729
Views
27
CrossRef citations to date
0
Altmetric
Editorial

Hyperinflammation in airways of cystic fibrosis patients: what’s new?

, &
Pages 359-363 | Published online: 09 Jan 2014

References

  • Tirouvanziam R. Neutrophilic inflammation as a major determinant in the progression of cystic fibrosis. Drug News Perspect.19(10), 609–614 (2006).
  • Kreda SM, Mall M, Mengos A et al. Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia. Mol. Biol. Cell16(5), 2154–2167 (2005).
  • Jacquot J, Puchelle E, Hinnrasky J et al. Localization of the cystic fibrosis transmembrane conductance regulator in airway secretory glands. Eur. Respir. J.6(2), 169–176 (1993).
  • Chmiel JF, Davis PB. State of the art: why do the lungs of patients with cystic fibrosis become infected and why can’t they clear the infection? Respir. Res.4(1), 8 (2003).
  • Donaldson SH, Bennett WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N. Engl. J. Med.354(3), 241–250 (2006).
  • Boucher RC. Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends Mol. Med.13(6), 231–240 (2007).
  • Reiniger N, Lee MM, Coleman FT, Ray C, Golan DE, Pier GB. Resistance to Pseudomonas aeruginosa chronic lung infection requires cystic fibrosis transmembrane conductance regulator-modulated interleukin-1 (IL-1) release and signaling through the IL-1 receptor. Infect. Immun.75(4), 1598–1608 (2007).
  • Ornatowski W, Poschet JF, Perkett E, Taylor-Cousar JL, Deretic V. Elevated furin levels in human cystic fibrosis cells result in hypersusceptibility to exotoxin A-induced cytotoxicity. J. Clin. Invest.117(11), 3489–3497 (2007).
  • Teichgraber V, Ulrich M, Endlich N et al. Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat. Med.14(4), 382–391 (2008).
  • Davis PB, Drumm M, Konstan MW. Cystic fibrosis. Am. J. Respir. Crit. Care Med.154(5), 1229–1256 (1996).
  • Balough K, McCubbin M, Weinberger M, Smits W, Ahrens R, Fick R. The relationship between infection and inflammation in the early stages of lung disease from cystic fibrosis. Pediatr. Pulmonol.20(2), 63–70 (1995).
  • Sagel SD, Chmiel JF, Konstan MW. Sputum biomarkers of inflammation in cystic fibrosis lung disease. Proc. Am. Thorac. Soc.4(4), 406–417 (2007).
  • Boucher RC. New concepts of the pathogenesis of cystic fibrosis lung disease. Eur. Respir. J.23(1), 146–158 (2004).
  • Muhlebach MS, Stewart PW, Leigh MW, Noah TL. Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am. J. Respir. Crit. Care Med.160(1), 186–191 (1999).
  • Tirouvanziam R, de Bentzmann S, Hubeau C et al. Inflammation and infection in naive human cystic fibrosis airway grafts. Am. J. Respir. Cell. Mol. Biol.23(2), 121–127 (2000).
  • Elizur A, Cannon CL, Ferkol TW. Airway inflammation in cystic fibrosis. Chest133(2), 489–495 (2008).
  • Tabary O, Escotte S, Couetil JP et al. High susceptibility for cystic fibrosis human airway gland cells to produce IL-8 through the IκB kinase α pathway in response to extracellular NaCl content. J. Immunol.164(6), 3377–3384 (2000).
  • Tabary O, Escotte S, Couetil JP et al. Relationship between IκBα deficiency, NFκB activity and interleukin-8 production in CF human airway epithelial cells. Pflugers Arch.443(Suppl. 1), S40–S44 (2001).
  • Tabary O, Zahm JM, Hinnrasky J et al. Selective up-regulation of chemokine IL-8 expression in cystic fibrosis bronchial gland cells in vivo and in vitro.Am. J. Pathol.153(3), 921–930 (1998).
  • Carrabino S, Carpani D, Livraghi A et al. Dysregulated interleukin-8 secretion and NF-κB activity in human cystic fibrosis nasal epithelial cells. J. Cyst. Fibros.5(2), 113–119 (2006).
  • Eidelman O, Srivastava M, Zhang J et al. Control of the proinflammatory state in cystic fibrosis lung epithelial cells by genes from the TNF-αR/NFκB pathway. Mol. Med.7(8), 523–534 (2001).
  • Wiszniewski L, Jornot L, Dudez T et al. Long-term cultures of polarized airway epithelial cells from patients with cystic fibrosis. Am. J. Respir. Cell. Mol. Biol.34(1), 39–48 (2006).
  • Muhlebach MS, Reed W, Noah TL. Quantitative cytokine gene expression in CF airway. Pediatr. Pulmonol.37(5), 393–399 (2004).
  • Hallows KR, Fitch AC, Richardson CA et al. Up-regulation of AMP-activated kinase by dysfunctional cystic fibrosis transmembrane conductance regulator in cystic fibrosis airway epithelial cells mitigates excessive inflammation. J. Biol. Chem.281(7), 4231–4241 (2006).
  • Tabary O, Escotte S, Couetil JP et al. Genistein inhibits constitutive and inducible NFκB activation and decreases IL-8 production by human cystic fibrosis bronchial gland cells. Am. J. Pathol.155(2), 473–481 (1999).
  • DiMango E, Ratner AJ, Bryan R, Tabibi S, Prince A. Activation of NF-κB by adherent Pseudomonas aeruginosa in normal and cystic fibrosis respiratory epithelial cells. J. Clin. Invest.101(11), 2598–2605 (1998).
  • Tabary O, Muselet C, Escotte S et al. Interleukin-10 inhibits elevated chemokine interleukin-8 and regulated on activation normal T cell expressed and secreted production in cystic fibrosis bronchial epithelial cells by targeting the IκB kinase a/b complex. Am. J. Pathol.162(1), 293–302 (2003).
  • Kube D, Sontich U, Fletcher D, Davis PB. Proinflammatory cytokine responses to P. aeruginosa infection in human airway epithelial cell lines. Am. J. Physiol. Lung Cell. Mol. Physiol.280(3), L493–L502 (2001).
  • Meduri GU, Kanangat S, Stefan J, Tolley E, Schaberg D. Cytokines IL-1β, IL-6, and TNF-α enhance in vitro growth of bacteria. 160(3), 961–967 (1999).
  • Groux-Degroote S, Krzewinski-Recchi MA, Cazet A et al. IL-6 and IL-8 increase the expression of glycosyltransferases and sulfotransferases involved in the biosynthesis of sialylated and/or sulfated Lewis x epitopes in the human bronchial mucosa. Biochem. J.410(1), 213–223 (2007).
  • Verhaeghe C, Remouchamps C, Hennuy B et al. Role of IKK and ERK pathways in intrinsic inflammation of cystic fibrosis airways. Biochem. Pharmacol.73(12), 1982–1994 (2007).
  • Pollard HB, Ji XD, Jozwik C, Jacobowitz DM. High abundance protein profiling of cystic fibrosis lung epithelial cells. Proteomics5(8), 2210–2226 (2005).
  • Weber AJ, Soong G, Bryan R, Saba S, Prince A. Activation of NF-κB in airway epithelial cells is dependent on CFTR trafficking and Cl- channel function. Am. J. Physiol. Lung Cell. Mol. Physiol.281(1), L71–L78 (2001).
  • Venkatakrishnan A, Stecenko AA, King G et al. Exaggerated activation of nuclear factor-κB and altered IκB-β processing in cystic fibrosis bronchial epithelial cells. Am. J. Respir. Cell. Mol. Biol.23(3), 396–403 (2000).
  • Srivastava M, Eidelman O, Joswik C et al. Serum proteomic signature for cystic fibrosis using an antibody microarray platform. Mol. Genet. Metab.87(4), 303–310 (2006).
  • Saadane A, Masters S, DiDonato J, Li J, Berger M. Parthenolide inhibits IκB kinase, NF-κB activation, and inflammatory response in cystic fibrosis cells and mice. Am. J. Respir. Cell. Mol. Biol.36(6), 728–736 (2007).
  • Chmiel JF, Konstan MW. Anti-inflammatory medications for cystic fibrosis lung disease: selecting the most appropriate agent. Treat. Respir. Med.4(4), 255–273 (2005).
  • Chmiel JF, Konstan MW, Knesebeck JE et al. IL-10 attenuates excessive inflammation in chronic Pseudomonas infection in mice. Am. J. Respir. Crit. Care Med.160(6), 2040–2047 (1999).
  • Perez A, Issler AC, Cotton CU, Kelley TJ, Verkman AS, Davis PB. CFTR inhibition mimics the cystic fibrosis inflammatory profile. Am. J. Physiol. Lung Cell. Mol. Physiol.292(2), L383–L395 (2007).
  • Ollero M, Junaidi O, Zaman MM et al. Decreased expression of peroxisome proliferator activated receptor γ in CFTR-/- mice. J. Cell Physiol.200(2), 235–244 (2004).
  • Sadikot RT, Christman JW, Blackwell TS. Molecular targets for modulating lung inflammation and injury. Curr. Drug Targets5(6), 581–588 (2004).
  • Boncoeur E, Criq VS, Bonvin E et al. Oxidative stress induces extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase in cystic fibrosis lung epithelial cells: potential mechanism for excessive IL-8 expression. Int. J. Biochem. Cell Biol.40(3), 432–446 (2008).
  • Boncoeur E, Tabary O, Bonvin E et al. Oxidative stress response results in increased p21WAF1/CIP1 degradation in cystic fibrosis lung epithelial cells. Free Radic. Biol. Med.40(1), 75–86 (2006).
  • Jacquot J, Tabary O, Le Rouzic P, Clement A. Airway epithelial cell inflammatory signalling in cystic fibrosis. Int. J. Biochem. Cell Biol. (Epub ahead of print) (2008).
  • Jensen PO, Bjarnsholt T, Phipps R et al. Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa.Microbiology153(Pt 5), 1329–1338 (2007).
  • Hartl D, Latzin P, Hordijk P et al. Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat. Med.13(12), 1423–1430 (2007).
  • Voynow JA, Fischer BM, Zheng S. Proteases and cystic fibrosis. Int. J. Biochem. Cell Biol.40(6–7), 1238–1245 (2008).
  • Kettle AJ, Chan T, Osberg I et al. Myeloperoxidase and protein oxidation in the airways of young children with cystic fibrosis. Am. J. Respir. Crit. Care Med.170(12), 1317–1323 (2004).
  • Adib-Conquy M, Pedron T, Petit-Bertron AF et al. Neutrophils in cystic fibrosis display a distinct gene expression pattern. Mol. Med.14(1–2), 36–44 (2008).
  • Tabary O, Corvol H, Boncoeur E et al. Adherence of airway neutrophils and inflammatory response are increased in CF airway epithelial cell-neutrophil interactions. Am. J. Physiol. Lung Cell. Mol. Physiol.290(3), L588–L596 (2006).
  • Tirouvanziam R, Gernez Y, Conrad CK et al. Profound functional and signaling changes in viable inflammatory neutrophils homing to cystic fibrosis airways. Proc. Natl Acad. Sci. USA105(11), 4335–4339 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.