379
Views
10
CrossRef citations to date
0
Altmetric
Review

The potential of induced pluripotent stem cells in models of neurological disorders: implications on future therapy

, &

References

  • Cai S, Chan YS, Shum DK. Induced pluripotent stem cells and neurological disease models. Sheng Li Xue Bao 2014;66(1):55-66
  • Cherry AB, Daley GQ. Reprogramming cellular identity for regenerative medicine. Cell 2012;148(6):1110-22
  • Wen Z, Nguyen HN, Guo Z, et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 2014;515(7527):414-18
  • Wright R, Rethelyi JM, Gage FH. Enhancing induced pluripotent stem cell models of schizophrenia. JAMA Psychiatry 2014;71(3):334-5
  • Brennand K, Savas JN, Kim Y, et al. Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry 2014. [Epub ahead of print]
  • Brennand KJ, Gage FH. Concise review: the promise of human induced pluripotent stem cell-based studies of schizophrenia. Stem Cells 2011;29(12):1915-22
  • Brennand KJ, Landek-Salgado MA, Sawa A. Modeling heterogeneous patients with a clinical diagnosis of schizophrenia with induced pluripotent stem cells. Biol Psychiatry 2014;75(12):936-44
  • Brennand KJ, Simone A, Jou J, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011;473(7346):221-5
  • Brennand KJ, Simone A, Tran N, Gage FH. Modeling psychiatric disorders at the cellular and network levels. Mol Psychiatry 2012;17(12):1239-53
  • Chiang CH, Su Y, Wen Z, et al. Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry 2011;16(4):358-60
  • Pedrosa E, Sandler V, Shah A, et al. Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogenet 2011;25(3):88-103
  • Mukherjee S, Pipino C, David AL, et al. Emerging neuronal precursors from amniotic fluid-derived down syndrome induced pluripotent stem cells. Hum Gene Ther 2014;25(8):682-3
  • Shi Y, Kirwan P, Smith J, et al. A human stem cell model of early Alzheimer’s disease pathology in Down syndrome. Sci Transl Med 2012;4(124):124ra129
  • Weick JP, Held DL, Bonadurer GF3rd, et al. Deficits in human trisomy 21 iPSCs and neurons. Proc Natl Acad Sci USA 2013;110(24):9962-7
  • Briggs JA, Sun J, Shepherd J, et al. Integration-free induced pluripotent stem cells model genetic and neural developmental features of down syndrome etiology. Stem Cells 2013;31(3):467-78
  • Chen C, Jiang P, Xue H, et al. Role of astroglia in Down’s syndrome revealed by patient-derived human-induced pluripotent stem cells. Nat Commun 2014;5:4430
  • Chou ST, Byrska-Bishop M, Tober JM, et al. Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells. Proc Natl Acad Sci USA 2012;109(43):17573-8
  • Hibaoui Y, Grad I, Letourneau A, et al. Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. EMBO Mol Med 2014;6(2):259-77
  • Li LB, Chang KH, Wang PR, et al. Trisomy correction in Down syndrome induced pluripotent stem cells. Cell Stem Cell 2012;11(5):615-19
  • Lu HE, Yang YC, Chen SM, et al. Modeling neurogenesis impairment in Down syndrome with induced pluripotent stem cells from Trisomy 21 amniotic fluid cells. Exp Cell Res 2013;319(4):498-505
  • Mou X, Wu Y, Cao H, et al. Generation of disease-specific induced pluripotent stem cells from patients with different karyotypes of Down syndrome. Stem Cell Res Ther 2012;3(2):14
  • Brick DJ, Nethercott HE, Montesano S, et al. The autism spectrum disorders stem cell resource at children’s hospital of orange county: implications for disease modeling and drug discovery. Stem Cells Transl Med 2014;3(11):1275-86
  • Ananiev G, Williams EC, Li H, Chang Q. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One 2011;6(9):e25255
  • Bolte S, Willfors C, Berggren S, et al. The roots of autism and ADHD twin study in sweden (RATSS). Twin Res Hum Genet 2014;17(3):164-76
  • Cheung AY, Horvath LM, Grafodatskaya D, et al. Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet 2011;20(11):2103-15
  • Cocks G, Curran S, Gami P, et al. The utility of patient specific induced pluripotent stem cells for the modelling of Autistic Spectrum Disorders. Psychopharmacology (Berl) 2014;231(6):1079-88
  • DeRosa BA, Van Baaren JM, Dubey GK, et al. Derivation of autism spectrum disorder-specific induced pluripotent stem cells from peripheral blood mononuclear cells. Neurosci Lett 2012;516(1):9-14
  • Doers ME, Musser MT, Nichol R, et al. iPSC-derived forebrain neurons from FXS individuals show defects in initial neurite outgrowth. Stem Cells Dev 2014;23(15):1777-87
  • Farra N, Zhang WB, Pasceri P, et al. Rett syndrome induced pluripotent stem cell-derived neurons reveal novel neurophysiological alterations. Mol Psychiatry 2012;17(12):1261-71
  • Kim DS, Ross PJ, Zaslavsky K, Ellis J. Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD. Front Cell Neurosci 2014;8:109
  • Krey JF, Pasca SP, Shcheglovitov A, et al. Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat Neurosci 2013;16(2):201-9
  • Liu EY, Scott CT. Great expectations: autism spectrum disorder and induced pluripotent stem cell technologies. Stem Cell Rev 2014;10(2):145-50
  • Liu J, Koscielska KA, Cao Z, et al. Signaling defects in iPSC-derived fragile X premutation neurons. Hum Mol Genet 2012;21(17):3795-805
  • Marchetto MC, Carromeu C, Acab A, et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 2010;143(4):527-39
  • Pasca SP, Portmann T, Voineagu I, et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 2011;17(12):1657-62
  • Liu Y, Lopez-Santiago LF, Yuan Y, et al. Dravet syndrome patient-derived neurons suggest a novel epilepsy mechanism. Ann Neurol 2013;74(1):128-39
  • Muotri AR. Modeling epilepsy with pluripotent human cells. Epilepsy Behav 2009;14(Suppl 1):81-5
  • Higurashi N, Uchida T, Lossin C, et al. A human Dravet syndrome model from patient induced pluripotent stem cells. Mol Brain 2013;6:19
  • Jiao J, Yang Y, Shi Y, et al. Modeling Dravet syndrome using induced pluripotent stem cells (iPSCs) and directly converted neurons. Hum Mol Genet 2013;22(21):4241-52
  • Mahairaki V, Ryu J, Peters A, et al. Induced pluripotent stem cells from familial alzheimer’s disease patients differentiate into mature neurons with amyloidogenic properties. Stem Cells Dev 2014;23(24):2996-3010
  • Duan L, Bhattacharyya BJ, Belmadani A, et al. Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death. Mol Neurodegener 2014;9:3
  • Israel MA, Goldstein LS. Capturing Alzheimer’s disease genomes with induced pluripotent stem cells: prospects and challenges. Genome Med 2011;3(7):49
  • Israel MA, Yuan SH, Bardy C, et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 2012;482(7384):216-20
  • Kondo T, Asai M, Tsukita K, et al. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell 2013;12(4):487-96
  • Mohamet L, Miazga NJ, Ward CM. Familial Alzheimer’s disease modelling using induced pluripotent stem cell technology. World J Stem Cells 2014;6(2):239-47
  • Ooi L, Sidhu K, Poljak A, et al. Induced pluripotent stem cells as tools for disease modelling and drug discovery in Alzheimer’s disease. J Neural Transm 2013;120(1):103-11
  • Sproul AA, Jacob S, Pre D, et al. Characterization and molecular profiling of PSEN1 familial Alzheimer’s disease iPSC-derived neural progenitors. PLoS One 2014;9(1):e84547
  • Yagi T, Ito D, Okada Y, et al. [Modeling familial Alzheimer’s disease with induced pluripotent stem cells]. Rinsho Shinkeigaku 2012;52(11):1134-6
  • Zhao P, Luo Z, Tian W, et al. Solving the puzzle of Parkinson’s disease using induced pluripotent stem cells. Exp Biol Med Maywood 2014;239(11):1421-32
  • Beevers JE, Caffrey TM, Wade-Martins R. Induced pluripotent stem cell (iPSC)-derived dopaminergic models of Parkinson’s disease. Biochem Soc Trans 2013;41(6):1503-8
  • Byers B, Cord B, Nguyen HN, et al. SNCA triplication Parkinson’s patient’s iPSC-derived DA neurons accumulate alpha-synuclein and are susceptible to oxidative stress. PLoS One 2011;6(11):e26159
  • Byers B, Lee HL, Reijo Pera R. Modeling Parkinson’s disease using induced pluripotent stem cells. Curr Neurol Neurosci Rep 2012;12(3):237-42
  • Cooper O, Hallett P, Isacson O. Using stem cells and iPS cells to discover new treatments for Parkinson’s disease. Parkinsonism Relat Disord 2012;18(Suppl 1):S14-16
  • Cooper O, Seo H, Andrabi S, et al. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med 2012;4(141):141ra190
  • Devine MJ, Ryten M, Vodicka P, et al. Parkinson’s disease induced pluripotent stem cells with triplication of the alpha-synuclein locus. Nat Commun 2011;2:440
  • Hartfield EM, Fernandes HJ, Vowles J, et al. Cellular reprogramming: a new approach to modelling Parkinson’s disease. Biochem Soc Trans 2012;40(5):1152-7
  • Imaizumi Y, Okada Y, Akamatsu W, et al. Mitochondrial dysfunction associated with increased oxidative stress and alpha-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol Brain 2012;5:35
  • Pu J, Jiang H, Zhang B, Feng J. Redefining Parkinson’s disease research using induced pluripotent stem cells. Curr Neurol Neurosci Rep 2012;12(4):392-8
  • Ryan SD, Dolatabadi N, Chan SF, et al. Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1alpha transcription. Cell 2013;155(6):1351-64
  • Sanchez-Danes A, Benzoni P, Memo M, et al. Induced pluripotent stem cell-based studies of Parkinson’s disease: challenges and promises. CNS Neurol Disord Drug Targets 2013;12(8):1114-27
  • Sanchez-Danes A, Richaud-Patin Y, Carballo-Carbajal I, et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med 2012;4(5):380-95
  • Sanders LH, Laganiere J, Cooper O, et al. LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients: reversal by gene correction. Neurobiol Dis 2014;62:381-6
  • Schondorf DC, Aureli M, McAllister FE, et al. iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun 2014;5:4028
  • Soldner F, Hockemeyer D, Beard C, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009;136(5):964-77
  • Kaye JA, Finkbeiner S. Modeling Huntington’s disease with induced pluripotent stem cells. Mol Cell Neurosci 2013;56:50-64
  • Camnasio S, Delli Carri A, Lombardo A, et al. The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington’s disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiol Dis 2012;46(1):41-51
  • Chae JI, Kim DW, Lee N, et al. Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington’s disease patient. Biochem J 2012;446(3):359-71
  • Guo X, Disatnik MH, Monbureau M, et al. Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration. J Clin Invest 2013;123(12):5371-88
  • Jeon I, Lee N, Li JY, et al. Neuronal properties, in vivo effects, and pathology of a Huntington’s disease patient-derived induced pluripotent stem cells. Stem Cells 2012;30(9):2054-62
  • Juopperi TA, Kim WR, Chiang CH, et al. Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol Brain 2012;5:17
  • Zhang N, An MC, Montoro D, Ellerby LM. Characterization of human huntington’s disease cell model from induced pluripotent stem cells. PLoS Curr 2010;2:RRN1193
  • Ebert AD, Yu J, Rose FFJr, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 2009;457(7227):277-80
  • Chang T, Zheng W, Tsark W, et al. Brief report: phenotypic rescue of induced pluripotent stem cell-derived motoneurons of a spinal muscular atrophy patient. Stem Cells 2011;29(12):2090-3
  • Corti S, Nizzardo M, Simone C, et al. Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med 2012;4(165):165ra162
  • Nihei Y, Ito D, Okada Y, et al. Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and bulbar muscular atrophy. J Biol Chem 2013;288(12):8043-52
  • Wainger BJ, Kiskinis E, Mellin C, et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep 2014;7(1):1-11
  • Mitne-Neto M, Machado-Costa M, Marchetto MC, et al. Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum Mol Genet 2011;20(18):3642-52
  • Nishimura AL, Shum C, Scotter EL, et al. Allele-specific knockdown of ALS-associated mutant TDP-43 in neural stem cells derived from induced pluripotent stem cells. PLoS One 2014;9(3):e91269
  • Richard JP, Maragakis NJ. Induced pluripotent stem cells from ALS patients for disease modeling. Brain Res 2014. [Epub ahead of print]
  • Sareen D, O’Rourke JG, Meera P, et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med 2013;5(208):208ra149
  • Yang YM, Gupta SK, Kim KJ, et al. A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell 2013;12(6):713-26
  • Burkhardt MF, Martinez FJ, Wright S, et al. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 2013;56:355-64
  • Chen H, Qian K, Du Z, et al. Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell 2014;14(6):796-809
  • Chestkov IV, Vasilieva EA, Illarioshkin SN, et al. Patient-Specific Induced Pluripotent Stem Cells for SOD1-Associated Amyotrophic Lateral Sclerosis Pathogenesis Studies. Acta Naturae 2014;6(1):54-60
  • Dimos JT, Rodolfa KT, Niakan KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008;321(5893):1218-21
  • Bilican B, Serio A, Barmada SJ, et al. Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc Natl Acad Sci USA 2012;109(15):5803-8
  • Gottesfeld JM, Rusche JR, Pandolfo M. Increasing frataxin gene expression with histone deacetylase inhibitors as a therapeutic approach for Friedreich’s ataxia. J Neurochem 2013;126(Suppl 1):147-54
  • Hick A, Wattenhofer-Donze M, Chintawar S, et al. Neurons and cardiomyocytes derived from induced pluripotent stem cells as a model for mitochondrial defects in Friedreich’s ataxia. Dis Model Mech 2013;6(3):608-21
  • Ku S, Soragni E, Campau E, et al. Friedreich’s ataxia induced pluripotent stem cells model intergenerational GAATTC triplet repeat instability. Cell Stem Cell 2010;7(5):631-7
  • Reinhardt P, Schmid B, Burbulla LF, et al. Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 2013;12(3):354-67
  • Abranches E, Bekman E, Henrique D, Cabral JM. Expansion and neural differentiation of embryonic stem cells in adherent and suspension cultures. Biotechnol Lett 2003;25(9):725-30
  • Gerrard L, Rodgers L, Cui W. Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling. Stem Cells 2005;23(9):1234-41
  • Chambers SM, Fasano CA, Papapetrou EP, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009;27(3):275-80
  • Nemati S, Hatami M, Kiani S, et al. Long-term self-renewable feeder-free human induced pluripotent stem cell-derived neural progenitors. Stem Cells Dev 2011;20(3):503-14
  • Koehler KR, Tropel P, Theile JW, et al. Extended passaging increases the efficiency of neural differentiation from induced pluripotent stem cells. BMC Neurosci 2011;12:82
  • Plant AL, Locascio LE, May WE, Gallagher PD. Improved reproducibility by assuring confidence in measurements in biomedical research. Nat Methods 2014;11(9):895-8
  • Stacey GN, Crook JM, Hei D, Ludwig T. Banking human induced pluripotent stem cells: lessons learned from embryonic stem cells? Cell Stem Cell 2013;13(4):385-8
  • Crook JM, Stacey G. Setting quality standards for stem cell banking, research and translation: The International Stem Cell Banking Initiative. In: Illic D, editor. Stem Cell Banking. Human Press; New York: 2014. pp. 3-9
  • Lie KH, Chung HC, Sidhu KS. Derivation, propagation, and characterization of neuroprogenitors from pluripotent stem cells (hESCs and hiPSCs). Methods Mol Biol 2012;873:237-46
  • Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 2012;7(10):1836-46
  • Shofuda T, Fukusumi H, Kanematsu D, et al. A method for efficiently generating neurospheres from human-induced pluripotent stem cells using microsphere arrays. Neuroreport 2013;24(2):84-90
  • Stover AE, Brick DJ, Nethercott HE, et al. Process-based expansion and neural differentiation of human pluripotent stem cells for transplantation and disease modeling. J Neurosci Res 2013;91(10):1247-62
  • Musah S, Wrighton PJ, Zaltsman Y, et al. Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. Proc Natl Acad Sci USA 2014;111(38):13805-10
  • Crook JM, Hei D, Stacey G. The International Stem Cell Banking Initiative (ISCBI): raising standards to bank on. In Vitro Cell Dev Biol Anim 2010;46(3-4):169-72
  • Bayart E, Cohen-Haguenauer O. Technological overview of iPS induction from human adult somatic cells. Curr Gene Ther 2013;13(2):73-92
  • Li J, Song W, Pan G, Zhou J. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells. J Hematol Oncol 2014;7(1):50
  • Ruetz T, Kaji K. Routes to induced pluripotent stem cells. Curr Opin Genet Dev 2014;28C:38-42
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282(5391):1145-7
  • Crook JM, Peura TT, Kravets L, et al. The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 2007;1(5):490-4
  • Ludwig TE, Bergendahl V, Levenstein ME, et al. Feeder-independent culture of human embryonic stem cells. Nat Methods 2006;3(8):637-46
  • Ludwig TE, Levenstein ME, Jones JM, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006;24(2):185-7
  • Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5):861-72
  • Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318(5858):1917-20
  • Chen G, Gulbranson DR, Hou Z, et al. Chemically defined conditions for human iPSC derivation and culture. Nat Methods 2011;8(5):424-9
  • Lowry ER, Henderson CE. Stem cell differentiation: yielding substrates for neurons. Nat Mater 2014;13(6):543-4
  • Mycielska ME, Djamgoz MB. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J Cell Sci 2004;117(Pt 9):1631-9
  • Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol 2009;20(6):674-82
  • Cameron IL, Hardman WE, Winters WD, et al. Environmental magnetic fields: influences on early embryogenesis. J Cell Biochem 1993;51(4):417-25
  • Robinson KR. The responses of cells to electrical fields: a review. J Cell Biol 1985;101(6):2023-7
  • Kingham E, White K, Gadegaard N, et al. Nanotopographical cues augment mesenchymal differentiation of human embryonic stem cells. Small 2013;9(12):2140-51
  • Stewart E, Kobayashi NR, Higgins M, et al. Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering. Tissue Eng Part C Methods 2014. [Epub ahead of print]
  • Bratt-Leal AM, Carpenedo RL, Ungrin MD, et al. Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation. Biomaterials 2011;32(1):48-56
  • Chang CW, Hwang Y, Brafman D, et al. Engineering cell-material interfaces for long-term expansion of human pluripotent stem cells. Biomaterials 2013;34(4):912-21
  • Giobbe GG, Zagallo M, Riello M, et al. Confined 3D microenvironment regulates early differentiation in human pluripotent stem cells. Biotechnol Bioeng 2012;109(12):3119-32
  • Lei Y, Schaffer DV. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc Natl Acad Sci USA 2013;110(52):E5039-48
  • Lou YR, Kanninen L, Kuisma T, et al. The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev 2014;23(4):380-92
  • Phillips BW, Horne R, Lay TS, et al. Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol 2008;138(1-2):24-32
  • Murphy WL, McDevitt TC, Engler AJ. Materials as stem cell regulators. Nat Mater 2014;13(6):547-57
  • Landers J, Turner JT, Heden G, et al. Carbon nanotube composites as multifunctional substrates for in situ actuation of differentiation of human neural stem cells. Adv Healthc Mater 2014;3(11):1745-52
  • Hoch E, Tovar GE, Borchers K. Bioprinting of artificial blood vessels: current approaches towards a demanding goal. Eur J Cardiothorac Surg 2014;46(5):767-78
  • Giordano G, Costa LG. Developmental neurotoxicity: some old and new issues. ISRN Toxicol 2012;2012:814795
  • Costa LG. Neurotoxicity testing: a discussion of in vitro alternatives. Environ Health Perspect 1998;106(Suppl 2):505-10
  • Shi M, Majumdar D, Gao Y, et al. Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts. Lab Chip 2013;13(15):3008-21
  • Kunze A, Giugliano M, Valero A, Renaud P. Micropatterning neural cell cultures in 3D with a multi-layered scaffold. Biomaterials 2011;32(8):2088-98

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.