156
Views
3
CrossRef citations to date
0
Altmetric
Reviews

The relationship between genes affecting the development of epilepsy and approaches to epilepsy therapy

References

  • Buono RJ. Genome wide association studies (GWAS) and common forms of human epilepsy. Epilepsy Behav 2013;28(Suppl 1):S63-5
  • Kasperaviciute D, Catarino CB, Matarin M, et al. Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A. Brain 2013;136(Pt 10):3140-50
  • Kumari R, Lakhan R, Kumar S, et al. SCN1AIVS5-91G>A polymorphism is associated with susceptibility to epilepsy but not with drug responsiveness. Biochimie 2013;95(6):1350-3
  • Makoff A, Lai T, Barratt C, et al. High-density SNP screen of sodium channel genes by haplotype tagging and DNA pooling for association with idiopathic generalized epilepsy. Epilepsia 2010;51(4):694-8
  • Porter RJ, Dhir A, Macdonald RL, Rogawski MA. Mechanisms of action of antiseizure drugs. Handb Clin Neurol 2012;108:663-81
  • Carvill GL, Mefford HC. Microdeletion syndromes. Curr Opin Genet Dev 2013;23(3):232-9
  • Mefford HC, Muhle H, Ostertag P, et al. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet 2010;6(5):e1000962
  • Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001;409(6822):928-33
  • International HapMap Consortium. The International HapMap Project. Nature 2003;426(6968):789-96
  • Steffens M, Leu C, Ruppert AK, et al. EPICURE Consortium; EMINet Consortium. Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32. Hum Mol Genet 2012;21(24):5359-72
  • Guo Y, Baum LW, Sham PC, et al. Two-stage genome-wide association study identifies variants in CAMSAP1L1 as susceptibility loci for epilepsy in Chinese. Hum Mol Genet 2012;21(5):1184-9
  • Kasperaviciūte D, Catarino CB, Heinzen EL, et al. Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study. Brain 2010;133(Pt 7):2136-47
  • Prasad A, Merico D, Thiruvahindrapuram B, et al. A discovery resource of rare copy number variations in individuals with autism spectrum disorder. G3 (Bethesda) 2012;2(12):1665-85
  • Klassen T, Davis C, Goldman A, et al. Exome sequencing of ion channel genes reveals complex profiles confounding personal risk assessment in epilepsy. Cell 2011;145(7):1036-48
  • Guven A, Tolun A. TBC1D24 truncating mutation resulting in severe neurodegeneration. J Med Genet 2013;50(3):199-202
  • Heinzen EL, Depondt C, Cavalleri GL, et al. Exome sequencing followed by large-scale genotyping fails to identify single rare variants of large effect in idiopathic generalized epilepsy. Am J Hum Genet 2012;91(2):293-302
  • Allen AS, Berkovic SF, Cossette P, et al. Epi4K Consortium; Epilepsy Phenome/Genome Project. De novo mutations in epileptic encephalopathies. Nature 2013;501(7466):217-21
  • Touma M, Joshi M, Connolly MC, et al. Whole genome sequencing identifies SCN2A mutation in monozygotic twins with Ohtahara syndrome and unique neuropathologic findings. Epilepsia 2013;54(5):e81-5
  • Goldin AL. Resurgence of sodium channel research. Annu Rev Physiol 2001;63:871-94
  • Teper Y, Whyte D, Cahir E, et al. Nicotine-induced dystonic arousal complex in a mouse line harboring a human autosomal-dominant nocturnal frontal lobe epilepsy mutation. J Neurosci 2007;27(38):10128-42
  • Hu BY, Weick JP, Yu J, et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 2010;107(9):4335-40
  • Liu Y, Lopez-Santiago LF, Yuan Y, et al. Dravet syndrome patient-derived neurons suggest a novel epilepsy mechanism. Ann Neurol 2013;74(1):128-39
  • Oliva M, Berkovic SF, Petrou S. Sodium channels and the neurobiology of epilepsy. Epilepsia 2012;53(11):1849-59
  • Escayg A, Goldin AL. Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia 2010;51(9):1650-8
  • Winden KD, Oldham MC, Mirnics K, et al. The organization of the transcriptional network in specific neuronal classes. Mol Syst Biol 2009;5:291
  • Saint-Martin C, Gauvain G, Teodorescu G, et al. Two novel CLCN2 mutations accelerating chloride channel deactivation are associated with idiopathic generalized epilepsy. Hum Mutat 2009;30(3):397-405
  • Kleefuss-Lie A, Friedl W, Cichon S, et al. CLCN2 variants in idiopathic generalized epilepsy. Nat Genet 2009;41(9):954-5
  • Niemeyer MI, Cid LP, Sepulveda FV, et al. No evidence for a role of CLCN2 variants in idiopathic generalized epilepsy. Nat Genet 2010;42(1):3
  • Sander T, Schulz H, Saar K, et al. Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet 2000;9(10):1465-72
  • D'Agostino D, Bertelli M, Gallo S, et al. Mutations and polymorphisms of the CLCN2 gene in idiopathic epilepsy. Neurology 2004;63(8):1500-2
  • Seidner G, Alvarez MG, Yeh JI, et al. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet 1998;18(2):188-91
  • De Giorgis V, Veggiotti P. GLUT1 deficiency syndrome 2013: current state of the art. Seizure 2013;22(10):803-11
  • Mullen SA, Marini C, Suls A, et al. Glucose transporter 1 deficiency as a treatable cause of myoclonic astatic epilepsy. Arch Neurol 2011;68(9):1152-5
  • Lutas A, Yellen G. The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends Neurosci 2013;36(1):32-40
  • Rauchenzauner M, Klepper J, Leiendecker B, et al. The ketogenic diet in children with Glut1 deficiency syndrome and epilepsy. J Pediatr 2008;153(5):716-18
  • Haberlandt E, Karall D, Jud V, et al. Glucose transporter type 1 deficiency syndrome effectively treated with modified atkins diet. Neuropediatrics 2013. [Epub ahead of print]
  • Yun C, Xuefeng W. Association between seizures and diabetes mellitus: a comprehensive review of literature. Curr Diabetes Rev 2013;9(4):350-4
  • Varlamis S, Vavatsi N, Pavlou E, et al. Evaluation of oral glucose tolerance test in children with epilepsy. J Child Neurol 2013;28(11):1437-42
  • Marin-Valencia I, Good LB, Ma Q, et al. Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain. J Cereb Blood Flow Metab 2013;33(2):175-82
  • Ottman R, Winawer MR, Kalachikov S, et al. LGI1 mutations in autosomal dominant partial epilepsy with auditory features. Neurology 2004;62(7):1120-6
  • Suzuki T, Delgado-Escueta AV, Aguan K, et al. Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet 2004;36(8):842-9
  • Berg AT, Berkovic SF, Brodie MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 2010;51(4):676-85
  • Gallentine WB, Mikati MA. Genetic generalized epilepsies. J Clin Neurophysiol 2012;29(5):408-19
  • Salzmann A, Malafosse A. Genetics of temporal lobe epilepsy: a review. Epilepsy Res Treat 2012;2012:863702
  • Williams CA, Battaglia A. Molecular biology of epilepsy genes. Exp Neurol 2013;244:51-8
  • Medina MT, Suzuki T, Alonso ME, et al. Novel mutations in Myoclonin1/EFHC1 in sporadic and familial juvenile myoclonic epilepsy. Neurology 2008;70(22 Pt 2):2137-44
  • Epigad. Available from: www.epigad.org/
  • Buono RJ, Lohoff FW, Sander T, et al. Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Res 2004;58(2-3):175-83
  • Lenzen KP, Heils A, Lorenz S, et al. Supportive evidence for an allelic association of the human KCNJ10 potassium channel gene with idiopathic generalized epilepsy. Epilepsy Res 2005;63(2-3):113-18
  • Heuser K, Nagelhus EA, Taubøll E, et al. Variants of the genes encoding AQP4 and Kir4.1 are associated with subgroups of patients with temporal lobe epilepsy. Epilepsy Res 2010;88(1):55-64
  • Scholl UI, Choi M, Liu T, et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci USA 2009;106(14):5842-7
  • Bockenhauer D, Feather S, Stanescu HC, et al. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 2009;360(19):1960-70
  • Tan NC, Mulley JC, Berkovic SF. Genetic association studies in epilepsy: “the truth is out there”. Epilepsia 2004;45(11):1429-42
  • Singh NA, Charlier C, Stauffer D, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 1998;18(1):25-9
  • Charlier C, Singh NA, Ryan SG, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 1998;18(1):53-5
  • Gunthorpe MJ, Large CH, Sankar R. The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia 2012;53(3):412-24
  • Hahn A, Neubauer BA. Sodium and potassium channel dysfunctions in rare and common idiopathic epilepsy syndromes. Brain Dev 2009;31(7):515-20
  • Dibbens LM, Reid CA, Hodgson B, et al. Augmented currents of an HCN2 variant in patients with febrile seizure syndromes. Ann Neurol 2010;67(4):542-6
  • Postea O, Biel M. Exploring HCN channels as novel drug targets. Nat Rev Drug Discov 2011;10(12):903-14
  • Yu N, Liu H, Di Q. Modulation of immunity and the inflammatory response: a new target for treating drug-resistant epilepsy. Curr Neuropharmacol 2013;11(1):114-27
  • Wang CC, Chen PS, Hsu CW, et al. Valproic acid mediates the synaptic excitatory/inhibitory balance through astrocytes – a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 2012;37(1):111-20
  • Karr L, Rutecki PA. Activity-dependent induction and maintenance of epileptiform activity produced by group I metabotropic glutamate receptors in the rat hippocampal slice. Epilepsy Res 2008;81(1):14-23
  • Kang HC, Lee YM, Kim HD. Mitochondrial disease and epilepsy. Brain Dev 2013;35(8):757-61
  • Girard JM, Turnbull J, Ramachandran N, et al. Progressive myoclonus epilepsy. Handb Clin Neurol 2013;113:1731-6
  • Galanopoulou AS, Gorter JA, Cepeda C. Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target. Epilepsia 2012;53(7):1119-30
  • Jacobs MP, Leblanc GG, Brooks-Kayal A, et al. Curing epilepsy: progress and future directions. Epilepsy Behav 2009;14(3):438-45
  • Milh M, Falace A, Villeneuve N, et al. Novel compound heterozygous mutations in TBC1D24 cause familial malignant migrating partial seizures of infancy. Hum Mutat 2013;34(6):869-72
  • Förstera B, Belaidi AA, Jüttner R, et al. Irregular RNA splicing curtails postsynaptic gephyrin in the cornu ammonis of patients with epilepsy. Brain 2010;133(Pt 12):3778-94
  • Evers MM, Pepers BA, van Deutekom JC, et al. Targeting several CAG expansion diseases by a single antisense oligonucleotide. PLoS One 2011;6(9):e24308
  • Paciorkowski AR, Shafrir Y, Hrivnak J, et al. Massive expansion of SCA2 with autonomic dysfunction, retinitis pigmentosa, and infantile spasms. Neurology 2011;77(11):1055-60
  • Lalioti MD, Mirotsou M, Buresi C, et al. Identification of mutations in cystatin B, the gene responsible for the Unverricht-Lundborg type of progressive myoclonus epilepsy (EPM1). Am J Hum Genet 1997;60(2):342-51
  • Biervert C, Steinlein OK. Structural and mutational analysis of KCNQ2, the major gene locus for benign familial neonatal convulsions. Hum Genet 1999;104(3):234-40
  • McArdle EJ, Kunic JD, George AL Jr. Novel SCN1A frameshift mutation with absence of truncated Na(v)1.1 protein in severe myoclonic epilepsy of infancy. Am J Med Genet 2008;146A(18):2421-3
  • Yang C, Feng J, Song W, et al. A mouse model for nonsense mutation bypass therapy shows a dramatic multiday response to geneticin. Proc Natl Acad Sci USA 2007;104(39):15394-9
  • Mendell JT, Sharifi NA, Meyers JL, et al. Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat Genet 2004;36(10):1073-8
  • Huang X, Tian M, Hernandez CC, et al. The GABRG2 nonsense mutation, Q40X, associated with Dravet syndrome activated NMD and generated a truncated subunit that was partially rescued by aminoglycoside-induced stop codon read-through. Neurobiol Dis 2012;48(1):115-23
  • Chang JC, Liu KH, Li YC, et al. Functional recovery of human cells harbouring the mitochondrial DNA mutation MERRF A8344G via peptide-mediated mitochondrial delivery. Neurosignals 2013;21(3-4):160-73
  • Wang G, Shimada E, Zhang J, et al. Correcting human mitochondrial mutations with targeted RNA import. Proc Natl Acad Sci USA 2012;109(13):4840-5
  • Oakley JC, Cho AR, Cheah CS, et al. Synergistic GABA-enhancing therapy against seizures in a mouse model of Dravet syndrome. J Pharmacol Exp Ther 2013;345(2):215-24
  • Kearney JA, Yang Y, Beyer B, et al. Severe epilepsy resulting from genetic interaction between Scn2a and Kcnq2. Hum Mol Genet 2006;15(6):1043-8
  • Glasscock E, Qian J, Yoo JW, et al. Masking epilepsy by combining two epilepsy genes. Nat Neurosci 2007;10(12):1554-8
  • Online Mendelian Inheritance in Man®. Available from: www.omim.org/
  • Chioza B, Wilkie H, Nashef L, et al. Association between the alpha(1a) calcium channel gene CACNA1A and idiopathic generalized epilepsy. Neurology 2001;56(9):1245-6
  • Chan YC, Burgunder JM, Wilder-Smith E, et al. Electroencephalographic changes and seizures in familial hemiplegic migraine patients with the CACNA1A gene S218L mutation. J Clin Neurosci 2008;15(8):891-4
  • Escayg A, De Waard M, Lee DD, et al. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 2000;66(5):1531-9
  • Ohmori I, Ouchida M, Miki T, et al. A CACNB4 mutation shows that altered Ca(v)2.1 function may be a genetic modifier of severe myoclonic epilepsy in infancy. Neurobiol Dis 2008;32(3):349-54
  • Kapoor A, Satishchandra P, Ratnapriya R, et al. An idiopathic epilepsy syndrome linked to 3q13.3-q21 and missense mutations in the extracellular calcium sensing receptor gene. Ann Neurol 2008;64(2):158-67
  • Steinlein OK, Mulley JC, Propping P, et al. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 1995;11(2):201-3
  • Phillips HA, Favre I, Kirkpatrick M, et al. CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am J Hum Genet 2001;68(1):225-31
  • Everett K, Chioza B, Aicardi J, et al. Linkage and mutational analysis of CLCN2 in childhood absence epilepsy. Epilepsy Res 2007;75(2-3):145-53
  • Salzmann A, Guipponi M, Lyons PJ, et al. Carboxypeptidase A6 gene (CPA6) mutations in a recessive familial form of febrile seizures and temporal lobe epilepsy and in sporadic temporal lobe epilepsy. Hum Mutat 2012;33(1):124-35
  • Sapio MR, Salzmann A, Vessaz M, et al. Naturally occurring carboxypeptidase A6 mutations: effect on enzyme function and association with epilepsy. J Biol Chem 2012;287(51):42900-9
  • Dibbens LM, de Vries B, Donatello S, et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet 2013;45(5):546-51
  • Ishida S, Picard F, Rudolf G, et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet 2013;45(5):552-5
  • Cossette P, Liu L, Brisebois K, et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 2002;31(2):184-9
  • Maljevic S, Krampfl K, Cobilanschi J, et al. A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy. Ann Neurol 2006;59(6):983-7
  • Feucht M, Fuchs K, Pichlbauer E, et al. Possible association between childhood absence epilepsy and the gene encoding GABRB3. Biol Psychiatry 1999;46(7):997-1002
  • Tanaka M, Olsen RW, Medina MT, et al. Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. Am J Hum Genet 2008;82(6):1249-61
  • Dibbens LM, Feng HJ, Richards MC, et al. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet 2004;13(13):1315-19
  • Baulac S, Huberfeld G, Gourfinkel-An I, et al. First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet 2001;28(1):46-8
  • Wallace RH, Marini C, Petrou S, et al. Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 2001;28(1):49-52
  • Balan S, Sathyan S, Radha SK, et al. GABRG2, rs211037 is associated with epilepsy susceptibility, but not with antiepileptic drug resistance and febrile seizures. Pharmacogenet Genomics 2013;23(11):605-10
  • Nakayama J, Fu YH, Clark AM, et al. A nonsense mutation of the MASS1 gene in a family with febrile and afebrile seizures. Ann Neurol 2002;52(5):654-7
  • Neubauer BA, Waldegger S, Heinzinger J, et al. KCNQ2 and KCNQ3 mutations contribute to different idiopathic epilepsy syndromes. Neurology 2008;71(3):177-83
  • Kalachikov S, Evgrafov O, Ross B, et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat Genet 2002;30(3):335-41
  • Jiang Y, Zhang Y, Zhang P, et al. NIPA2 located in 15q11.2 is mutated in patients with childhood absence epilepsy. Hum Genet 2012;131(7):1217-24
  • Heron SE, Grinton BE, Kivity S, et al. PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 2012;90(1):152-60
  • Escayg A, MacDonald BT, Meisler MH, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 2000;24(4):343-5
  • Colosimo E, Gambardella A, Mantegazza M, et al. Electroclinical features of a family with simple febrile seizures and temporal lobe epilepsy associated with SCN1A loss-of-function mutation. Epilepsia 2007;48(9):1691-6
  • Wallace RH, Wang DW, Singh R, et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nat Genet 1998;19(4):366-70
  • Scheffer IE, Harkin LA, Grinton BE, et al. Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain 2007;130(Pt 1):100-9
  • Striano P, Bordo L, Lispi ML, et al. A novel SCN2A mutation in family with benign familial infantile seizures. Epilepsia 2006;47(1):218-20
  • Holland KD, Kearney JA, Glauser TA, et al. Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neurosci Lett 2008;433(1):65-70
  • Singh NA, Pappas C, Dahle EJ, et al. A role of SCN9A in human epilepsies, as a cause of febrile seizures and as a potential modifier of Dravet syndrome. PLoS Genet 2009;5(9):e1000649
  • Suls A, Mullen SA, Weber YG, et al. Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol 2009;66(3):415-19
  • Kato T, Tamiya G, Koyama S, et al. UBR5 Gene Mutation Is Associated with Familial Adult Myoclonic Epilepsy in a Japanese Family. ISRN Neurol 2012;2012:508308
  • Schenkel LC, Bragatti JA, Torres CM, et al. Serotonin transporter gene (5HTT) polymorphisms and temporal lobe epilepsy. Epilepsy Res 2011;95(1-2):152-7
  • Kauffman MA, Consalvo D, Gonzalez-Morón D, et al. Serotonin transporter gene variation and refractory mesial temporal epilepsy with hippocampal sclerosis. Epilepsy Res 2009;85(2-3):231-4
  • Diaz-Arrastia R, Gong Y, Fair S, et al. Increased risk of late posttraumatic seizures associated with inheritance of APOE epsilon4 allele. Arch Neurol 2003;60(6):818-22
  • Briellmann RS, Torn-Broers Y, Busuttil BE, et al. APOE epsilon4 genotype is associated with an earlier onset of chronic temporal lobe epilepsy. Neurology 2000;55(3):435-7
  • Kanemoto K, Kawasaki J, Tarao Y, et al. Association of partial epilepsy with brain-derived neurotrophic factor (BDNF) gene polymorphisms. Epilepsy Res 2003;53(3):255-8
  • Nectoux J, Bahi-Buisson N, Guellec I, et al. The p.Val66Met polymorphism in the BDNF gene protects against early seizures in Rett syndrome. Neurology 2008;70(22 Pt 2):2145-51
  • Pal DK, Evgrafov OV, Tabares P, et al. BRD2 (RING3) is a probable major susceptibility gene for common juvenile myoclonic epilepsy. Am J Hum Genet 2003;73(2):261-70
  • Lorenz S, Taylor KP, Gehrmann A, et al. Association of BRD2 polymorphisms with photoparoxysmal response. Neurosci Lett 2006;400(1-2):135-9
  • Singh B, Monteil A, Bidaud I, et al. Mutational analysis of CACNA1G in idiopathic generalized epilepsy. Mutation in brief #962. Online. Hum Mutat 2007;28(5):524-5
  • Chen Y, Lu J, Pan H, et al. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 2003;54(2):239-43
  • Heron SE, Khosravani H, Varela D, et al. Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol 2007;62(6):560-8
  • Robinson R, Taske N, Sander T, et al. Linkage analysis between childhood absence epilepsy and genes encoding GABAA and GABAB receptors, voltage-dependent calcium channels, and the ECA1 region on chromosome 8q. Epilepsy Res 2002;48(3):169-79
  • Everett KV, Chioza B, Aicardi J, et al. Linkage and association analysis of CACNG3 in childhood absence epilepsy. Eur J Hum Genet 2007;15(4):463-72
  • Steinlein O, Sander T, Stoodt J, et al. Possible association of a silent polymorphism in the neuronal nicotinic acetylcholine receptor subunit alpha4 with common idiopathic generalized epilepsies. Am J Med Genet 1997;74(4):445-9
  • Chou IC, Lee CC, Huang CC, et al. Association of the neuronal nicotinic acetylcholine receptor subunit alpha4 polymorphisms with febrile convulsions. Epilepsia 2003;44(8):1089-93
  • Mas C, Taske N, Deutsch S, et al. Association of the connexin36 gene with juvenile myoclonic epilepsy. J Med Genet 2004;41(7):e93
  • Hempelmann A, Heils A, Sander T. Confirmatory evidence for an association of the connexin-36 gene with juvenile myoclonic epilepsy. Epilepsy Res 2006;71(2-3):223-8
  • Wang X, Sun W, Zhu X, et al. Association between the gamma-aminobutyric acid type B receptor 1 and 2 gene polymorphisms and mesial temporal lobe epilepsy in a Han Chinese population. Epilepsy Res 2008;81(2-3):198-203
  • Xi B, Chen J, Yang L, et al. GABBR1 gene polymorphism(G1465A) is associated with temporal lobe epilepsy. Epilepsy Res 2011;96(1-2):58-63
  • Pernhorst K, Raabe A, Niehusmann P, et al. Promoter variants determine γ-aminobutyric acid homeostasis-related gene transcription in human epileptic hippocampi. J Neuropathol Exp Neurol 2011;70(12):1080-8
  • Lü JJ, Zhang YH, Pan H, et al. Case-control study and transmission/disequilibrium tests of the genes encoding GABRA5 and GABRB3 in a Chinese population affected by childhood absence epilepsy. Chin Med J (Engl) 2004;117(10):1497-501
  • Chou IC, Lee CC, Tsai CH, et al. Association of GABRG2 polymorphisms with idiopathic generalized epilepsy. Pediatr Neurol 2007;36(1):40-4
  • Tang B, Sander T, Craven KB, et al. Mutation analysis of the hyperpolarization-activated cyclic nucleotide-gated channels HCN1 and HCN2 in idiopathic generalized epilepsy. Neurobiol Dis 2008;29(1):59-70
  • Ishizaki Y, Kira R, Fukuda M, et al. Interleukin-10 is associated with resistance to febrile seizures: genetic association and experimental animal studies. Epilepsia 2009;50(4):761-7
  • Wu ZQ, Sun L, Sun YH, et al. Interleukin 1 beta -511 C/T gene polymorphism and susceptibility to febrile seizures: a meta-analysis. Mol Biol Rep 2012;39(5):5401-7
  • Chou IC, Lin WD, Wang CH, et al. Interleukin (IL)-1beta, IL-1 receptor antagonist, IL-6, IL-8, IL-10, and tumor necrosis factor alpha gene polymorphisms in patients with febrile seizures. J Clin Lab Anal 2010;24(3):154-9
  • Serdaroğlu G, Alpman A, Tosun A, et al. Febrile seizures: interleukin 1beta and interleukin-1 receptor antagonist polymorphisms. Pediatr Neurol 2009;40(2):113-16
  • Chioza B, Osei-Lah A, Wilkie H, et al. Suggestive evidence for association of two potassium channel genes with different idiopathic generalised epilepsy syndromes. Epilepsy Res 2002;52(2):107-16
  • Vijai J, Kapoor A, Ravishankar HM, et al. Genetic association analysis of KCNQ3 and juvenile myoclonic epilepsy in a South Indian population. Hum Genet 2003;113(5):461-3
  • Stögmann E, Zimprich A, Baumgartner C, et al. A functional polymorphism in the prodynorphin gene promotor is associated with temporal lobe epilepsy. Ann Neurol 2002;51(2):260-3
  • Bovo G, Diani E, Bisulli F, et al. Analysis of LGI1 promoter sequence, PDYN and GABBR1 polymorphisms in sporadic and familial lateral temporal lobe epilepsy. Neurosci Lett 2008;436(1):23-6
  • Labate A, Manna I, Gambardella A, et al. Association between the M129V variant allele of PRNP gene and mild temporal lobe epilepsy in women. Neurosci Lett 2007;421(1):1-4
  • Arsov T, Mullen SA, Rogers S, et al. Glucose transporter 1 deficiency in the idiopathic generalized epilepsies. Ann Neurol 2012;72(5):807-15
  • Vauthier V, Jaillard S, Journel H, et al. Homozygous deletion of an 80 kb region comprising part of DNAJC6 and LEPR genes on chromosome 1P31.3 is associated with early onset obesity, mental retardation and epilepsy. Mol Genet Metab 2012;106(3):345-50
  • Karkheiran S, Krebs CE, Makarov V, et al. Identification of COL6A2 mutations in progressive myoclonus epilepsy syndrome. Hum Genet 2013;132(3):275-83
  • Cukier HN, Lee JM, Ma D, et al. The expanding role of MBD genes in autism: identification of a MECP2 duplication and novel alterations in MBD5, MBD6, and SETDB1. Autism Res 2012;5(6):385-97
  • Veeramah KR, Johnstone L, Karafet TM, et al. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia 2013;54(7):1270-81
  • Zwaveling-Soonawala N, Hagebeuk EE, Slingerland AS, et al. Successful transfer to sulfonylurea therapy in an infant with developmental delay, epilepsy and neonatal diabetes (DEND) syndrome and a novel ABCC8 gene mutation. Diabetologia 2011;54(2):469-71
  • Stockhammer F, Misch M, Helms HJ, et al. IDH1/2 mutations in WHO grade II astrocytomas associated with localization and seizure as the initial symptom. Seizure 2012;21(3):194-7
  • Lee JH, Huynh M, Silhavy JL, et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 2012;44(8):941-5
  • Backx L, Ceulemans B, Vermeesch JR, et al. Early myoclonic encephalopathy caused by a disruption of the neuregulin-1 receptor ErbB4. Eur J Hum Genet 2009;17(3):378-82
  • Thierry G, Bénéteau C, Pichon O, et al. Molecular characterization of 1q44 microdeletion in 11 patients reveals three candidate genes for intellectual disability and seizures. Am J Med Genet A 2012;158A(7):1633-40
  • Lionel AC, Vaags AK, Sato D, et al. Rare exonic deletions implicate the synaptic organizer Gephyrin (GPHN) in risk for autism, schizophrenia and seizures. Hum Mol Genet 2013;22(10):2055-66
  • Orlova KA, Parker WE, Heuer GG, et al. STRADalpha deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice. J Clin Invest 2010;120(5):1591-602
  • Koyama S, Kawanami T, Tanji H, et al. A case of cerebrotendinous xanthomatosis presenting with epilepsy as an initial symptom with a novel V413D mutation in the CYP27A1 gene. Clin Neurol Neurosurg 2012;114(7):1021-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.