431
Views
28
CrossRef citations to date
0
Altmetric
Theme: General - Reviews

Myeloid-derived suppressor cells in glioma

, &
Pages 1395-1406 | Published online: 09 Jan 2014

References

  • Holland EC. Progenitor cells and glioma formation. Curr. Opin. Neurol. 14(6), 683–688 (2001).
  • Surawicz TS, Davis F, Freels S, Laws ER Jr, Menck HR. Brain tumor survival: results from the National Cancer Data Base. J. Neurooncol. 40(2), 151–160 (1998).
  • Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol. 109(1), 93–108 (2005).
  • Stupp R, Hegi ME, Mason WP et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10(5), 459–466 (2009).
  • Lefranc F, Sadeghi N, Camby I, Metens T, Dewitte O, Kiss R. Present and potential future issues in glioblastoma treatment. Expert Rev. Anticancer Ther. 6(5), 719–732 (2006).
  • Batich K, Choi B, Mitchell D. Immunotherapy of high-grade gliomas: preclinical in vivo experiments in animal models. In: Animal Models of Brain Tumors. Martínez Murillo R, Martínez A ( Eds). Humana Press, New York, NY, USA, 245–273 (2013).
  • Liau LM, Black KL, Prins RM et al. Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens. J. Neurosurg. 90(6), 1115–1124 (1999).
  • Parney IF, Petruk KC, Zhang C, Farr-Jones M, Sykes DB, Chang LJ. Granulocyte-macrophage colony-stimulating factor and B7-2 combination immunogene therapy in an allogeneic Hu-PBL-SCID/beige mouse-human glioblastoma multiforme model. Hum. Gene Ther. 8(9), 1073–1085 (1997).
  • Sampson JH, Archer GE, Ashley DM et al. Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the “immunologically privileged” central nervous system. Proc. Natl Acad. Sci. USA 93(19), 10399–10404 (1996).
  • Liau LM, Prins RM, Kiertscher SM et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin. Cancer Res. 11(15), 5515–5525 (2005).
  • Parney IF, Chang LJ, Farr-Jones MA, Hao C, Smylie M, Petruk KC. Technical hurdles in a pilot clinical trial of combined B7-2 and GM-CSF immunogene therapy for glioblastomas and melanomas. J. Neurooncol. 78(1), 71–80 (2006).
  • Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res. 64(14), 4973–4979 (2004).
  • Ardon H, Van Gool SW, Verschuere T et al. Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial. Cancer Immunol. Immunother. 61(11), 2033–2044 (2012).
  • De Vleeschouwer S, Ardon H, Van Calenbergh F et al. Stratification according to HGG-IMMUNO RPA model predicts outcome in a large group of patients with relapsed malignant glioma treated by adjuvant postoperative dendritic cell vaccination. Cancer Immunol. Immunother. 61(11), 2105–2112 (2012).
  • Rodrigues JC, Gonzalez GC, Zhang L et al. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro Oncol. 12(4), 351–365 (2010).
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011).
  • Gomez GG, Kruse CA. Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther. Mol. Biol. 10(A), 133–146 (2006).
  • Parney IF, Farr-Jones MA, Chang LJ, Petruk KC. Human glioma immunobiology in vitro: implications for immunogene therapy. Neurosurgery 46(5), 1169–1177, discussion 1177–1178 (2000).
  • Vandenberk L, Van Gool SW. Treg infiltration in glioma: a hurdle for antiglioma immunotherapy. Immunotherapy 4(7), 675–678 (2012).
  • Sonabend AM, Rolle CE, Lesniak MS. The role of regulatory T cells in malignant glioma. Anticancer Res. 28(2B), 1143–1150 (2008).
  • Hao C, Parney IF, Roa WH, Turner J, Petruk KC, Ramsay DA. Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol. 103(2), 171–178 (2002).
  • Morimura T, Neuchrist C, Kitz K et al. Monocyte subpopulations in human gliomas: expression of Fc and complement receptors and correlation with tumor proliferation. Acta Neuropathol. 80(3), 287–294 (1990).
  • Parney IF, Waldron JS, Parsa AT. Flow cytometry and in vitro analysis of human glioma-associated macrophages. Laboratory investigation. J. Neurosurg. 110(3), 572–582 (2009).
  • Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol. 8(3), 261–279 (2006).
  • Flugel A, Labeur MS, Grasbon-Frodl EM, Kreutzberg GW, Graeber MB. Microglia only weakly present glioma antigen to cytotoxic T cells. Int. J. Dev. Neurosci. 17(5–6), 547–556 (1999).
  • Taniguchi Y, Ono K, Yoshida S, Tanaka R. Antigen-presenting capability of glial cells under glioma-harboring conditions and the effect of glioma-derived factors on antigen presentation. J. Neuroimmunol. 111(1–2), 177–185 (2000).
  • Wagner S, Czub S, Greif M et al. Microglial/macrophage expression of interleukin 10 in human glioblastomas. Int. J. Cancer 82(1), 12–16 (1999).
  • Badie B, Schartner J, Prabakaran S, Paul J, Vorpahl J. Expression of Fas ligand by microglia: possible role in glioma immune evasion. J. Neuroimmunol. 120(1–2), 19–24 (2001).
  • Prins RM, Scott GP, Merchant RE, Graf MR. Irradiated tumor cell vaccine for treatment of an established glioma. II. Expansion of myeloid suppressor cells that promote tumor progression. Cancer Immunol. Immunother. 51(4), 190–199 (2002).
  • Jia W, Jackson-Cook C, Graf MR. Tumor-infiltrating, myeloid-derived suppressor cells inhibit T cell activity by nitric oxide production in an intracranial rat glioma + vaccination model. J. Neuroimmunol. 223(1–2), 20–30 (2010).
  • Almand B, Clark JI, Nikitina E et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Neuroimmunol. 166(1), 678–689 (2001).
  • Mirza N, Fishman M, Fricke I et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 66(18), 9299–9307 (2006).
  • Cohen PA, Ko JS, Storkus WJ et al. Myeloid-derived suppressor cells adhere to physiologic STAT3- vs STAT5-dependent hematopoietic programming, establishing diverse tumor-mediated mechanisms of immunologic escape. Immunol. Invest. 41(6–7), 680–710 (2012).
  • Zhu B, Bando Y, Xiao S et al. CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J. Immunol. 179(8), 5228–5237 (2007).
  • Makarenkova VP, Bansal V, Matta BM, Perez LA, Ochoa JB. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J. Immunol. 176(4), 2085–2094 (2006).
  • Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin. Cancer Biol. 16(1), 53–65 (2006).
  • Meyer C, Sevko A, Ramacher M et al. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc. Natl Acad. Sci. USA 108(41), 17111–17116 (2011).
  • Dolcetti L, Peranzoni E, Ugel S et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur. J. Immunol. 40(1), 22–35 (2010).
  • Fujita M, Kohanbash G, Fellows-Mayle W et al. COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res. 71(7), 2664–2674 (2011).
  • Fujita M, Scheurer ME, Decker SA et al. Role of type 1 IFNs in antiglioma immunosurveillance--using mouse studies to guide examination of novel prognostic markers in humans. Clin. Cancer Res. 16(13), 3409–3419 (2010).
  • Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9(3), 162–174 (2009).
  • Youn JI, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181(8), 5791–5802 (2008).
  • Mandruzzato S, Solito S, Falisi E et al. IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients. J. Immunol. 182(10), 6562–6568 (2009).
  • Filipazzi P, Valenti R, Huber V et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J. Clin. Oncol. 25(18), 2546–2553 (2007).
  • Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res. 61(12), 4756–4760 (2001).
  • Zea AH, Rodriguez PC, Atkins MB et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 65(8), 3044–3048 (2005).
  • Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R. Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 70(11), 4335–4345 (2010).
  • Gowda M, Godder K, Kmieciak M et al. Distinct signatures of the immune responses in low risk versus high risk neuroblastoma. J. Transl. Med. 9, 170 (2011).
  • Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11(10), 889–896 (2010).
  • Fridlender ZG, Sun J, Kim S et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3), 183–194 (2009).
  • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12(4), 253–268 (2012).
  • Corzo CA, Condamine T, Lu L et al. HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 207(11), 2439–2453 (2010).
  • Fridlender ZG, Sun J, Mishalian I et al. Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PLoS ONE 7(2), e31524 (2012).
  • Umemura N, Saio M, Suwa T et al. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J. Leukoc. Biol. 83(5), 1136–1144 (2008).
  • Movahedi K, Guilliams M, Van Den Bossche J et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8), 4233–4244 (2008).
  • Maes W, Verschuere T, Van Hoylandt A, Boon L, Van Gool S. Depletion of regulatory T cells in a mouse experimental glioma model through anti-CD25 treatment results in the infiltration of non-immunosuppressive myeloid cells in the brain. Clin. Dev. Immunol. 2013, 952469 (2013).
  • Zhu X, Fujita M, Snyder LA, Okada H. Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy. J. Neurooncol. 104(1), 83–92 (2011).
  • Raychaudhuri B, Rayman P, Ireland J et al. Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol. 13(6), 591–599 (2011).
  • Sippel TR, White J, Nag K et al. Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I. Clin. Cancer Res. 17(22), 6992–7002 (2011).
  • Rotondo R, Barisione G, Mastracci L et al. IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. Int. J. Cancer 125(4), 887–893 (2009).
  • Liu CY, Wang YM, Wang CL et al. Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14(−)/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 136(1), 35–45 (2010).
  • Rong Y, Durden DL, Van Meir EG, Brat DJ. ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J. Neuropathol. Exp. Neurol. 65(6), 529–539 (2006).
  • Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin. Cancer Res. 14(21), 6735–6741 (2008).
  • Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J. Immunol. 172(2), 989–999 (2004).
  • Rodriguez PC, Ernstoff MS, Hernandez C et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 69(4), 1553–1560 (2009).
  • Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138(2), 105–115 (2013).
  • Kotsakis A, Harasymczuk M, Schilling B, Georgoulias V, Argiris A, Whiteside TL. Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. J. Immunol. Methods 381(1–2), 14–22 (2012).
  • Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC. Regulation of T cell receptor CD3zeta chain expression by L-arginine. J. Biol. Chem. 277(24), 21123–21129 (2002).
  • Corzo CA, Cotter MJ, Cheng P et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J. Immunol. 182(9), 5693–5701 (2009).
  • Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 24(6), 302–306 (2003).
  • Xia Y, Roman LJ, Masters BS, Zweier JL. Inducible nitric-oxide synthase generates superoxide from the reductase domain. J. Biol. Chem. 273(35), 22635–22639 (1998).
  • Hildeman DA, Mitchell T, Aronow B, Wojciechowski S, Kappler J, Marrack P. Control of Bcl-2 expression by reactive oxygen species. Proc. Natl Acad. Sci. USA 100(25), 15035–15040 (2003).
  • Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 70(1), 68–77 (2010).
  • Ishii I, Akahoshi N, Yu XN et al. Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem. J. 381(Pt. 1), 113–123 (2004).
  • Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 267(20), 6102–6109 (2000).
  • Angelini G, Gardella S, Ardy M et al. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc. Natl Acad. Sci. USA 99(3), 1491–1496 (2002).
  • Bingisser RM, Tilbrook PA, Holt PG, Kees UR. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J. Immunol. 160(12), 5729–5734 (1998).
  • Mazzoni A, Bronte V, Visintin A et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 168(2), 689–695 (2002).
  • Harari O, Liao JK. Inhibition of MHC II gene transcription by nitric oxide and antioxidants. Curr. Pharm. Des. 10(8), 893–898 (2004).
  • Rivoltini L, Carrabba M, Huber V et al. Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol. Rev. 188, 97–113 (2002).
  • Molon B, Ugel S, Del Pozzo F et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J. Exp. Med. 208(10), 1949–1962 (2011).
  • Nagaraj S, Youn JI, Gabrilovich DI. Reciprocal Relationship between Myeloid-Derived Suppressor Cells and T Cells. J. Immunol. 191(1), 17–23 (2013).
  • Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J. Immunol. 166(9), 5398–5406 (2001).
  • Sinha P, Clements VK, Ostrand-Rosenberg S. Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res. 65(24), 11743–11751 (2005).
  • Huang B, Pan PY, Li Q et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 66(2), 1123–1131 (2006).
  • Nagaraj S, Gabrilovich DI. Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res. 68(8), 2561–2563 (2008).
  • Nagaraj S, Gupta K, Pisarev V et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med. 13(7), 828–835 (2007).
  • Lu T, Ramakrishnan R, Altiok S et al. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J. Clin. Invest. 121(10), 4015–4029 (2011).
  • Morford LA, Elliott LH, Carlson SL, Brooks WH, Roszman TL. T cell receptor-mediated signaling is defective in T cells obtained from patients with primary intracranial tumors. J. Immunol. 159(9), 4415–4425 (1997).
  • Dix AR, Brooks WH, Roszman TL, Morford LA. Immune defects observed in patients with primary malignant brain tumors. J. Neuroimmunol. 100(1–2), 216–232 (1999).
  • Fecci PE, Mitchell DA, Whitesides JF et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 66(6), 3294–3302 (2006).
  • Macdonald KP, Rowe V, Clouston AD et al. Cytokine expanded myeloid precursors function as regulatory antigen-presenting cells and promote tolerance through IL-10-producing regulatory T cells. J. Immunol. 174(4), 1841–1850 (2005).
  • Jacobs JF, Nierkens S, Figdor CG, De Vries IJ, Adema GJ. Regulatory T cells in melanoma: the final hurdle towards effective immunotherapy? Lancet Oncol. 13(1), e32–42 (2012).
  • Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198(12), 1875–1886 (2003).
  • Yu P, Lee Y, Liu W et al. Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J. Exp. Med. 201(5), 779–791 (2005).
  • Ghiringhelli F, Puig PE, Roux S et al. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J. Exp. Med. 202(7), 919–929 (2005).
  • Kim YC, Bhairavabhotla R, Yoon J et al. Oligodeoxynucleotides stabilize Helios-expressing Foxp3+ human T regulatory cells during in vitro expansion. Blood 119(12), 2810–2818 (2012).
  • Thornton AM, Korty PE, Tran DQ et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184(7), 3433–3441 (2010).
  • Yadav M, Louvet C, Davini D et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J. Exp. Med. 209(10), 1713–1722, S1711–1719 (2012).
  • Weiss JM, Bilate AM, Gobert M et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209(10), 1723–1742, S1721 (2012).
  • Yang R, Cai Z, Zhang Y, Yutzy WHT, Roby KF, Roden RB. CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells. Cancer Res. 66(13), 6807–6815 (2006).
  • Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 68(13), 5439–5449 (2008).
  • Li H, Han Y, Guo Q, Zhang M, Cao X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J. Immunol. 182(1), 240–249 (2009).
  • Liu C, Yu S, Kappes J et al. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood 109(10), 4336–4342 (2007).
  • Hoechst B, Voigtlaender T, Ormandy L et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50(3), 799–807 (2009).
  • Oberlies J, Watzl C, Giese T et al. Regulation of NK cell function by human granulocyte arginase. J. Immunol. 182(9), 5259–5267 (2009).
  • Alizadeh D, Zhang L, Brown CE, Farrukh O, Jensen MC, Badie B. Induction of anti-glioma natural killer cell response following multiple low-dose intracerebral CpG therapy. Clin. Cancer Res. 16(13), 3399–3408 (2010).
  • Hix LM, Shi YH, Brutkiewicz RR, Stein PL, Wang CR, Zhang M. CD1d-expressing breast cancer cells modulate NKT cell-mediated antitumor immunity in a murine model of breast cancer metastasis. PLoS ONE 6(6), e20702 (2011).
  • Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L. Targeting natural killer cells and natural killer T cells in cancer. Nat. Rev. Immunol. 12(4), 239–252 (2012).
  • Ambrosino E, Terabe M, Halder RC et al. Cross-regulation between type I and type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J. Immunol. 179(8), 5126–5136 (2007).
  • Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM. Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med. 198(2), 267–279 (2003).
  • Crane CA, Han SJ, Barry JJ, Ahn BJ, Lanier LL, Parsa AT. TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro Oncol. 12(1), 7–13 (2010).
  • Ko HJ, Lee JM, Kim YJ, Kim YS, Lee KA, Kang CY. Immunosuppressive myeloid-derived suppressor cells can be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine. J. Immunol. 182(4), 1818–1828 (2009).
  • Kohanbash G, Okada H. Myeloid-derived suppressor cells (MDSCs) in gliomas and glioma-development. Immunol. Invest. 41(6–7), 658–679 (2012).
  • Ko JS, Zea AH, Rini BI et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15(6), 2148–2157 (2009).
  • Cao M, Xu Y, Youn JI et al. Kinase inhibitor Sorafenib modulates immunosuppressive cell populations in a murine liver cancer model. Lab. Invest. 91(4), 598–608 (2011).
  • Wu L, Du H, Li Y, Qu P, Yan C. Signal transducer and activator of transcription 3 (Stat3C) promotes myeloid-derived suppressor cell expansion and immune suppression during lung tumorigenesis. Am. J. Pathol. 179(4), 2131–2141 (2011).
  • Roth F, De La Fuente AC, Vella JL, Zoso A, Inverardi L, Serafini P. Aptamer-mediated blockade of IL4Ralpha triggers apoptosis of MDSCs and limits tumor progression. Cancer Res. 72(6), 1373–1383 (2012).
  • Pak AS, Ip G, Wright MA, Young MR. Treating tumor-bearing mice with low-dose gamma-interferon plus tumor necrosis factor alpha to diminish immune suppressive granulocyte-macrophage progenitor cells increases responsiveness to interleukin 2 immunotherapy. Cancer Res. 55(4), 885–890 (1995).
  • Zoglmeier C, Bauer H, Norenberg D et al. CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin. Cancer Res. 17(7), 1765–1775 (2011).
  • Okada H, Kalinski P, Ueda R et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29(3), 330–336 (2011).
  • Zhu X, Nishimura F, Sasaki K et al. Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J. Transl. Med. 5, 10 (2007).
  • Tu SP, Jin H, Shi JD et al. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev. Res. 5(2), 205–215 (2012).
  • Yoshimura T, Robinson EA, Tanaka S, Appella E, Kuratsu J, Leonard EJ. Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J. Exp. Med. 169(4), 1449–1459 (1989).
  • Gebhardt C, Nemeth J, Angel P, Hess J. S100A8 and S100A9 in inflammation and cancer. Biochem. Pharmacol. 72(11), 1622–1631 (2006).
  • Murat A, Migliavacca E, Hussain SF et al. Modulation of angiogenic and inflammatory response in glioblastoma by hypoxia. PLoS ONE 4(6), e5947 (2009).
  • Baggio R, Emig FA, Christianson DW, Ash DE, Chakder S, Rattan S. Biochemical and functional profile of a newly developed potent and isozyme-selective arginase inhibitor. J. Pharmacol. Exp. Ther. 290(3), 1409–1416 (1999).
  • Berkowitz DE, White R, Li D et al. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation 108(16), 2000–2006 (2003).
  • Santhanam L, Christianson DW, Nyhan D, Berkowitz DE. Arginase and vascular aging. J. Appl. Physiol. 105(5), 1632–1642 (2008).
  • Yang XD, Ma JY, Barger MW, Ma JK. Transport and utilization of arginine and arginine-containing peptides by rat alveolar macrophages. Pharm. Res. 19(6), 825–831 (2002).
  • Scheurer ME, El-Zein R, Thompson PA et al. Long-term anti-inflammatory and antihistamine medication use and adult glioma risk. Cancer Epidemiol. Biomarkers Prev. 17(5), 1277–1281 (2008).
  • Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 67(9), 4507–4513 (2007).
  • Rodriguez PC, Quiceno DG, Ochoa AC. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109(4), 1568–1573 (2007).
  • Bierie B, Moses HL. Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev. 21(1), 49–59 (2010).
  • Laterra JJ, Grossman SA, Carson KA et al. Suramin and radiotherapy in newly diagnosed glioblastoma: phase 2 NABTT CNS Consortium study. Neuro Oncol. 6(1), 15–20 (2004).
  • Grossman SA, Phuphanich S, Lesser G et al. Toxicity, efficacy, and pharmacology of suramin in adults with recurrent high-grade gliomas. J. Clin. Oncol. 19(13), 3260–3266 (2001).
  • Hjelmeland MD, Hjelmeland AB, Sathornsumetee S et al. SB-431542, a small molecule transforming growth factor-beta-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol. Cancer Ther. 3(6), 737–745 (2004).
  • Uhl M, Aulwurm S, Wischhusen J et al. SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res. 64(21), 7954–7961 (2004).
  • Yang XD, Ai W, Asfaha S et al. Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b+Ly6G+ immature myeloid cells. Nat. Med. 17(1), 87–95 (2011).
  • Scheurer ME, Amirian ES, Davlin SL, Rice T, Wrensch M, Bondy ML. Effects of antihistamine and anti-inflammatory medication use on risk of specific glioma histologies. Int. J. Cancer 129(9), 2290–2296 (2011).
  • Prosniak M, Harshyne LA, Andrews DW et al. Glioma grade is associated with the accumulation and activity of cells bearing M2 monocyte markers. Clin. Cancer Res. 19(14), 3776–3786 (2013).
  • Kjellman C, Olofsson SP, Hansson O et al. Expression of TGF-beta isoforms, TGF-beta receptors, and SMAD molecules at different stages of human glioma. Int. J. Cancer 89(3), 251–258 (2000).
  • Nitta T, Hishii M, Sato K, Okumura K. Selective expression of interleukin-10 gene within glioblastoma multiforme. Brain Res. 649(1–2), 122–128 (1994).
  • Wei J, Barr J, Kong LY et al. Glioma-associated cancer-initiating cells induce immunosuppression. Clin. Cancer Res. 16(2), 461–473 (2010).
  • Heimberger AB, Abou-Ghazal M, Reina-Ortiz C et al. Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin. Cancer Res. 14(16), 5166–5172 (2008).
  • Komohara Y, Ohnishi K, Kuratsu J, Takeya M. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J. Pathol. 216(1), 15–24 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.