355
Views
16
CrossRef citations to date
0
Altmetric
Review

In-house HIV-1 RNA real-time RT-PCR assays: principle, available tests and usefulness in developing countries

, , , , , , , , , & show all
Pages 635-650 | Published online: 09 Jan 2014

References

  • Ho DD, Neumann AU, Perelson AS et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature373, 123–126 (1995).
  • Peter JB, Sevall-Sanders J. Molecular-based methods for quantifying HIV viral load. AIDS Patient Care STDS18, 75–79 (2004).
  • Wittek M, Stürmer M, Doerr HW, Berger A. Molecular assays for monitoring HIV infection and antiretroviral therapy. Expert Rev. Mol. Diagn.7, 237–246 (2007).
  • Mellors JW, Margolick JB, Phair JP et al. Prognostic value of HIV-1 RNA, CD4 cell count, and CD4 cell count slope for progression to AIDS and death in untreated HIV-1 infection. JAMA297(21), 2349–2350 (2007).
  • Shearer WT, Quinn TC, LaRussa P et al. Viral load and disease progression in infants infected with human immunodeficiency virus type 1. N. Engl. J. Med.336, 1337–1342 (1997).
  • Delamare C, Burgard M, Mayaux MJ et al. HIV-1 RNA detection in plasma for the diagnosis of infection in neonates. J. Acquir. Immune Defic. Syndr.15, 121–125 (1997).
  • Blattner WA, Oursler KA, Cleghorn F et al. Rapid clearance of virus after acute HIV-1 infection: correlates of risk of AIDS. J. Infect. Dis.189(10), 1793–1801 (2004).
  • Polis MA, Sidorov IA, Yoder C et al. Correlation between reduction in plasma HIV-1 RNA concentration 1 week after start of antiretroviral treatment and longer-term efficacy. Lancet358(9295), 1760–1765 (2001).
  • Katabira ET, Oelrichs RB. Scaling up antiretroviral treatment in resource-limited settings: successes and challenges. AIDS21(Suppl. 4), S5–S10 (2007).
  • Calmy A, Ford N, Hirschel B et al. HIV viral load monitoring in resource-limited regions: optional or necessary? Clin. Infect. Dis.44(1), 128–134 (2007).
  • Fiscus SA, Cheng B, Crowe SM et al. HIV-1 viral load assays for resource-limited settings. PLoS Med.3(10), e417 (2006).
  • Rouet F, Rouzioux C. The measurement of HIV-1 viral load in resource-limited settings: how and where? Clin. Lab.53(3–4), 135–148 (2007).
  • Rouet F, Rouzioux C. HIV-1 viral load testing cost in developing countries: what’s new? Expert Rev. Mol. Diagn.7, 703–707 (2007).
  • Elbeik T, Dalessandro R, Loftus RA, Beringer S. HIV-1 and HCV viral load cost models for bDNA: 440 Molecular System versus real-time PCR AmpliPrep (R)/TaqMan (R) test. Expert Rev. Mol. Diagn.7(6), 723–753 (2007).
  • Bonard D, Rouet F, Toni TA et al. Field evaluation of an improved assay using a heat-dissociated p24 antigen for adults mainly infected with HIV-1CRF02_AG strains in Cote d’Ivoire, West Africa. J. Acquir. Immune Defic. Syndr.34, 267–273 (2003).
  • Malmsten A, Shao XW, Sjodahl S et al. Improved HIV-1 viral load determination based on reverse transcriptase activity recovered from human plasma. J. Med. Virol.76, 291–296 (2005).
  • Robertson DL, Anderson JP, Bradac JA et al. HIV-1 nomenclature proposal. Science288, 55–56 (2000).
  • Powell RL, Zhao J, Konings FA et al. Circulating recombinant form (CRF) 37_cpx: an old strain in Cameroon composed of diverse genetically distant lineages of subtypes A and G. AIDS Res. Hum. Retrovirus23, 923–933 (2007).
  • Peeters M, Toure-Kane C, Nkengasong J. Genetic diversity of HIV in Africa: impact on diagnosis, vaccine development and trials. AIDS17, 2547–2560 (2003).
  • Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology (NY),10, 413–417 (1992).
  • Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR: real time monitoring of DNA amplification reactions. Biotechnology (NY)11, 1026–1030 (1993).
  • Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5´–3´ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl Acad. Sci. USA88, 7276–7280 (1991).
  • Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol.25(2), 169–193 (2000).
  • Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol.29, 23–39 (2002).
  • Bustin SA, Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J. Biomol. Tech.15, 155–166 (2004).
  • Bustin SA, Benes V, Nolan T, Pfaffl MW. Quantitative real-time RT-PCR – a perspective. J. Mol. Endocrinol.34, 597–601 (2005).
  • Bustin SA, Mueller R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin. Sci. (Lond.)109, 365–379 (2005).
  • Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques39, 75–85 (2005).
  • Niesters HG. Quantitation of viral load using real-time amplification techniques. Methods25(4), 419–429 (2001).
  • Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat. Protoc.1, 1559–1582 (2006).
  • Kubista M, Andrade JM, Bengtsson M et al. The real-time polymerase chain reaction. Mol. Aspects Med.27, 95–125 (2006).
  • Vet JAM, Majithia AR, Marras SAE et al. Multiplex detection of four pathogenic retroviruses using molecular beacons. Proc. Natl Acad. Sci. USA96, 6394–6399 (1999).
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCr and the 2-DD Ct method. Methods25, 402–408 (2001).
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res.29, e45 (2001).
  • Liu W, Saint DA. A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal. Biochem.302, 52–59 (2002).
  • Lalam N. Estimation of the reaction efficiency in polymerase chain reaction. J. Theor. Biol.242, 947–953 (2006).
  • Kontanis EJ, Reed FA. Evaluation of real-time PCR amplification. Efficiencies to detect PCR inhibitors. J. Forensic Sci.51, 795–804 (2006).
  • Pasloske BL, Walkerpeach CR, Obermoeller RD, Winkler M, Dubois DB. Armored RNA technology for production of ribonuclease-resistant viral RNA controls and standards. J. Clin. Microbiol.36, 3590–3594. (1998).
  • Akane A, Matsubara H, Nakamura S, Takahashi S, Kimura K. Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstrains, a major inhibitor of polymerase chain reaction (PCR) amplification. J. Forensic Sci.39, 362–372 (1994).
  • Al-Soud WA, Jonsson LJ, Radström P. Identification and characterization of immunoglobulin G in blood as major inhibitor of diagnostic PCR. J. Clin. Microbiol.38, 345–350 (2000).
  • Al-Soud WA, Radström P. Purification and characterization of PCR-inhibitory components in blood cells. J. Clin. Microbiol.39, 485–493 (2001).
  • Izraeli S, Pfleiderer C, Lion T. Detection of gene expression by PCR amplification of RNA derived from frozen heparinized whole blood. Nucleic Acids Res.19, 6051 (1991).
  • Lekanne-Deprez RH, Fijnvandraat AC, Ruijter JM, Moorman AF. Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depend on cDNA systhesis conditions. Anal. Biochem.307, 63–69 (2002).
  • Bernard PS, Wittwer CT. Homogeneous amplification and variant detection by fluorescent hybridization probes. Clin. Chem.46, 147–148 (2000).
  • Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR. Genome Res.6, 995–1001 (1996).
  • Heid CA, Stevens J, Livak KJ, Williams PM. Real-time quantitative PCR. Genome Res.6, 986–994 (1996).
  • Afonina I, Zivarts M, Kutyavin I et al. Efficient priming of PCR with short nucleotides conjugated to a minor groove binder. Nucleic Acids Res.25, 2657–2660 (1997).
  • Weusten JJ, Carpay WM, Oosterlaken TA, van Zuijlen MC, van de Wiel PA. Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogeneous detection using molecular beacons. Nucleic Acids Res.30, e26 (2002).
  • Solinas A, Brown LJ, McKeen C et al. Duplex Scorpion primers in SNP analysis and FRET applications. Nucleic Acids Res.29, E96 (2001).
  • Nazarenko I, Lowe B, Darfler M et al. Multiplex quantitative PCR using self-quenched primers labeled with a single fluorophore. Nucleic Acids Res.30, e37 (2002).
  • Nazarenko IA, Bhatnagar SK, Hohman RJ. A closed tube format for amplification and detection of DNA based on energy transfer. Nucleic Acids Res.25, 2516–2521 (1997).
  • Gueudin M, Damond F, Braun J et al. Differences in proviral DNA load between HIV-1- and HIV-2-infected patients. AIDS22(2), 211–215 (2008).
  • Damond F, Collin G, Descamps D et al. Improved sensitivity of human immunodeficiency virus type 2 subtype B plasma viral load assay. J. Clin. Microbiol.43, 4234–4236 (2005).
  • Liu WC, Phiet PH, Chiang TY et al. Five subgenotypes of hepatitis B virus genotype B with distinct geographic and virological characteristics. Virus Res.129(2), 212–223 (2007).
  • Halfon P, Bourliere M, Penaranda G, Khiri H, Ouzan D. Real-time PCR assays for hepatitis C virus (HCV) RNA quantitation are adequate for clinical management of patients with chronic HCV infection. J. Clin. Microbiol.44(7), 2507–2511 (2006).
  • Nagot N, Foulongne V, Becquart P et al. Longitudinal assessment of HIV-1 and HSV-2 shedding in the genital tract of West African women. J. Acquir. Immune Defic. Syndr.39, 632–634 (2005).
  • Dehee A, Cesaire R, Desire N et al. Quantitation of HTLV-I proviral load by a TaqMan real-time PCR assay. J. Virol. Methods102(1–2), 37–51 (2002).
  • Leruez-Ville M, Ouachee M, Delarue R et al. Monitoring cytomegalovirus infection in adult and pediatric bone marrow transplant recipients by a real-time PCR assay performed with blood plasma. J. Clin. Microbiol.41, 2040–2046 (2003).
  • Brengel-Pesce K, Morand P, Schmuck A et al. Routine use of real-time quantitative PCR for laboratory diagnosis of Epstein–Barr virus infections. J. Med. Virol.66(3), 360–369 (2002).
  • Lefevre J, Hankins C, Pourreaux K, Voyer H, Coutlee F. Real-time PCR assays using internal controls for quantitation of HPV-16 and beta-globin DNA in cervicovaginal lavages. J. Virol. Methods114(2), 135–144 (2003).
  • Gibellini D, Vitone F, Gori E, La Place M, Re MC. Quantitative detection of human immunodeficiency virus type 1 (HIV-1) viral load by SYBR green real-time RT-PCR technique in HIV-1 seropositive patients. J. Virol. Methods115(2), 183–189 (2004).
  • Gibellini D, Gardini F, Vitone F et al. Simultaneous detection of HCV and HIV-1 by SYBR Green real time multiplex RT-PCR technique in plasma samples. Mol. Cell Probes20, 223–229 (2006).
  • Palmer S, Wiegand AP, Maldarelli F et al. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J. Clin. Microbiol.41(10), 4531–4536 (2003).
  • Shapshak P, Duncan R, McCoy CB, Page JB. Quantification of HIV gag RNA using real time reverse transcriptase PCR. Front. Biosci.10, 135–142 (2005).
  • Watanaveeradej V, Sirirattanaphoomee S, Chantratita W et al. Quantification of HIV-1 RNA load by one-tube-one-step and real time PCR assay with TaqMan probe. J. Med. Assoc. Thai.88, S206–S213 (2005).
  • Huang J, Yang CM, Wang LN et al. A novel real-time multiplex reverse transcriptase-polymerase chain reaction for the detection of HIV-1 RNA by using dual-specific armored RNA as internal control. Intervirology51(1), 42–49 (2008).
  • Promso S, Srichunrusami C, Utid K et al. Quantitative detection of human immunodeficiency virus type 1 (HIV-1) viral load by real-time RT-PCR assay using self-quenched fluorogenic primers. Southeast Asian J. Trop. Med. Public Health37, 477–487 (2006).
  • Rekhviashvili N, Stevens G, Scott L, Stevens W. Fluorogenic LUX primer for quantitation of HIV-1 by real-time RT-PCR. Mol. Biotechnol.32, 101–110 (2006).
  • Rekhviashvili N, Stevens W, Marinda E et al. Clinical performance of an in-house real-time RT-PCR assay using a fluorogenic LUX™ primer for quantitation of human immunodeficiency virus type-1 (HIV-1). J. Virol. Methods146(1–2), 14–21 (2007).
  • Saha BK, Tian BH, Bucy RP. Quantitation of HIV-1 by real-time PCR with a unique fluorogenic probe. J. Virol. Methods93(1–2), 33–42 (2001).
  • Muller J, Eis Hubinger AM, Daumer M et al. A novel internally controlled real-time reverse transcription-PCR assay for HIV-1 RNA targeting the pol integrase genomic region. J. Virol. Methods142(1–2), 127–135 (2007).
  • de Baar MP, van Dooren MW, De Rooij E et al. Single rapid real-time monitored isothermal RNA amplification assay for quantification of human immunodeficiency virus type 1 isolates from groups M, N, and O. J. Clin. Microbiol.39, 1378–1384 (2001).
  • Candotti D, Temple J, Owusu Ofori S, Allain JP. Multiplex real-time quantitative RT-PCR assay for hepatitis B virus, hepatitis C virus, and human immunodeficiency virus type 1. J. Virol. Methods118(1), 39–47 (2004).
  • Drosten C, Panning M, Drexler JF et al. Ultrasensitive monitoring of HIV-I viral load by a low-cost real-time reverse transcription-PCR assay with internal control for the 5´ long terminal repeat domain. Clin. Chem.52(7), 1258–1266 (2006).
  • Rouet F, Ekouevi DK, Chaix ML et al. Transfer and evaluation of an automated, low-cost real-time reverse transcription-PCR test for diagnosis and monitoring of human immunodeficiency virus type 1 infection in a West African resource-limited setting. J. Clin. Microbiol.43, 2709–2717 (2005).
  • Rouet F, Chaix ML, Nerrienet E et al. Impact of HIV-1 genetic diversity on plasma HIV-1 RNA quantification: usefulness of the Agence Nationale de Recherches sur le SIDA second-generation long terminal repeat-based real-time reverse transcriptase polymerase chain reaction. J. Acquir. Immune Defic. Syndr.45, 380–388 (2007).
  • Schvachsa N, Turk G, Burgard M et al. Examination of real-time PCR for HIV-1 RNA and DNA quantitation in patients infected with HIV-1BF intersubtype recombinant variants. J. Virol. Methods140(1–2), 222–227 (2007).
  • Steegen K, Luchters S, De Cabooter N et al. Evaluation of two commercially available alternatives for HIV-1 viral load testing in resource-limited settings. J. Virol. Methods146, 178–187 (2007).
  • Holmes H, Davis G, Heath A, Hewlett I, Lelie N. An international collaborative study to establish the 1st international standard for HIV-1 RNA for use in nucleic acid-based techniques. J. Virol. Methods92(2), 141–150 (2001).
  • Davis C, Heath A, Best S et al. Calibration of HIV-1 working reagents for nucleic acid amplification techniques against the 1st international standard for HIV-1 RNA. J. Virol. Methods107, 37–44 (2003).
  • Preiser W, Drexler JF, Drosten C. HIV-1 viral load assays for resource-limited settings: clades matter. PLoS Med.3, e538 (2006).
  • Dabis F, Bequet L, Ekouevi DK et al. Field efficacy of zidovudine, lamivudine and single-dose nevirapine to prevent peripartum HIV transmission. AIDS19, 309–318 (2005).
  • Rouet F, Fassinou P, Inwoley A et al. Long-term survival and immuno-virological response of African HIV-1-infected children to highly active antiretroviral therapy regimens. AIDS 20(18), 2315–2319 (2006).
  • Chaix M-L, Ekouevi Koumavi D, Rouet F et al. Low risk of nevirapine resistance mutations in the prevention of mother-to-child transmission of HIV-1: Agence Nationale de Recherches sur le SIDA DITRAME Plus, Abidjan, Côte d’Ivoire. J. Infect. Dis.193, 482–487 (2006).
  • Chaix ML, Ekouevi DK, Peytavin G et al. Impact of nevirapine (NVP) plasma concentration on selection of resistant virus in mothers who received single-dose NVP to prevent perinatal human immunodeficiency virus type 1 transmission and persistence of resistant virus in their infected children. Antimicrob. Agents Chemother.51(3), 896–901 (2007).
  • Danel C, Moh R, Anzian A et al. Tolerance and acceptability of an efavirenz-based regimen in 740 adults (predominantly women) in West Africa. J. Acquir. Immune Defic. Syndr.42(1), 29–35 (2006).
  • Danel C, Moh R, Minga A et al. CD4-guided structured antiretroviral treatment interruption strategy in HIV-infected adults in west Africa (Trivacan ANRS 1269 trial): a randomised trial. Lancet367(9527), 1981–1989 (2006).
  • Tonwe-Gold B, Ekouevi DK, Viho I et al. Antiretroviral treatment and prevention of peripartum and postnatal HIV transmission in West Africa: evaluation of a two-tiered approach. PLoS Med.4, e257 (2007).
  • Seyler C, Adje Toure C, Messou E et al. Impact of genotypic drug resistance mutations on clinical and immunological outcomes in HIV-infected adults on HAART in West Africa. AIDS21(9), 1157–1164 (2007).
  • Nagot N, Ouedraogo A, Foulongne V et al. Reduction of HIV-1 RNA levels with therapy to suppress herpes simplex virus. N. Engl. J. Med.356(8), 790–799 (2007).
  • Janssens B, Raleigh B, Soeung S et al. Effectiveness of highly active antiretroviral therapy in HIV-positive children: evaluation at 12 months in a routine program in Cambodia. Pediatrics120(5), E1134–E1140 (2007).
  • Ferradini L, Laureillard D, Prak N et al. Positive outcomes of HAART at 24 months in HIV-infected patients in Cambodia. AIDS21, 2293–2301 (2007).
  • Espy MJ, Uhl JR, Sloan LM et al. Real-time PCR in clinical microbiology: applications for a routine laboratory testing. Clin. Microbiol. Rev.19(1), 165–256 (2006).
  • de Arellano ER, Martin C, Soriano V, Alcami J, Holguin A. Genetic analysis of the long terminal repeat (LTR) promoter region in HIV-1-infected individuals with different rates of disease progression. Virus Genes34(2), 111–116 (2007).
  • de Baar MP, Abebe A, Kliphuis A et al. HIV type 1 C and C’ subclusters based on long terminal repeat sequences in the Ethiopian HIV type 1 subtype C epidemic. AIDS Res. Hum. Retrovirus19, 917–922 (2003).
  • van Opijnen T, Jeeninga RE, Boerlijst MC et al. Human immunodeficiency virus type 1 subtypes have a distinct long terminal repeat that determines the replication rate in a host-cell-specific manner. J. Virol.78, 3675–3683 (2004).
  • Khodakov DA, Zakharova NV, Gryadunov DA et al. An oligonucleotide microarray for multiplex real-time PCR identification of HIV-1, HBV, and HCV. Biotechniques44, 241–248 (2008).
  • Plantier JC, Dachraoui R, Lemee V et al. HIV-1 resistance genotyping on dried serum spots. AIDS19(4), 391–397 (2005).
  • Waters L, Kambugu A, Tibenderana H et al. Evaluation of filter paper transfer of whole-blood and plasma samples for quantifying HIV RNA in subjects on antiretroviral therapy in Uganda. J. Acq. Immune Defic. Syndr.46, 590–593 (2007).
  • Ou C-Y, Yang H, Balinandi S et al. Identification of HIV-1 infected infants and young children using real-time RT PCR and dried blood spots from Uganda and Cameroon. J. Virol. Methods144, 109–114 (2007).
  • Bland RM, Little KE, Coovadia HM et al. Intervention to promote exclusive breast-feeding for the first 6 months of life in a high HIV prevalence area. AIDS22, 883–891 (2008).
  • Damond F, Roquebert B, Benard A et al. HIV-1 plasma viral load discrepancies between the Roche Cobas Amplicor HIV-1 monitor v1.5 and Roche Cobas Ampliprep/Cobas TaqMan HIV-1 assays. J. Clin. Microbiol.45, 3436–3438 (2007).
  • Gottesman BS, Grossman Z, Lorber M et al. Comparative performance of the amplicor HIV-1 monitor assay versus NucliSens EasyQ in HIV subtype C-infected patients. J. Med. Virol.78(7), 883–887 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.