cancer34, 449–450 (1998).
  • Beran L, Liang W, Nims T, Paquelet J, Sickle-Santanello B. Correlation of targeted ultrasound with magnetic resonance imaging abnormalities of the breast. Am. J. Surg.190, 592–594 (2005).
  • Ariga R, Bloom K, Reddy VB et al. Fine-needle aspiration of clinically suspicious palpable breast masses with histopathologic correlation. Am. J. Surg.184, 410–413 (2002).
  • Saxe A, Phillips E, Orfanou P, Husain M. Role of sample adequacy in fine needle aspiration biopsy of palpable breast lesions. Am. J. Surg.182, 369–371 (2001).
  • Willis SL, Ramzy I. Analysis of false results in a series of 835 fine-needle aspirates of breast lesions. Acta Cytologica39, 858–864 (1995).
  • Purasiri P, Abdalla M, Heys SD et al. A novel diagnostic index for use in the breast clinic. J. R. Coll. Surg. Edinb.41, 30–34 (1996).
  • Fishman JE, Milikowski C, Ramsinghani R, Velasquez MV, Aviram G. US-guided core-needle biopsy of the breast: how many specimens are necessary? Radiology226, 779–782 (2003).
  • Westenend PJ, Sever AR, Beekman-De Volder HJ, Liem SJ. A comparison of aspiration cytology and core needle biopsy in the evaluation of breast lesions. Cancer93, 146–150 (2001).
  • Chuo CB, Corder AP. Core biopsy vs fine needle aspiration cytology in a symptomatic breast clinic. Eur. J. Surg. Oncol.29, 374–378 (2003).
  • Morris KT, Vetto JT, Petty JK et al. A new score for the evaluation of palpable breast masses in women under age 40. Am. J. Surg.184, 346–347 (2002).
  • Steinberg JL, Trudeau ME, Ryder DE et al. Combined fine-needle aspiration, physical examination and mammography in the diagnosis of palpable breast masses: their relation to outcome for women with primary breast cancer. Can. J. Surg.39, 302–311 (1996).
  • Kamphausen BH, Toellner T, Ruschenburg I. The value of ultrasound-guided fine-needle aspiration cytology of the breast: 354 cases with cytohistological correlation. Anticancer Res.23, 3009–3013 (2003).
  • Clarke D, Sudhakaran N, Gateley CA. Replace fine needle aspiration cytology with automated core biopsy in the triple assessment of breast cancer. Ann. R. Coll. Surg. Engl.83, 110–112 (2001).
  • Schoonjans JM, Brem RF. Fourteen-gauge ultrasonographically guided large-core needle biopsy of breast masses. J. Ultrasound Med.20, 967–972 (2001).
  • Hindle WH, Breast masses. In-office evaluation with diagnostic triad. Postgrad. Med.88(2), 85–87, 90–94 (1990).
  • Fletcher SW. Breast cancer screening among women in their forties: an overview of the issues. J. Natl Cancer Inst. Monogr.22, 5–9 (1997).
  • Bird BE. A successful breast cancer screening program. Cancer69(7), 1938–1941 (1992).
  • Joensuu H, Asola R, Holli K, Kumpulainen E, Nikkanen V, Parvinen LM. Delayed diagnosis and large size of breast cancer after a false negative mammogram. Eur. J. Cancer30A(9), 1299–1302 (1994).
  • Kerlikowske K, Smith-Bindman R, Abraham LA et al. Breast cancer yield for screening mammographic examinations with recommendation for short-interval follow-up. Radiology234(3), 684–692 (2005).
  • American Cancer Society. Cancer Facts and Figures – 2003. American Cancer Society, Inc., Atlanta, GA, USA (2003).
  • Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29, 1181–1189 (1999).
  • Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN,Willmitzer L. Metabolite profiling for plant functional genomics. Nat. Biotechnol.18, 1157–1161 (2000).
  • Brindle JT, Antti H, Holmes E et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using H-1-NMR-based metabonomics. Nat. Med.8, 1439–1444 (2002).
  • Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp. Funct. Genomics2, 155–168 (2001).
  • Fiehn O. Metabolomics – the link between genotypes and phenotypes. Plant Mol. Biol.48, 155–171 (2002).
  • Kumar V, Abbas AK, Faustomd M. Robbins and Cotran Pathologic Basis of Disease (7th Edition). WB Saunders Co., PA, USA (1994).
  • Kortum RR. Quantitative optical spectroscopy for tissue diagnosis. Annu. Rev. Phys. Chem.47, 555–606 (1996).
  • Wagnieres GA, Star WM, Wilson BC. in vivo fluorescence spectroscopy and imaging for oncological applications. Photochem. Photobiol.68(5), 603–632 (1998).
  • Haringsma J, Tytgat GN. Fluorescence and autofluorescence. Baillieres Best Pract. Res. Clin. Gastroenterol.13(1), 1–10 (1999).
  • Ramanujam N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia2(1–2), 89–117 (2000).
  • Sokolov K, Follen M, Kortum RR. Optical spectroscopy for detection of neoplasia. Curr. Opin. Chem. Biol.6(5), 651–658 (2002).
  • Mayinger B. Endoscopic fluorescence spectroscopic imaging in the gastrointestinal tract. Gastrointest. Endosc. Clin. N. Am.14(3), 487–505 (2004).
  • De Veld DC, Witjes MJ, Sterenborg HJ, Roodenburg JL. The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncol.41(2), 117–131 (2005).
  • Kartha VB, Kurien J, Pai KM et al. Diagnosis at the molecular level: analytical laser spectroscopy for clinical applications. In: Photo/Electrochemistry & Photobiology in the Environment, Energy, and Fuel. Koneco S, Viswanathan B, Funasaka K (Eds). Research Signapost, Trivendrum, India 153–221 (2005).
  • Lacroix M, Poinsot V, Fournier C, Couderc F. Laser-induced fluorescence detection schemes for the analysis of proteins and peptides using capillary electrophoresis. Electrophoresis26(13), 2608–2621 (2005).
  • Aaron JJ, Trajkovska S. Fluorescence studies of anticancer drugs – analytical and biomedical applications. Curr. Drug Targets7(9), 1067–1081 (2006).
  • Bigio IJ, Mourant JR. Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. Phys. Med. Biol.42, 803–814 (1997).
  • Bigio IJ, Brown SG. Spectroscopic sensing of cancer and cancer therapy. Cancer Biol. Ther.3(3), 259–267 (2004).
  • Georgakoundi I, Jacobson BC, Muller MG et al. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res.62, 682 (2002).
  • Lakowicz JR. Principles of fluorescence spectroscopy. Plenum Press, BY, USA (1983).
  • Cheong W, Prahl SA, Welch AJ. A review of the optical properties of biological tissues. IEEE J. Quantum Electron.26, 2166–2185 (1990).
  • Alfano RR, Pradhan A, Tang GC, Wahl SJ. Optical spectroscopic diagnosis of cancer and normal breast tissues. J. Opt. Soc. Am. B6, 1015 (1989).
  • Pradhan A, Das BB, Yoo KM et al. Time-resolved UV photoexcited fluorescence kinetics from malignant and non-malignant human breast tissues. Laser Life Sci.4, 225–234 (1991).
  • Yang Y, Celmer EJ, ZurawskaHSzczepaniak M, Alfano RR. Excitation spectrum of malignant and benign breast tissues. A potential optical biopsy approach. Laser Life Sci.74, 249–265 (1996).
  • Alimova A, Katz A, Sriramoju V et al. Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection. J. Biomed. Opt.12(1), 014004–014009 (2007).
  • Gupta PK, Majumder SK, Uppal A. Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy. Laser Surg. Med.21, 417–422 (1997).
  • Jain B, Majumder SK, Gupta PK. Time resolved and steady state autofluorescence spectroscopy of normal, and malignant human breast tissue. Laser Life Sci.8, 163–173 (1997).
  • Majumder SK, Gupta PK. Synchronous luminescence spectroscopy of human breast tissue. In: Optical Diagnostics of Biological Fluids III (Volume 3252). Priezzhev AV (Ed.). SPIE – The International Society for Optical Engineering, San Jose, CA, USA 169–178 (1998).
  • Majumder SK, Gupta PK, Jain B, Uppal A. UV excited autofluorescence spectroscopy of human breast tissues for discriminating cancerous tissue from benign tumor and normal tissue. Laser Life Sci.8, 249–264 (1999).
  • Majumder SK, Ghosh N, Gupta PK. N2 laser excited autofluorescence spectroscopy of formalin-fixed human breast tissue. Photochem. Photobiol.81, 33–42 (2005).
  • Glassman WS, Steinberg M, Alfano RR. Time resolved and steady state fluorescence spectroscopy from normal and malignant cultured human breast cell lines. Laser Life Sci.6(2), 91–98 (1994).
  • Palmer GM, Keely PJ, Breslin TM, Ramanujam N. Autofluorescence spectroscopy of normal and malignant human breast cell lines. Photochem. Photobiol.78(5), 462–469 (2003).
  • Yang Y, Celmer EJ, Koutcher JA, Alfano RR. UV reflectance spectroscopy probes DNA and protein changes in human breast tissues. J. Clin. Laser Med. Surg.19(1), 35–39 (2001).
  • Breslin TM, Xu F, Palmer GM, Zhu C, Gilchrist KW, Ramanujam N. Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues. Ann. Surg. Oncol.11(1), 65–70 (2004).
  • Pogue B, Jiang S, Dehghani H et al. Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes. J. Biomed. Opt.9, 541–552 (2004).
  • Jakubowski DB, Cerussi AE, Bevilacqua F et al. Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study. J. Biomed. Opt.9(1), 230–238 (2004).
  • Bigio IJ, Bown SG, Briggs G et al. Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results. J. Biomed. Opt.5(2), 221–228 (2000).
  • Bigio IJ, Stephen GB. Spectroscopic sensing of cancer and cancer therapy. Cancer Biol. Ther.3(3), 259–267 (2004).
  • Naumann D. FT-infrared and FT-Raman spectroscopy in biomedical research. Appl. Spectrosc. Rev.36(2,3), 239–298 (2001).
  • Manstch HH, Choo-Smith LP, Shaw RA. Vibrational spectroscopy and medicine: an alliance in making. Vib. Spectrosc.30, 31–41 (2002).
  • Sahu RK, Mordechai S. Fourier transform infrared spectroscopy in cancer detection. Future Oncol.1(5), 635–637 (2005).
  • Swinson B, Jerjes W, El-Maaytah M, Norris P, Hopper C. Optical techniques in diagnosis of head and neck malignancy. Oral Oncol.42, 221–228 (2006).
  • Krafft C, Sergo V. Biomedical applications of Raman and infrared spectroscopy to diagnose tissues. Spectroscopy20, 195–218 (2006).
  • Lin SY, Li MJ, Cheng WT. FT-IR and Raman vibrational microspectroscopies used for spectral biodiagnosis of human tissues, Spectroscopy21, 1–30 (2007).
  • Zhang L, Small GW, Haka AS, Kidder LH, Lewis EN. Classification of Fourier transform infrared microscopic imaging data of human breast cells by cluster analysis and artificial neural networks. Appl. Spectrosc.57(1), 14–22 (2002).
  • Svensson T, Swartling J, Taroni P et al. Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy. Phys. Med. Biol.50, 2559–2571 (2005).
  • Ling XF, Xu Z, Xu YZ et al. FTIR spectroscopic explorations of clinical practice of breast cancer. Guang Pu Xue Yu Guang Pu Fen Xi25(2), 198–200 (2005).
  • Liu C, Zhang Y, Yan X et al. Infrared absorption of human breast tissues in vitro. J. Lumin.119, 132–136 (2006).
  • Zhou S, Xu Z, Ling XF et al. FTIR spectroscopic characterization of freshly removed breast cancer tissues. Zhongua Zhong Liu Za Zhi28(7), 512–514 (2006).
  • Fabian H, Lasch P, Boese M, Haensch W. Mid-IR microspectroscopic imaging of breast tumor tissue sections. Biopolymers67, 354–357 (2002).
  • Fabian H, Lasch P, Boese M, Haensch W. Infrared microspectroscopic imaging of benign breast tumor sections. J. Mol. Struct.661, 411–417 (2003).
  • Fabian H, Thi NA, Eiden M et al. Diagnosing benign and malignant lesions in breast tissue sections by using IR-microspectroscopy. Biochem. Biophys. Acta1758, 874–882 (2006).
  • Dukor RK. Vibrational spectroscopy in the detection of cancer. In: Handbook of Vibrational Spectroscopy (Volume 5) Chalmers JM, Griffiths PR (Eds). John Wiley & Sons, Ltd, Chichester, UK 3335–3361 (2002).
  • Mordechai S, Salman A, Sahu RK, Guterman H, Argov S. Chapter 4: Techniques in infrared microspectroscopy & advanced computational methods for colon cancer diagnosis. In: Medical Imaging Systems Technology (Volume 1). Leondes CT (Ed.). World Scientific, NY, USA 87–118 (2005).
  • Sahu RK, Argov S, Katzir A, Mordechai S. New approaches to cervical cancer diagnosis using FTIR-spectroscopy. In: Cancer Research at the Leading Edge. Nova Science Publishers, Inc., NY, USA (2007).
  • Sukuta S, Bruch R. Factor analysis of cancer Fourier transform infrared evanescent wave fiberoptical (FTIR-FEW) spectra. Lasers Surg. Med.24, 382–388, (1999).
  • Raman CV, Krishnan KS. A new class of spectra due to secondary radiation. Part I. Ind. J. Phys.2, 399 (1928).
  • Raman CV, Krishnan KS. A change of wavelength in light scattering. Nature121, 501 (1928).
  • Manoharan R, Wang Y, Feld MS. Ultraviolet resonance raman spectroscopy for detection of colon cancer. Laser Life Sci.6(4), 217–227 (1995).
  • Yazdi Y, Ramanujam N, Lotan R, Mitchell MF, Hittelman W, Kortum RR. Resonance Raman spectroscopy at 257 nm excitation of normal and malignant cultured breast and cervical cells. Appl. Spectrosc.53, 82–85 (1999).
  • Lee S, Kim S, Choo J et al. Biological imaging of HEK293 cells expressing PLCgamma1 using surface-enhanced Raman microscopy. Anal. Chem.79(3), 916–922 (2007).
  • Kim JH, Kim JS, Choi H et al. Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Anal. Chem.78(19), 6967–6973 (2006).
  • Seballos L, Zhang JZ, Sutphen R. Surface-enhanced Raman scattering detection of lysophosphatidic acid. Anal. Bioanal. Chem.383(5), 763–767 (2005).
  • Kneipp J, Kneipp H, Rice WL, Kneipp K. Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal. Chem.77(8), 2381–2385 (2005).
  • Culha M, Stokes D, Allain LR, Vo-Dinh T. Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics. Anal. Chem.75(22), 6196–6201 (2003).
  • Culha M, Stokes D, Vo-Dinh T. Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene. Expert Rev. Mol. Diagn.3(5), 669–675 (2003).
  • Krishna CM, Sockalingam GD, Kurien J et al. Micro-Raman spectroscopy for optical pathology of oral squamous cell carcinoma. Appl. Spectrosc.58, 1128–1135 (2004).
  • Caspers PJ, Lucassen GW, Puppels GJ. Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys. J.85, 572–580 (2003).
  • Kraft C, Knetschke T, Siegner A, Funk RHW, Salzer R. Mapping of single cells by near infrared Raman microspectroscopy. Vib. Spectrosc.32, 75–83 (2003).
  • Krishna CM, Kegelaer G, Adt I et al. Combined Fourier transform infrared and Raman spectroscopic approach for identification of multidrug resistance phenotype in cancer cell lines. Biopolymers82(5), 462–470 (2006).
  • Krishna CM, Kegelaer G, Adt I et al. Characterisation of uterine sarcoma cell lines exhibiting MDR phenotype by vibrational spectroscopy. Biochim. Biophys. Acta1726, 160–167 (2005).
  • Krishna CM, Sockalingum GD, Kegelaer G, Rubin S, Kartha VB, Manfait M. Micro-Raman spectroscopy of mixed cancer cell populations. Vib. Spectrosc.38, 95–100 (2005).
  • Nan XL, Cheng JX, Xie XS. Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J. Lipid Res.44, 2202–2208 (2003).
  • Potma EO, Xie XS. Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy. J. Raman Spectrosc.34, 642–650 (2003).
  • Shim MG, Wilson BC, Marple E, Wacj M. Study of fiberoptic probes for in vivo medical Raman spectroscopy. Appl. Spectrosc.53, 619–627 (1999).
  • Schut TB, Wolthius R, Caspers PJ, Puppels GJ. Real-time tissue characterisation on the basis of in vivo Raman spectra. J. Raman Spectrosc.33, 580–585 (2002).
  • Hanlon EB, Manoharan R, Koo TW et al. Prospects for in vivo Raman spectroscopy. Phys. Med. Biol.45(2), R1–59 (2000).
  • Alfano RR, Liu CH, Sha WL et al. Human breast tissues studied by IR Fourier transform Raman spectroscopy. Lasers Life Sci.4, 23–28 (1991).
  • Bitar RA, Martinho HDS, Criollo CJT, Ármalo LNZ, Netto MM, Martin AA. Diagnosis of breast cancer by Fourier transform Raman spectroscopy. J. Biomed. Opt.11 (5), 054001 (2006).
  • Redd DCB, Feng ZC, Yue KT, Gansler TS. Raman spectroscopic characterization of human breast tissues: implications for breast cancer diagnosis. Appl. Spectrosc.47, 787–791 (1993).
  • Frank CJ, McCreery RL, Redd DCB. Raman spectroscopy of normal and diseased human breast tissues. Anal. Chem.67, 777–783 (1995).
  • Manoharan R, Wang Y, Feld MS. Histochemical analysis of biological tissues using Raman Spectroscopy. Spectrochim. Acta A.52, 215–249 (1996).
  • Shafer-Peltier KE, Haka AS, Fitzmaurice M, Crowe J, Dasari RR, Feld MS. Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo. J. Raman Spectrosc.33, 552–563 (2002).
  • Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS. Diagnosing breast cancer by using Raman spectroscopy. Proc. Natl Acad. Sci. USA.102(35), 12371–12376 (2005).
  • Haka AS, Volynskaya Z, Gardecki JA et al.In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy. Cancer Res.66(6), 3317–3322 (2006).
  • Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS. Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy. Cancer Res.62, 5375–5380, (2002).
  • Baker R, Matousek P, Ronayne KL, Parker AW, Rogers K, Stone N. Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy. Analyst132(1), 48–53 (2007).
  • Matousek P, Stone N. Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy. J. Biomed. Opt.12(2), 024008 (2007)
  • Kneipp J, Schut TM, Kliffen M, Pluijmers MM, Puppels GJ. Characterization of breast duct epithelia: a Raman spectroscopic study. Vib. Spectrosc.32, 67–74 (2003).
  • Yu G, Xu XX, Niu Y, Wang B, Song ZF, Zhang CP. Studies on human breast cancer tissues with Raman microspectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi24(11), 1359–1362 (2004).
  • Yan XL, Dong RX, Wang QG et al. Raman spectra of cell from breast cancer patients. Guang Pu Xue Yu Guang Pu Fen Xi25, 58–61 (2005).
  • Yu C, Gestl E, Eckert K, Allara D, Irudayaraj J. Characterization of human breast epithelial cells by confocal Raman microspectroscopy. Cancer Detect. Prev.30(6), 515–522 (2006).
  • Pichardo-Molina JL, Frausto-Ryes C, Barbosa-Garcia O et al. Raman spectroscopy and multivariate análysis of serum samples from breast cancer patients. Lasers Med. Sci.22(4), 229–236 (2007).
  • Santos LF, Wolthuis R, Koljenovi S, Almeida RM, Puppels GJ. Fiberoptic probes for in vivo Raman spectroscopy in the high-wavenumber region. Anal. Chem.77, 6747–6752 (2005).
  • Utzinger URS, Richards-Kortum RR. Fiber optic probes for biomedical optical spectroscopy. J. Biomed. Opt.8, 121–147 (2003).
  • Utzinger URS, Heintzelman DL, Mahadevan-Jansen A et al. Near-infrared Raman spectroscopy for in vivo detection of cervical precancers. Appl. Spectrosc.55, 955–959 (2001).
  • Shim MG, Song LWK, Marcon NE, Wilson BC. In vivo nearinfrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy. Photochem. Photobiol.72, 146–150 (2000).
  • Tfayli A, Piot O, Derancourt S, Bernard P, Manfait M. In vivo Raman analysis of human skin lesions. SPIE Newsroom (2008) DOI: 10.1117/2.1200604.0215.
  • Chowdary MVP, Kumar KK, Kurien J, Mathew S, Krishna CM. Discrimination of normal, benign and malignant breast tissue by Raman spectroscopy. Biopolymers83(5), 556–569 (2006).
  • Mahalanobis PC. On generalized distance in statistics. Proc. Natl. Inst. Sci. India2, 49–55 (1936).
  • Mark HL. Use of Mahalanobis distances to evaluate sample preparation methods for near-infrared reflectance analysis. Anal. Chem.59, 790–795 (1987).
  • PLSplus/IQ, user’s guide. Galactic Industries Corporation, NH, USA (1999).
  • Malini R, Venkatakrishna K, Kurien J et al. Discrimination of normal, inflammatory, premalignant and malignant oral tissue: a Raman spectroscopy study. Biopolymers81, 179–193 (2006).
  • Krishna CM, Prathima NB, Malini R et al. Raman spectroscopy studies for diagnosis of cancers in human uterine cervix. Vib. Spectrosc.41, 136–141 (2006).
  • Kumar KK, Anand A, Chowdary MVP et al. Discrimination of normal and malignant stomach mucosal tissues by Raman spectroscopy: a pilot study. Vib. Spectrosc.44, 382–387 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.