324
Views
71
CrossRef citations to date
0
Altmetric
Review

Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases

, , , , &
Pages 479-494 | Published online: 09 Jan 2014

References

  • Yoshida M. Amyotrophic lateral sclerosis with dementia: the clinicopathological spectrum. Neuropathology24(1), 87–102 (2004).
  • Brun A. Frontal lobe degeneration of non-Alzheimer type. I. Neuropathology. Arch. Gerontol. Geriatr.6(3), 193–208 (1987).
  • Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Brück W. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain125(Pt 10), 2202–2212 (2002).
  • Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R. How common are the “common” neurologic disorders? Neurology68, 326–327 (2007).
  • Menken M. Alzheimer’s disease and the modified role of the neurologist in today’s healthcare environment. Neurology51, 61–64 (1998).
  • Tomlinson BE, Blessed G, Roth M. Observations on the brains of demented old people. J. Neurol. Sci.11(3), 205–242 (1970).
  • Terry RD, Peck A, DeTeresa R, Schechter R, Horoupian DS. Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann. Neurol.10(2), 184–192 (1981).
  • Traynor BJ, Codd MB, Corr B, Forde C, Frost E, Hardiman O. Incidence and prevalence of ALS in Ireland, 1995–1997: a population-based study. Neurology52(3), 504–509 (1999).
  • Strong M, Rosenfeld J. Amyotrophic lateral sclerosis: a review of current concepts. Amyotrophic Lateral Scler. Other Motor Neuron Disord.4, 136–143 (2003).
  • Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology46(4), 907–911 (1996).
  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med.338(5), 278–285 (1998).
  • Lucchinetti CF, Bruck W, Lassmann H. Evidence for pathogenic heterogeneity in multiple sclerosis. Ann. Neurol.56(2), 308 (2004).
  • De Stefano N, Matthews PM, Fu L et al. Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain121, 1469–1477 (1998).
  • Bielekova B, Martin R. Development of biomarkers in multiple sclerosis. Brain127, 1463–1478 (2004).
  • Prentice RL. Surrogate endpoints in clinical trials: definition and operational criteria. Stat. Med.8, 431–440 (1989).
  • Blennow K, Hampel H. Cerebrospinal fluid markers for incipient Alzheimer’s disease. Lancet Neurol.2, 606–613 (2003).
  • Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev.1, CD005593 (2006).
  • Miller RG, Mitchell JD, Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst. Rev.1, CD001447 (2007).
  • Blennow K. CSF biomarkers for Alzheimer’s disease: use in early diagnosis and evaluation of drug treatment. Expert Rev. Mol. Diagn.5(5), 661–672 (2005).
  • Blennow K, Wallin A, Häger O. Low frequency of post-lumbar puncture headache in demented patients. Acta Neurol. Scand.88, 221–223 (1993).
  • Giovannoni G. Multiple sclerosis cerebrospinal fluid biomarkers. Dis. Markers22, 187–96 (2006).
  • Bowser R, Cudkowicz M, Kaddurah-Daouk R. Biomarkers for amyotrophic lateral sclerosis. Expert. Rev. Mol. Diagn.6, 387–398 (2006).
  • Zougman A, Pilch B, Podtelejnikov A et al. Integrated analysis of the cerebrospinal fluid peptidome and proteome. J. Proteome Res.7(1), 386–399 (2008).
  • Felgenhauer K. Protein size and cerebrospinal fluid composition. Klin. Wochenschri.52, 1158–1164 (1974).
  • Lewczuk P, Reiber H, Tumani H. Intercellular adhesion molecule-1 in cerebrospinal fluid – the evaluation of blood-derived and brain-derived fractions in neurological diseases. J. Neuroimmunol.87(1–2), 156–161 (1998).
  • Widl K, Brettschneider J, Schattauer D et al. Erythropoietin in cerebrospinal fluid: age-related reference values and relevance in neurological disease. Neurochem. Res.32(7), 1163–1168 (2007).
  • Link H, Tibbling G. Principles of albumin and IgG analyses in neurological disorders. III. Evaluation of IgG synthesis within the central nervous system in multiple sclerosis. Scand. J. Clin. Lab. Invest.37(5), 397–401 (1977).
  • Reiber H, Felgenhauer K. Protein transfer at the blood cerebrospinal fluid barrier and the quantitation of the humoral immune response within the central nervous system. Clin. Chim. Acta163(3), 319–328 (1987).
  • Tourtellotte WW, Potvin AR, Fleming JO et al. Multiple sclerosis: measurement and validation of central nervous system IgG synthesis rate. Neurology30(3), 240–244 (1980).
  • Reiber H. Dynamics of brain-derived proteins in cerebrospinal fluid. Clin. Chim. Acta310(2), 173–186 (2001).
  • Felgenhauer K, Beuche W. Labordiagnostik neurologischer Erkrankungen. Thieme, Stuttgart, Germany, 24–27 (2007).
  • Nilsson C, Stahlberg F, Thomsen C, Henriksen O, Herning M, Owman C. Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am. J. Physiol.262, 20–24 (1992).
  • Tumani H, Shen G, Peter JB, Bruck W. Glutamine synthetase in cerebrospinal fluid, serum, and brain: a diagnostic marker for Alzheimer disease? Arch. Neurol.56(10), 1241–1246 (1999).
  • Buée L, Bussiere T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev.33, 95–130 (2000).
  • Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J.8(2), 393–399 (1989).
  • Iqbal K, Alonso AD, Gondal JA et al. Mechanism of neurofibrillary degeneration and pharmacologic therapeutic approach. J. Neural. Transm.59, 213–222 (2000).
  • Vandermeeren M, Mercken M, Vanmechelen E et al. Detection of tau proteins in normal and Alzheimer’s disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay. J. Neurochem.61, 1828–1834 (1993).
  • Blennow K, Wallin A, Agren H, Spenger C, Siegfried J, Vanmechelen E. Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol. Chem. Neuropathol.26(3), 231–245 (1995).
  • Vigo-Pelfrey C, Seubert P, Barbour R et al. Elevation of microtubule-associated protein tau in the cerebrospinal fluid of patients with Alzheimer’s disease. Neurology45(4), 788–793 (1995).
  • Mori H, Hosoda K, Matsubara E et al. Tau in cerebrospinal fluids: establishment of the sandwich ELISA with antibody specific to the repeat sequence in tau. Neurosci. Lett.186(2–3), 181–183 (1995).
  • Otto M, Wiltfang J, Tumani H et al. Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeld-Jakob disease. Neurosci. Lett.225, 210–212 (1997).
  • Otto M, Wiltfang J, Cepek L et al. Tau protein and 14-3-3 protein in the differential diagnosis of Creutzfeldt-Jakob disease. Neurology58(2), 192–197 (2002).
  • Grossman M, Farmer J, Leight S et al. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer’s disease. Ann. Neurol.57, 721–729 (2005).
  • Sjögren M, Davidsson P, Tullberg M et al. Both total and phosphorylated tau are increased in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry70, 624–630 (2001).
  • Andreasen N, Minthon L, Clarberg A et al. Sensitivity, specificity, and stability of CSF-tau in AD in a community-based patient sample. Neurology53(7), 1488–1494 (1999).
  • Shoji M, Matsubara E, Kanai M et al. Combination assay of CSF tau, A β 1-40 and A β 1-42(43) as a biochemical marker of Alzheimer’s disease. J. Neurol. Sci.158(2), 134–140 (1998).
  • Jellinger KA. Diagnostic accuracy of Alzheimer’s disease: a clinicopathological study. Acta Neuropathol.91, 219–220 (1996).
  • Green AJ, Harvey RJ, Thompson EJ, Rossor MN. Increased tau in the cerebrospinal fluid of patients with frontotemporal dementia and Alzheimer’s disease. Neurosci. Lett.259, 133–135 (1999).
  • Gómez-Tortosa E, Gonzalo I, Fanjul S et al. Cerebrospinal fluid markers in dementia with lewy bodies compared with Alzheimer disease. Arch. Neurol.60(9), 1218–1222 (2003).
  • Arai H, Terajima M, Miura M et al. Tau in cerebrospinal fluid: a potential diagnostic marker in Alzheimer’s disease. Ann. Neurol.38(4), 649–652 (1995).
  • Riemenschneider M, Wagenpfeil S, Vanderstichele H et al. Phospho-tau/total-tau ratio in cerebrospinal fluid discriminates Creutzfeldt–Jakob disease from other dementias. Mol. Psychiatry8, 343–347 (2003).
  • Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol.5(3), 228–234 (2006).
  • Brettschneider J, Petzold A, Süssmuth SD, Ludolph AC, Tumani H. Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology66(6), 852–856 (2006).
  • Sussmuth SD, Tumani H, Ecker D, Ludolph AC. Amyotrophic lateral sclerosis: disease stage related changes of tau protein and S100 β in cerebrospinal fluid and creatine kinase in serum. Neurosci. Lett.353, 57–60 (2003).
  • Kapaki E, Paraskevas GP, Michalopoulou M, Kilidireas K. Increased cerebrospinal fluid tau protein in multiple sclerosis. Eur. Neurol.43, 228–232 (2000).
  • Jimenez-Jimenez FJ, Hernanz A, Medina-Acebron S et al. Tau protein concentrations in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neurol. Scand.111, 114–117 (2005).
  • Sjögren M, Davidsson P, Wallin A et al. Decreased CSF-β-amyloid 42 in Alzheimer’s disease and amyotrophic lateral sclerosis may reflect mismetabolism of β-amyloid induced by disparate mechanisms. Dement. Geriatr. Cogn. Disord.13(2), 112–118 (2002).
  • Süssmuth SD, Reiber H, Tumani H. Tau protein in cerebrospinal fluid (CSF): a blood–CSF barrier related evaluation in patients with various neurological diseases. Neurosci. Lett.300(2), 95–98 (2001).
  • Bartosik-Psujek H, Archelos JJ. Tau protein and 14-3-3 are elevated in the cerebrospinal fluid of patients with multiple sclerosis and correlate with intrathecal synthesis of IgG. J. Neurol.251(4), 414–420 (2004).
  • Bartosik-Psujek H, Stelmasiak Z. The CSF levels of total-tau and phosphotau in patients with relapsing-remitting multiple sclerosis. J. Neural. Transm.113(3), 339–345 (2006).
  • Brettschneider J, Maier M, Arda S et al. Tau protein level in cerebrospinal fluid is increased in patients with early multiple sclerosis. Mult. Scler.11(3), 261–265 (2005).
  • Terzi M, Birinci A, Cetinkaya E, Onar MK. Cerebrospinal fluid total tau protein levels in patients with multiple sclerosis. Acta Neurol. Scand.115(5), 325–330 (2007).
  • Guimarães I, Cardoso MI, Sá MJ. Tau protein seems not to be a useful routine clinical marker of axonal damage in multiple sclerosis. Mult. Scler.12(3), 354–356 (2006).
  • Jiménez-Jiménez FJ, Zurdo JM, Hernanz A et al. Tau protein concentrations in cerebrospinal fluid of patients with multiple sclerosis. Acta Neurol. Scand.106(6), 351–354 (2002).
  • Martinez-Yelamos A, Rovira A, Sanchez-Valle R et al. CSF 14-3-3 protein assay and MRI as prognostic markers in patients with a clinically isolated syndrome suggestive of MS. J. Neurol.251(10), 1278–1279 (2004).
  • Brex PA, Gomez-Anson B, Parker GJ et al. Proton MR spectroscopy in clinically isolated syndromes suggestive of multiple sclerosis. J. Neurol. Sci.166(1), 16–22 (1999).
  • Buerger K, Otto M, Teipel SJ et al. Dissociation between CSF total tau and tau protein phosphorylated at threonine 231 in Creutzfeldt-Jakob disease. Neurobiol. Aging27(1), 10–15 (2006).
  • Vanmechelen E, Vanderstichele H, Davidsson P et al. Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci. Lett.285, 49–52 (2000).
  • Mollenhauer B, Trenkwalder C, von Ahsen N et al. β-amlyoid 1–42 and tau-protein in cerebrospinal fluid of patients with Parkinson’s disease dementia. Dement. Geriatr. Cogn. Disord.22(3), 200–208 (2006).
  • Herukka SK, Hallikainen M, Soininen H, Pirttilä T. CSF Aβ42 and tau or phosphorylated tau and prediction of progressive mild cognitive impairment. Neurology64(7), 1294–1297 (2005).
  • Ewers M, Buerger K, Teipel SJ et al. Multicenter assessment of CSF-phosphorylated tau for the prediction of conversion of MCI. Neurology69(24), 2205–2212 (2007).
  • Hampel H, Buerger K, Zinkowski R et al. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch. Gen. Psychiatry.61(1), 95–102 (2004).
  • Petzold A, Keir G, Green AJ et al. A specific ELISA for measuring neurofilament heavy chain phosphoforms. J. Immunol. Methods278, 179–190 (2003).
  • Barry DM, Millecamps S, Julien JP, Garcia ML. New movements in neurofilament transport, turnover and disease. Exp. Cell Res.313(10), 2110–2120 (2007).
  • Munoz DG, Greene C, Perl DP, Selkoe DJ. Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients. J. Neuropathol. Exp. Neurol.47, 9–18 (1988).
  • Rosengren LE, Karlsson JE, Karlsson JO, Persson LI, Wikkelso C. Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J. Neurochem.67, 2013–2018 (1996).
  • Zetterberg H, Jacobsson J, Rosengren L, Blennow K, Andersen PM. Cerebrospinal fluid neurofilament light levels in amyotrophic lateral sclerosis: impact of SOD1 genotype. Eur. J. Neurol.14(12), 1329–1333 (2007).
  • Goldstein ME, Sternberger NH, Sternberger LA. Phosphorylation protects neurofilaments against proteolysis. J. Neuroimmunol.14, 149–160 (1987).
  • Sternberger NH, Sternberger LA, Ulrich J. Aberrant neurofilament phosphorylation in Alzheimer disease. Proc. Natl Acad. Sci. USA82(12), 4274–4276 (1985).
  • Su JH, Cummings BJ, Cotman CW. Plaque biogenesis in brain aging and Alzheimer’s disease. I. Progressive changes in phosphorylation states of paired helical filaments and neurofilaments. Brain Res.739(1–2), 79–87 (1996).
  • Norgren N, Rosengren L, Stigbrand T. Elevated neurofilament levels in neurological diseases. Brain Res.987, 25–31 (2003).
  • Rosengren LE, Karlsson JE, Sjögren M, Blennow K, Wallin A. Neurofilament protein levels in CSF are increased in dementia. Neurology52(5), 1090–1093 (1999).
  • Brettschneider J, Petzold A, Schottle D, Claus A, Riepe M, Tumani H. The neurofilament heavy chain (NfH) in the cerebrospinal fluid diagnosis of Alzheimer’s disease. Dement. Geriatr. Cogn. Disord.21(5–6), 291–295 (2006).
  • Pijnenburg YA, Janssen JC, Schoonenboom NS et al. CSF neurofilaments in frontotemporal dementia compared with early onset Alheimer’s disease and controls. Dement. Geriatr. Cogn. Disord.23(4), 225–230 (2007).
  • Sjögren M, Rosengren L, Minthon L, Davidsson P, Blennow K, Wallin A. Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD. Neurology54(10), 1960–1964 (2000).
  • Hu YY, He SS, Wang XC et al. Elevated levels of phosphorylated neurofilament proteins in cerebrospinal fluid of Alzheimer disease patients. Neurosci. Lett.320(3), 156–160 (2002).
  • Petzold A, Keir G, Warren J, Fox N, Rossor MN. A systematic review and meta-analysis of CSF neurofilament protein levels as biomarkers in dementia. Neurodegener. Dis.4(2–3), 185–194 (2007).
  • Norgren N, Sundström P, Svenningsson A, Rosengren L, Stigbrand T, Gunnarsson M. Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology63(9), 1586–1590 (2004).
  • Lycke JN, Karlsson JE, Andersen O, Rosengren LE. Neurofilament protein in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry.64(3), 402–404 (1998).
  • Malmeström C, Haghighi S, Rosengren L, Andersen O, Lycke J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology61(12), 1720–1725 (2003).
  • Semra YK, Seidi OA, Sharief MK. Heightened intrathecal release of axonal cytoskeletal proteins in multiple sclerosis is associated with progressive disease and clinical disability. J. Neuroimmunol.122(1–2), 132–139 (2002).
  • Petzold A, Eikelenboom MJ, Keir G et al. Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study. J. Neurol. Neurosurg. Psychiatry76(2), 206–211 (2005).
  • Rejdak K, Petzold A, Stelmasiak Z, Giovannoni G. Cerebrospinal fluid brain specific proteins in relation to nitric oxide metabolites during relapse of multiple sclerosis. Mult. Scler.14(1), 59–66 (2008).
  • Brettschneider J, Petzold A, Junker A, Tumani H. Axonal damage markers in the cerebrospinal fluid of patients with clinically isolated syndrome improve predicting conversion to definite multiple sclerosis. Mult. Scler.12, 143–148 (2006).
  • Blennow K, Wallin A, Ekman R. Neuron specific enolase in cerebrospinal fluid: a biochemical marker for neuronal degeneration in dementia disorders? J. Neural. Transm. Park. Dis. Dement. Sect.8(3), 183–191 (1994).
  • Infante JR, Martínez A, Ochoa J et al. Level of S-100 and neuron-specific enolase in cerebrospinal fluid from subjects with neurological pathologies. Rev. Esp. Med. Nucl.22(4), 238–243 (2003).
  • Parnetti L, Palumbo B, Cardinali L et al. Cerebrospinal fluid neuron-specific enolase in Alzheimer’s disease and vascular dementia. Neurosci. Lett.183(1–2), 43–45 (1995).
  • Nooijen PT, Schoonderwaldt HC, Wevers RA, Hommes OR, Lamers KJ. Neuron-specific enolase, S-100 protein, myelin basic protein and lactate in CSF in dementia. Dement. Geriatr. Cogn. Disord.8(3), 169–173 (1997).
  • Cutler NR, Kay AD, Marangos PJ, Burg C. Cerebrospinal fluid neuron-specific enolase is reduced in Alzheimer’s disease. Arch. Neurol.43(2), 153–154 (1986).
  • Zerr I, Bodemer M, Räcker S et al. Cerebrospinal fluid concentration of neuron-specific enolase in diagnosis of Creutzfeldt–Jakob disease. Lancet345(8965), 1609–1610 (1995).
  • Aksamit AJ Jr, Preissner CM, Homburger HA. Quantitation of 14-3-3 and neuron-specific enolase proteins in CSF in Creutzfeldt-Jakob disease. Neurology57(4),728–730 (2001).
  • Kropp S, Zerr I, Schulz-Schaeffer WJ et al. Increase of neuron-specific enolase in patients with Creutzfeldt–Jakob disease. Neurosci. Lett.261(1–2), 124–126 (1999).
  • Beaudry P, Cohen P, Brandel JP et al. 14-3-3 protein, neuron-specific enolase, and S-100 protein in cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. Dement. Geriatr. Cogn. Disord.10(1), 40–46 (1999).
  • Lamers KJ, van Engelen BG, Gabreels FJ, Hommes OR, Borm GF, Wevers RA. Cerebrospinal neuron-specific enolase, S-100 and myelin basic protein in neurological disorders. Acta Neurol. Scand.92(3), 247–251 (1995).
  • Royds JA, Davies-Jones GA, Lewtas NA, Timperley WR, Taylor CB. Enolase isoenzymes in the cerebrospinal fluid of patients with diseases of the nervous system. J. Neurol. Neurosurg. Psychiatry.46(11), 1031–1036 (1983).
  • Gmitterová K, Heinemann U, Bodemer M et al. 14-3-3 CSF levels in sporadic Creutzfeldt–Jakob disease differ across molecular subtypes. Neurobiol. Aging (2008) (Epub ahead of print).
  • Wiltfang J, Otto M, Baxter HC et al. Isoform pattern of 14-3-3 proteins in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. J. Neurochem.73(6), 2485–2490 (1999).
  • Martinez-Yelamos A, Saiz A, Sanchez-Valle R et al. 14-3-3 protein in the CSF as prognostic marker in early multiple sclerosis. Neurology57(4), 722–724 (2001).
  • Colucci M, Roccatagliata L, Capello E et al. The 14-3-3 protein in multiple sclerosis: a marker of disease severity. Mult. Scler.10(5), 477–481 (2004).
  • de Seze J, Peoc’h K, Ferriby D, Stojkovic T, Laplanche JL, Vermersch P. 14-3-3 protein in the cerebrospinal fluid of patients with acute transverse myelitis and multiple sclerosis. J. Neurol.249(5), 626–627 (2002).
  • Sánchez-Valle R, Saiz A, Graus F. 14-3-3 protein isoforms and atypical patterns of the 14-3-3 assay in the diagnosis of Creutzfeldt-Jakob disease. Neurosci. Lett.320(1–2), 69–72 (2002).
  • Jasperse B, Jakobs C, Eikelenboom MJ et al.N-acetylaspartic acid in cerebrospinal fluid of multiple sclerosis patients determined by gas-chromatography-mass spectrometry. J. Neurol.254(5), 631–637 (2007).
  • Teunissen CE, Dijkstra C, Polman C. Biological markers in CSF and blood for axonal degeneration in multiple sclerosis. Lancet Neurol.4(1), 32–41 (2005).
  • Fujita K, Honda M, Hayashi R et al. Transglutaminase activity in serum and cerebrospinal fluid in sporadic amyotrophic lateral sclerosis: a possible use as an indicator of extent of the motor neuron loss. J. Neurol. Sci.158(1), 53–57 (1998).
  • Bonelli RM, Aschoff A, Niederwieser G, Heuberger C, Jirikowski G. Cerebrospinal fluid tissue transglutaminase as a biochemical marker for Alzheimer’s disease. Neurobiol. Dis.11(1), 106–110 (2002).
  • Vermes I, Steur EN, Jirikowski GF, Haanen C. Elevated concentration of cerebrospinal fluid tissue transglutaminase in Parkinson’s disease indicating apoptosis. Mov. Disord.19(10), 1252–1254 (2004).
  • Nemes Z, Fésüs L, Egerházi A, Keszthelyi A, Degrell IM. Nε(γ-glutamyl)lysine in cerebrospinal fluid marks Alzheimer type and vascular dementia. Neurobiol. Aging22(3), 403–406 (2001).
  • Jeitner TM, Bogdanov MB, Matson WR et al. Nε(γ-glutamyl)-L-lysine (GGEL) is increased in cerebrospinal fluid of patients with Huntington’s disease. J. Neurochem.79(5), 1109–1112 (2001).
  • Stoica BA, Movsesyan VA, Knoblach SM, Faden AI. Ceramide induces neuronal apoptosis through mitogen-activated protein kinases and causes release of multiple mitochondrial proteins. Mol. Cell. Neurosci.29(3), 355–371 (2005).
  • Malaplate-Armand C, Florent-Béchard S, Youssef I et al. Soluble oligomers of amyloid-β peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol. Dis.23(1), 178–189 (2006).
  • Han X. Lipid alterations in the earliest clinically recognizable stage of Alzheimer’s disease: implication of the role of lipids in the pathogenesis of Alzheimer’s disease. Curr. Alzheimer Res.2(1), 65–77 (2005).
  • Wang G, Silva J, Dasgupta S, Bieberich E. Long-chain ceramide is elevated in presenilin 1 (PS1M146V) mouse brain and induces apoptosis in PS1 astrocytes. Glia56(4), 449–456 (2008).
  • Satoi H, Tomimoto H, Ohtani R et al. Astroglial expression of ceramide in Alzheimer’s disease brains: a role during neuronal apoptosis. Neuroscience130(3), 657–666 (2005).
  • D’Souza SD, Bonetti B, Balasingam V et al. Multiple sclerosis: Fas signaling in oligodendrocyte cell death. J. Exp. Med.184(6), 2361–2370 (1996).
  • Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci.27, 723–749 (2004).
  • Sen J, Belli A. S100B in neuropathologic states: the CRP of the brain? J. Neurosci. Res.85(7), 1373–1380 (2007).
  • Ozawa K, Suchanek G, Breitschopf H et al. Patterns of oligodendroglia pathology in multiple sclerosis. Brain117, 1311–1322 (1994).
  • Petzold A, Jenkins R, Watt HC et al. Cerebrospinal fluid S100B correlates with brain atrophy in Alzheimer’s disease. Neurosci. Lett.336(3), 167–170 (2003).
  • Peskind ER, Griffin WS, Akama KT, Raskind MA, Van Eldik LJ. Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer’s disease. Neurochem. Int.39(5–6), 409–413 (2001).
  • Green AJ, Harvey RJ, Thompson EJ, Rossor MN. Increased S100β in the cerebrospinal fluid of patients with frontotemporal dementia. Neurosci. Lett.235(1–2), 5–8 (1997).
  • Fukuyama R, Izumoto T, Fushiki S. The cerebrospinal fluid level of glial fibrillary acidic protein is increased in cerebrospinal fluid from Alzheimer’s disease patients and correlates with severity of dementia. Eur. Neurol.46(1), 35–38 (2001).
  • Crols R, Saerens J, Noppe M, Lowenthal A. Increased GFAp levels in CSF as a marker of organicity in patients with Alzheimer’s disease and other types of irreversible chronic organic brain syndrome. J. Neurol.233(3), 157–160 (1986).
  • Albrechtsen M, Sørensen PS, Gjerris F, Bock E. High cerebrospinal fluid concentration of glial fibrillary acidic protein (GFAP) in patients with normal pressure hydrocephalus. J. Neurol. Sci.70(3), 269–274 (1985).
  • Massaro AR, Michetti F, Laudisio A, Bergonzi P. Myelin basic protein and S-100 antigen in cerebrospinal fluid of patients with multiple sclerosis in the acute phase. Ital. J. Neurol. Sci.6(1), 53–56 (1985).
  • Petzold A, Eikelenboom MJ, Gveric D et al. Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain125, 1462–1473 (2002).
  • Lim ET, Grant D, Pashenkov M et al. Cerebrospinal fluid levels of brain specific proteins in optic neuritis. Mult. Scler.10(3), 261–265 (2004).
  • Rosengren LE, Lycke J, Andersen O. Glial fibrillary acidic protein in CSF of multiple sclerosis patients: relation to neurological deficit. J. Neurol. Sci.133(1–2), 61–65 (1995).
  • Teunissen CE, Scheltens P. Use of proteomic approaches to identify disease biomarkers. Lancet Neurol.6(12), 1036–1037 (2007).
  • Carrette O, Demalte I, Scherl A et al. A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics3(8), 1486–1494 (2003).
  • Ranganathan S, Williams E, Ganchev P et al. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J. Neurochem.95, 1461–1471 (2005).
  • Pasinetti GM, Ungar LH, Lange DJ et al. Identification of potential CSF biomarkers in ALS. Neurology66, 1218–1222 (2006).
  • Lehmensiek V, Süssmuth SD, Tauscher G et al. Cerebrospinal fluid proteome profile in multiple sclerosis. Mult. Scler.13(7), 840–849 (2007).
  • Puchades M, Hansson SF, Nilsson CL, Andreasen N, Blennow K, Davidsson P. Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res. Mol. Brain Res.118(1–2), 140–146 (2003).
  • Jiménez CR, Koel-Simmelink MJA, Pham T, Teunissen CE. Endogeneous peptide profiling of cerebrospinal fluid by MALDI-TOF mass spectrometry. Proteomics Clin. Appl.1, 1385–1392 (2007).
  • Zhang J, Goodlett DR, Quinn JF et al. Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. J. Alzheimers Dis.7(2), 125–133 (2005).
  • Yi EC, Marelli M, Lee H et al. Approaching complete peroxisome characterization by gas-phase fractionation. Electrophoresis23(18), 3205–3216 (2002).
  • Hammack BN, Fung KY, Hunsucker SW et al. Proteomic analysis of multiple sclerosis cerebrospinal fluid. Mult. Scler.10(3), 245–260 (2004).
  • Dumont D, Noben JP, Raus J, Stinissen P, Robben J. Proteomic analysis of cerebrospinal fluid from multiple sclerosis patients. Proteomics4(7), 2117–2124 (2004).
  • Bossuyt PM, Reitsma JB, Bruns DE et al. Standards for Reporting of Diagnostic Accuracy. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin. Chem.49, 7–18 (2003).
  • Brazma A, Hingamp P, Quackenbush J et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet.29, 365–371 (2001).
  • McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM; Statistics Subcommittee of the NCI-EORTC Working Group on Cancer Diagnostics. REporting recommendations for tumour MARKer prognostic studies (REMARK). Br. J. Cancer93, 387–391 (2005).
  • Wilkins MR, Appel RD, Van Eyk JE et al. Guidelines for the next 10 years of proteomics. Proteomics6, 4–8 (2006).
  • Andreasen N, Vanmechelen E, van De Voorde A et al. Cerebrospinal fluid tau protein as a biochemical marker for Alzheimer’s disease: a community based follow-up study. J. Neurol. Neurosurg. Psychiatry64, 298–305 (1998).
  • Vanderstichele H, De Vreese K, Blennow K et al. Analytical performance and clinical utility of the INNOTEST PHOSPHO-TAU181P assay for discrimination between Alzheimer’s disease and dementia with Lewy bodies. Clin. Chem. Lab. Med.44(12), 1472–1480 (2006).
  • Buerger K, Teipel SJ, Zinkowski R et al. CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects. Neurology59, 627–629 (2002).
  • Merched A, Serot JM, Visvikis S, Aguillon D, Faure G, Siest G. Apolipoprotein E, transthyretin and actin in the CSF of Alzheimer’s patients: relation with the senile plaques and cytoskeleton biochemistry. FEBS Lett.425(2), 225–228 (1998).
  • Infante JR, Martínez A, Ochoa J et al. Cerebrospinal fluid S-100 protein levels in neurological pathologies. J. Physiol. Biochem.59(4), 255–261 (2003).
  • Davidsson P, Sjögren M, Andreasen N et al. Studies of the pathophysiological mechanisms in frontotemporal dementia by proteome analysis of CSF proteins. Brain Res. Mol. Brain Res.109(1–2), 128–133 (2002).
  • Davidsson P, Westman-Brinkmalm A, Nilsson CL et al. Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport13(5), 611–615 (2002).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.