435
Views
29
CrossRef citations to date
0
Altmetric
Reviews

Venom-based biotoxins as potential analgesics

&

References

  • Van Hecke O, Austin SK, Khan RA, et al. Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain 2014;155(4):654-62
  • Lopez MDA. Natural products as sources of new drugs. A general overview. An Real Acad Nac F 2011;77(1):12-26
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012;75(3):311-335
  • Kapoor VK. Natural toxins and their therapeutic potential. Indian J Exp Biol 2010;48(3):228-37
  • King GF. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther 2011;11(11):1469-84
  • Nieto FR, Cobos EJ, Tejada MA, et al. Tetrodotoxin (TTX) as a therapeutic agent for pain. Mar Drugs 2012;10(2):281-305
  • Bane V, Lehane M, Dikshit M, et al. Tetrodotoxin: chemistry, toxicity, source, distribution and detection. Toxins (Basel) 2014;6(2):693-755
  • Osipov A, Utkin Y. Effects of snake venom polypeptides on central nervous system. Cent Nerv Syst Agents Med Chem 2012;12(4):315-28
  • Rajendra W, Armugam A, Jeyaseelan K. Toxins in anti-nociception and anti-inflammation. Toxicon 2004;44(1):1-17
  • Pal SK, Gomes A, Dasgupta SC, Gomes A. Snake venom as therapeutic agents: from toxin to drug development. Indian J Exp Biol 2002;40(12):1353-8
  • Koh DC, Armugam A, Jeyaseelan K. Snake venom components and their applications in biomedicine. Cell Mol Life Sci 2006;63(24):3030-41
  • Harris JB. Polypeptides from snake venoms which act on nerve and muscle. Prog Med Chem 1984;21:63-110
  • Harvey AL. Twenty years of dendrotoxins. Toxicon 2001;39(1):15-26
  • Chen ZX, Zhang HL, Gu ZL, et al. A long-form alpha-neurotoxin from cobra venom produces potent opioid-independent analgesia. Acta Pharmacol Sin 2006;27(4):402-8
  • Cheng BC, Zhou XP, Zhu Q, et al. Cobratoxin inhibits pain-evoked discharge of neurons in thalamic parafascicular nucleus in rats: involvement of cholinergic and serotonergic systems. Toxicon 2009;54(3):224-32
  • Kwong PD, Mcdonald NQ, Sigler PB, Hendrickson WA. Structure of beta 2-bungarotoxin: potassium channel binding by Kunitz modules and targeted phospholipase action. Structure 1995;3(10):1109-19
  • Rowan EG. What does beta-bungarotoxin do at the neuromuscular junction? Toxicon 2001;39(1):107-18
  • Wolf KM, Ciarleglio A, Chiappinelli VA. Kappa-Bungarotoxin: binding of a neuronal nicotinic receptor antagonist to chick optic lobe and skeletal muscle. Brain Res 1988;439(1-2):249-58
  • Zhang HL, Han R, Chen ZX, et al. Opiate and acetylcholine-independent analgesic actions of crotoxin isolated from crotalus durissus terrificus venom. Toxicon 2006;48(2):175-82
  • Sampaio SC, Hyslop S, Fontes MR, et al. Crotoxin: novel activities for a classic beta-neurotoxin. Toxicon 2010;55(6):1045-60
  • Cura JE, Blanzaco DP, Brisson C, et al. Phase I and pharmacokinetics study of crotoxin (cytotoxic PLA(2), NSC-624244) in patients with advanced cancer. Clin Cancer Res 2002;8(4):1033-41
  • Konno K, Picolo G, Gutierrez VP, et al. Crotalphine, a novel potent analgesic peptide from the venom of the South American rattlesnake Crotalus durissus terrificus. Peptides 2008;29(8):1293-304
  • Mancin AC, Soares AM, Andriao-Escarso SH, et al. The analgesic activity of crotamine, a neurotoxin from Crotalus durissus terrificus (South American rattlesnake) venom: a biochemical and pharmacological study. Toxicon 1998;36(12):1927-37
  • Picolo G, Giorgi R, Cury Y. delta-opioid receptors and nitric oxide mediate the analgesic effect of Crotalus durissus terrificus snake venom. Eur J Pharmacol 2000;391(1-2):55-62
  • Picolo G, Cassola AC, Cury Y. Activation of peripheral ATP-sensitive K+ channels mediates the antinociceptive effect of Crotalus durissus terrificus snake venom. Eur J Pharmacol 2003;469(1-3):57-64
  • Pu XC, Wong PT, Gopalakrishnakone P. A novel analgesic toxin (hannalgesin) from the venom of king cobra (Ophiophagus hannah). Toxicon 1995;33(11):1425-31
  • Pung YF, Wong PTH, Kumar PP, et al. Ohanin, a novel protein from king cobra venom, induces hypolocomotion and hyperalgesia in mice. J Biol Chem 2005;280(13):13137-47
  • Theralpha, US 2012/0183580. (2012)
  • Vonk FJ, Jackson K, Doley R, et al. Snake venom: from fieldwork to the clinic: Recent insights into snake biology, together with new technology allowing high-throughput screening of venom, bring new hope for drug discovery. Bioessays 2011;33(4):269-79
  • Dutta AS, Chaudhuri AK. Neuropharmacological studies on the venom of Vipera russelli. Indian J Exp Biol 1991;29(10):937-42
  • US 6555109. (2003)
  • Dyachenko IA, Murashev AN, Andreeva TV, et al. Analysis of nociceptive effects of neurotoxic phospholipase A2 from Vipera nikolskii venom in mice. J Venom Res 2013;4:1-4
  • Leite Dos Santos GG, Casais E Silva LL, Pereira Soares MB, Villarreal CF. Antinociceptive properties of Micrurus lemniscatus venom. Toxicon 2012;60(6):1005-12
  • Diochot S, Baron A, Salinas M, et al. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 2012;490(7421):552-+
  • Bohlen CJ, Chesler AT, Sharif-Naeini R, et al. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 2011;479(7373):410-U167
  • Saez NJ, Senff S, Jensen JE, et al. Spider-venom peptides as therapeutics. Toxins (Basel) 2010;2(12):2851-71
  • Cury Y, Picolo G. Animal toxins as analgesics - An overview. Drug News Perspect 2006;19(7):381-92
  • Estrada G, Villegas E, Corzo G. Spider venoms: a rich source of acylpolyamines and peptides as new leads for CNS drugs. Nat Prod Rep 2007;24(1):145-61
  • Klint JK, Senff S, Rupasinghe DB, et al. Spider-venom peptides that target voltage-gated sodium channels: pharmacological tools and potential therapeutic leads. Toxicon 2012;60(4):478-91
  • Gilchrist J, Bosmans F. Animal toxins can alter the function of Nav1.8 and Nav1.9. Toxins (Basel) 2012;4(8):620-32
  • Middleton RE, Warren VA, Kraus RL, et al. Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry 2002;41(50):14734-47
  • Bosmans F, Rash L, Zhu SY, et al. Four novel tarantula toxins as selective modulators of voltage-gated sodium channel subtypes. Mol Pharmacol 2006;69(2):419-29
  • Zeng XZ, Deng MC, Lin Y, et al. Isolation and characterization of Jingzhaotoxin-V, a novel neurotoxin from the venom of the spider Chilobrachys jingzhao. Toxicon 2007;49(3):388-99
  • Deng MC, Kuang F, Sun ZH, et al. Jingzhaotoxin-IX, a novel gating modifier of both sodium and potassium channels from Chinese tarantula Chilobrachys jingzhao. Neuropharmacology 2009;57(2):77-87
  • Nebe J, Vanegas H, Neugebauer V, Schaible HG. omega-agatoxin IVA, a P-type calcium channel antagonist, reduces nociceptive processing in spinal cord neurons with input from the inflamed but not from the normal knee joint - An electrophysiological study in the rat in vivo. Eur J Neurosci 1997;9(10):2193-201
  • Nebe J, Ebersberger A, Vanegas H, Schaible HG. Effects of omega-agatoxin IVA, a P-type calcium channel antagonist, on the development of spinal neuronal hyperexcitability caused by knee inflammation in rats. J Neurophysiol 1999;81(6):2620-6
  • Rigo FK, Trevisan G, Rosa F, et al. Spider peptide Phalpha1beta induces analgesic effect in a model of cancer pain. Cancer Sci 2013;104(9):1226-30
  • De Souza AH, Castro CJ Jr, Rigo FK, et al. An evaluation of the antinociceptive effects of Phalpha1beta, a neurotoxin from the spider Phoneutria nigriventer, and omega-conotoxin MVIIA, a cone snail Conus magus toxin, in rat model of inflammatory and neuropathic pain. Cell Mol Neurobiol 2013;33(1):59-67
  • Vieira LB, Kushmerick C, Hildebrand ME, et al. Inhibition of high voltage-activated calcium channels by spider toxin PnTx3-6. J Pharmacol Exp Ther 2005;314(3):1370-7
  • Sousa SR, Vetter I, Lewis RJ. Venom peptides as a rich source of cav2.2 channel blockers. Toxins (Basel) 2013;5(2):286-314
  • Rash LD, Hodgson WC. Pharmacology and biochemistry of spider venoms. Toxicon 2002;40(3):225-54
  • Kawai N, Miwa A, Shimazaki K, et al. Spider toxin and the glutamate receptors. Comp Biochem Phys C 1991;98(1):87-95
  • Torres-Salazar D, Fahlke C. Parawixin1: a spider toxin opening new avenues for glutamate transporter pharmacology. Mol Pharmacol 2007;72(5):1100-2
  • Khvotchev M, Sudhof TC. alpha-latrotoxin triggers transmitter release via direct insertion into the presynaptic plasma membrane. EMBO J 2000;19(13):3250-62
  • Fontana AC, De Oliveira Beleboni R, Wojewodzic MW, et al. Enhancing glutamate transport: mechanism of action of Parawixin1, a neuroprotective compound from Parawixia bistriata spider venom. Mol Pharmacol 2007;72(5):1228-37
  • Pogatzki EM, Niemeier JS, Sorkin LS, Brennan TJ. Effect of joro spider toxin (JSTX) on primary and secondary hyperalgesia after incision in the rat. Anesthesiology 2000;93(3A):U206-6
  • Scott RH, Thatcher NM, Ayar A, et al. Extracellular or intracellular application of argiotoxin-636 has inhibitory actions on membrane excitability and voltage-activated currents in cultured rat sensory neurons. Neuropharmacology 1998;37(12):1563-78
  • Escoubas P, Diochot S, Corzo G. Structure and pharmacology of spider venom neurotoxins. Biochimie 2000;82(9-10):893-907
  • Mazzuca M, Heurteaux C, Alloui A, et al. A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nat Neurosci 2007;10(8):943-5
  • Grishin EV, Savchenko GA, Vassilevski AA, et al. Novel peptide from spider venom inhibits P2X3 receptors and inflammatory pain. Ann Neurol 2010;67(5):680-3
  • Kabanova NV, Vassilevski AA, Rogachevskaja OA, et al. Modulation of P2X3 receptors by spider toxins. Biochim Biophys Acta 2012;1818(11):2868-75
  • Cromer BA, Mcintyre P. Painful toxins acting at TRPV1. Toxicon 2008;51(2):163-73
  • Park SP, Kim BM, Koo JY, et al. A tarantula spider toxin, GsMTx4, reduces mechanical and neuropathic pain. Pain 2008;137(1):208-17
  • Cherniack EP. Bugs as Drugs, Part Two: worms, Leeches, Scorpions, Snails, Ticks, Centipedes, and Spiders. Altern Med Rev 2011;16(1):50-8
  • Redaelli E, Cassulini RR, Silva DF, et al. Target promiscuity and heterogeneous effects of tarantula venom peptides affecting Na+ and K+ ion channels. J Biol Chem 2010;285(6):4130-42
  • Herzig V, Wood DLA, Newell F, et al. ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures. Nucleic Acids Res 2011;39:D653-7
  • ArachnoServer. Available from: www.arachnoserver.org/mainMenu.html
  • Mao QH, Ruan JP, Cai XT, et al. Antinociceptive effects of analgesic-antitumor peptide (AGAP), a neurotoxin from the scorpion buthus martensii karsch, on formalin-induced inflammatory pain through a mitogen-activated protein kinases-dependent mechanism in mice. PLoS one 2013;8(11):e78239
  • Undheim EA, King GF. On the venom system of centipedes (Chilopoda), a neglected group of venomous animals. Toxicon 2011;57(4):512-24
  • Chen MZ, Li J, Zhang F, Liu ZH. Isolation and characterization of SsmTx-I, a Specific Kv2.1 blocker from the venom of the centipede Scolopendra Subspinipes Mutilans L. Koch. J Pept Sci 2014;20(3):159-64
  • Yang SL, Xiao Y, Kang D, et al. Discovery of a selective Na(V)1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. P Natl Acad Sci USA 2013;110(43):17534-9
  • Cherniack EP. Bugs as Drugs, Part 1: insects. The “New” Alternative Medicine for the 21st Century? Altern Med Rev 2010;15(2):124-35
  • Chen J, Lariviere WR. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol 2010;92(2):151-83
  • Saini SS, Peterson JW, Chopra AK. Melittin binds to secretory phospholipase A2 and inhibits its enzymatic activity. Biochem Biophys Res Commun 1997;238(2):436-42
  • Lee JY, Kang SS, Kim JH, et al. Inhibitory effect of whole bee venom in adjuvant-induced arthritis. In Vivo 2005;19(4):801-5
  • Mortari MR, Cunha AOS, Carolino ROG, et al. Inhibition of acute nociceptive responses in rats after i. c. v. injection of Thr(6)-bradykinin, isolated from the venom of the social wasp, Polybia occidentalis. Brit J Pharmacol 2007;151(6):860-9
  • Couto LB, Correa FM, Pela IR. Brain sites involved in the antinociceptive effect of bradykinin in rats. Br J Pharmacol 1998;125(7):1578-84
  • Piek T, Hue B, Le Corronc H, et al. Presynaptic block of transmission in the insect CNS by mono- and di-galactosyl analogues of vespulakinin 1, a wasp (Paravespula maculifrons) venom neurotoxin. Comp Biochem Physiol C 1993;105(2):189-96
  • Altman RD, Schultz DR, Collins-Yudiskas B, et al. The effects of a partially purified fraction of an ant venom in rheumatoid arthritis. Arthritis Rheum 1984;27(3):277-84
  • Pan J, Hink WF. Isolation and characterization of myrmexins, six isoforms of venom proteins with anti-inflammatory activity from the tropical ant, Pseudomyrmex triplarinus. Toxicon 2000;38(10):1403-13
  • Frazao B, Vasconcelos V, Antunes A. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar Drugs 2012;10(8):1812-51
  • Andreev YA, Kozlov SA, Koshelev SG, et al. Analgesic compound from sea anemone Heteractis crispa is the first polypeptide inhibitor of vanilloid receptor 1 (TRPV1). J Biol Chem 2008;283(35):23914-21
  • Baron A, Diochot S, Salinas M, et al. Venom toxins in the exploration of molecular, physiological and pathophysiological functions of acid-sensing ion channels. Toxicon 2013;75:187-204
  • Ayed Y, Dellai A, Ben Mansour H, et al. Analgesic and antibutyrylcholinestrasic activities of the venom prepared from the Mediterranean jellyfish Pelagia noctiluca (Forsskal, 1775). Ann Clin Microbiol Antimicrob 2012;11:15
  • Duh CY, El-Gamal AA, Song PY, et al. Steroids and sesquiterpenoids from the soft corals Dendronephthya gigantea and Lemnalia cervicorni. J Nat Prod 2004;67(10):1650-3
  • Lin YC, Huang SY, Jean YH, et al. Intrathecal lemnalol, a natural marine compound obtained from Formosan soft coral, attenuates nociceptive responses and the activity of spinal glial cells in neuropathic rats. Behav Pharmacol 2011;22(8):739-50
  • Karthikeyan R, Karthigayan S, Sri Balasubashini M, et al. Inhibition of Hep2 and HeLa cell proliferation in vitro and EAC tumor growth in vivo by Lapemis curtus (Shaw 1802) venom. Toxicon 2008;51(1):157-61
  • US 7294697. (2007)
  • Lewis RJ, Dutertre S, Vetter I, Christie MJ. Conus venom peptide pharmacology. Pharmacol Rev 2012;64(2):259-98
  • Essack M, Bajic VB, Archer JaC. Conotoxins that confer therapeutic possibilities. Mar Drugs 2012;10(6):1244-65
  • Hannon HE, Atchison WD. Omega-Conotoxins as Experimental Tools and Therapeutics in Pain Management. Mar Drugs 2013;11(3):680-99
  • Knapp O, Mcarthur JR, Adams DJ. Conotoxins targeting neuronal voltage-gated sodium channel subtypes: potential analgesics? Toxins (Basel) 2012;4(11):1236-60
  • Canoserver. Available from: www.conoserver.org/?page=list&table=reference&listonly=1
  • Schmidtko A, Lotsch J, Freynhagen R, Geisslinger G. Ziconotide for treatment of severe chronic pain. Lancet 2010;375(9725):1569-77
  • Sharpe IA, Gehrmann J, Loughnan ML, et al. Two new classes of conopeptides inhibit the alpha1-adrenoceptor and noradrenaline transporter. Nat Neurosci 2001;4(9):902-7
  • Lee S, Kim Y, Back SK, et al. Analgesic effect of highly reversible omega-conotoxin FVIA on N type Ca2+ channels. Mol Pain 2010;6:97
  • Callaghan B, Haythornthwaite A, Berecki G, et al. Analgesic alpha-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABAB receptor activation. J Neurosci 2008;28(43):10943-51
  • Heralde FM 3rd, Imperial J, Bandyopadhyay PK, et al. A rapidly diverging superfamily of peptide toxins in venomous Gemmula species. Toxicon 2008;51(5):890-7
  • Ligabue-Braun R, Verli H, Carlini CR. Venomous mammals: a review. Toxicon 2012;59(7-8):680-95
  • Whittington CM, Koh JM, Warren WC, et al. Understanding and utilising mammalian venom via a platypus venom transcriptome. J Proteomics 2009;72(2):155-64

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.