448
Views
11
CrossRef citations to date
0
Altmetric
Review

MicroRNA machinery in Parkinson’s disease: a platform for neurodegenerative diseases

&

References

  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–233.
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.
  • Farh KK-H, Grimson A, Jan C, et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science. 2005;310(5755):1817–1821.
  • Kosik KS. The neuronal microRNA system. Nat Rev Neurosci. 2006;7(12):911–920.
  • Fiore R, Siegel G, Schratt G. MicroRNA function in neuronal development, plasticity and disease. Biochim Biophys Acta (BBA)-Gene Regulatory Mechanisms. 2008;1779(8):471–478.
  • Erson AE, Petty EM. MicroRNAs in development and disease. Clin Genet. 2008;74(4):296–306.
  • Saugstad JA. MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. J Cereb Blood Flow Metab. 2010;30(9):1564–1576.
  • Damier P, Hirsch EC, Agid Y, et al. The substantia nigra of the human brain II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain. 1999;122(8):1437–1448.
  • Soreq L, Salomonis N, Bronstein M, et al. Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front Mol Neurosci. 2013;6:10.
  • Nelson PT, Wang WX, Rajeev BW. MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol. 2008;18(1):130–138.
  • Hébert SS, De Strooper B. Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci. 2009;32(4):199–206.
  • Mouradian MM. MicroRNAs in Parkinson’s disease. Neurobiol Dis. 2012;46(2):279–284.
  • Harraz MM, Dawson TM, Dawson VL. MicroRNAs in Parkinson’s disease. J Chem Neuroanat. 2011;42(2):127–130.
  • Schmitt I, Wullner U, van Rooyen JP, et al. Variants in the 3ʹUTR of SNCA do not affect miRNA-433 binding and alpha-synuclein expression. Eur J Hum Genet. 2012;20(12):1265–1269.
  • de Mena L, Cardo LF, Coto E, et al. FGF20 rs12720208 SNP and microRNA-433 variation: no association with Parkinson’s disease in Spanish patients. Neurosci Lett. 2010;479(1):22–25.
  • Ustinova VV, Shadrina MI, Fedotova E, et al. [Analysis of the rs12720208 single-nucleotide polymorphism of the FGF20 gene in Russian patients with sporadic Parkinson’s disease]. Genetika. 2012;48(12):1437–1439.
  • Wang G, van der Walt JM, Mayhew G, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson’s disease by overexpression of alpha-synuclein. Am J Hum Genet. 2008;82(2):283–289.
  • Haixia D, Hairong D, Weixian C, et al. Lack of association of polymorphism in miRNA-196a2 with Parkinson’s disease risk in a Chinese population. Neurosci Lett. 2012;514(2):194–197.
  • de Mena L, Coto E, Cardo LF, et al. Analysis of the Micro-RNA-133 and PITX3 genes in Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(6):1234–1239.
  • Martins M, Rosa A, Guedes LC, et al. Convergence of miRNA Expression Profiling, α-Synuclein Interacton and GWAS in Parkinson’s Disease. PLoS One. 2011;6(10):e25443.
  • Krützfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438(7068):685–689.
  • Chorn G, Klein-McDowell M, Zhao L, et al. Single-stranded microRNA mimics. RNA. 2012;18(10):1796–1804.
  • Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release. 2013;172(3):962–974.
  • Asikainen S, Rudgalvyte M, Heikkinen L, et al. Global microRNA expression profiling of Caenorhabditis elegans Parkinson’s disease models. J Mol Neurosci. 2010;41(1):210–218.
  • Fragkouli A, Doxakis E. miR-7 and miR-153 protect neurons against MPP(+)-induced cell death via upregulation of mTOR pathway. Front Cell Neurosci. 2014;8:182.
  • Chaudhuri AD, Kabaria S, Choi DC, et al. MicroRNA-7 promotes glycolysis to protect against 1-Methyl-4-phenylpyridinium-induced Cell Death. J Biol Chem. 2015;290(19):12425–12434
  • Doxakis E. Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem. 2010;285(17):12726–12734.
  • Junn E, Lee KW, Jeong BS, et al. Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA. 2009;106(31):13052–13057.
  • Choi DC, Chae YJ, Kabaria S, et al. MicroRNA-7 Protects against 1-Methyl-4-Phenylpyridinium-Induced Cell Death by Targeting RelA. J Neurosci. 2014;34(38):12725–12737.
  • Gehrke S, Imai Y, Sokol N, et al. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature. 2010;466(7306):637–641.
  • Han Y, Khodr CE, Sapru MK, et al. A microRNA embedded AAV alpha-synuclein gene silencing vector for dopaminergic neurons. Brain Res. 2011;1386:15–24.
  • Minones-Moyano E, Porta S, Escaramis G, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet. 2011;20(15):3067–3078.
  • Kabaria S, Choi DC, Chaudhuri AD, et al. Inhibition of miR-34b and miR-34c enhances alpha-synuclein expression in Parkinson’s disease. FEBS Lett. 2015;589(3):319–325.
  • Wang H, Ye Y, Zhu Z, et al. MiR-124 regulates apoptosis and autophagy process in MPTP model of Parkinson’s disease by targeting to Bim. Brain Pathol (Zurich, Switzerland). 2015. [Epub ahead of print].
  • Kanagaraj N, Beiping H, Dheen ST, et al. Downregulation of miR-124 in MPTP-treated mouse model of Parkinson’s disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins. Neuroscience. 2014;272:167–179.
  • Tan CL, Plotkin JL, Veno MT, et al. MicroRNA-128 governs neuronal excitability and motor behavior in mice. Science. 2013;342(6163):1254–1258.
  • Kim J, Inoue K, Ishii J, et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Science. 2007;317(5842):1220–1224.
  • Asci R, Vallefuoco F, Andolfo I, et al. Trasferrin receptor 2 gene regulation by microRNA 221 in SH-SY5Y cells treated with MPP(+) as Parkinson’s disease cellular model. Neurosci Res. 2013;77(3):121–127.
  • Cho HJ, Liu G, Jin SM, et al. MicroRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet. 2013;22(3):608–620.
  • Chen Y, Wang S, Zhang L, et al. Identification of ULK1 as a novel biomarker involved in miR-4487 and miR-595 regulation in neuroblastoma SH-SY5Y cell autophagy. Sci Rep. 2015;5:11035.
  • Kumar L, Haque R, Nazir A. Role of MicroRNA Let-7 in modulating multifactorial aspect of neurodegenerative diseases: an overview. Mol Neurobiol. 2015:1–7.
  • Narasimhan M, Riar AK, Rathinam ML, et al. Hydrogen peroxide responsive miR153 targets Nrf2/ARE cytoprotection in paraquat induced dopaminergic neurotoxicity. Toxicol Lett. 2014;228(3):179–191.
  • Kim JH, Jou I, Joe EH. Suppression of miR-155 expression in IFN-gamma-treated astrocytes and microglia by DJ-1: a possible mechanism for maintaining SOCS1 expression. Exp Neurobiol. 2014;23(2):148–154.
  • Kinoshita C, Aoyama K, Matsumura N, et al. Rhythmic oscillations of the microRNA miR-96-5p play a neuroprotective role by indirectly regulating glutathione levels. Nat Commun. 2014;5:3823.
  • Xiong R, Wang Z, Zhao Z, et al. MicroRNA-494 reduces DJ-1 expression and exacerbates neurodegeneration. Neurobiol Aging. 2014;35(3):705–714.
  • Lungu G, Stoica G, Ambrus A. MicroRNA profiling and the role of microRNA-132 in neurodegeneration using a rat model. Neurosci Lett. 2013;553:153–158.
  • Hesse M, Arenz C. miRNAs as novel therapeutic targets and diagnostic biomarkers for Parkinson’s disease: a patent evaluation of WO2014018650. Expert Opin Ther Pat. 2014;24(11):1271–1276.
  • Decressac M, Mattsson B, Weikop P, et al. TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc Natl Acad Sci USA. 2013;110(19):E1817–1826.
  • Li G, Yang H, Zhu D, et al. Targeted suppression of chaperone-mediated autophagy by miR-320a promotes alpha-synuclein aggregation. Int J Mol Sci. 2014;15(9):15845–15857.
  • Pan T, Kondo S, Le W, et al. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain. 2008;131(8):1969–1978.
  • Jegga AG, Schneider L, Ouyang X, et al. Systems biology of the autophagy-lysosomal pathway. Autophagy. 2011;7(5):477–489.
  • Alvarez-Erviti L, Seow Y, Schapira AH, et al. Influence of microRNA deregulation on chaperone-mediated autophagy and alpha-synuclein pathology in Parkinson’s disease. Cell Death Dis. 2013;4:e545.
  • Lee E-J, Tournier C. The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy. 2011;7(7):689–695.
  • Soreq H, Wolf Y. NeurimmiRs: microRNAs in the neuroimmune interface. Trends Mol Med. 2011;17(10):548–555.
  • Vosler PS, Brennan CS, Chen J. Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol Neurobiol. 2008;38(1):78–100.
  • Kim RH, Smith PD, Aleyasin H, et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci USA. 2005;102(14):5215–5220.
  • Trudler D, Weinreb O, Mandel SA, et al. DJ-1 deficiency triggers microglia sensitivity to dopamine toward a pro-inflammatory phenotype that is attenuated by rasagiline. J Neurochem. 2014;129(3):434–447.
  • Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–795.
  • Hassan M, Sehgal SA, Rashid S. Regulatory cascade of neuronal loss and glucose metabolism. R: CNS Neurol Disord Drug Targets. 2014;13(7):1232–1245.
  • Gillardon F, Mack M, Rist W, et al. MicroRNA and proteome expression profiling in early-symptomatic alpha-synuclein(A30P)-transgenic mice. Proteomics Clin Appl. 2008;2(5):697–705.
  • Soreq L, Ben-Shaul Y, Israel Z, et al. Meta-analysis of genetic and environmental Parkinson’s disease models reveals a common role of mitochondrial protection pathways. Neurobiol Dis. 2012;45(3):1018–1030.
  • Braak H, Tredici KD, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.
  • Saito Y, Saito H. MicroRNAs in cancers and neurodegenerative disorders. Front Genet. 2012;3:194.
  • Thomas RR, Keeney PM, Bennett JP. Impaired complex-I mitochondrial biogenesis in Parkinson’s disease frontal cortex. J Parkinsons Dis. 2012;2(1):67–76.
  • Mastroberardino PG, Hoffman EK, Horowitz MP, et al. A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson’s disease. Neurobiol Dis. 2009;34(3):417–431.
  • Good PF, Olanow CW, Perl DP. Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res. 1992;593(2):343–346.
  • Surh Y-J, Kundu JK, Na H-K. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med. 2008;74(13):1526–1539.
  • Heyer MP, Pani AK, Smeyne RJ, et al. Normal midbrain dopaminergic neuron development and function in miR-133b mutant mice. J Neurosci. 2012;32(32):10887–10894.
  • Zhao N, Jin L, Fei G, et al. Serum microRNA-133b is associated with low ceruloplasmin levels in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(11):1177–1180.
  • Laplante M, Sabatini David M. mTOR Signaling in Growth Control and Disease. Cell. 2012;149(2):274–293.
  • Thomas LF, Saito T, Saetrom P. Inferring causative variants in microRNA target sites. Nucleic Acids Res. 2011;39(16):e109.
  • Shin N, Jeong H, Kwon J, et al. LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res. 2008;314(10):2055–2065.
  • Dorval V, Mandemakers W, Jolivette F, et al. Gene and MicroRNA transcriptome analysis of Parkinson’s related LRRK2 mouse models. PLoS One. 2014;9(1):e85510.
  • Cardo LF, Coto E, Ribacoba R, et al. The screening of the 3ʹUTR sequence of LRRK2 identified an association between the rs66737902 polymorphism and Parkinson’s disease. J Hum Genet. 2014;59(6):346–348.
  • Nielsen SS, Bammler TK, Gallagher LG, et al. Genotype and age at Parkinson’s disease diagnosis. Int J Mol Epidemiol Genet. 2013;4(1):61–69.
  • Zhang X, Guo J, Ai S, et al. Mutation analysis of microRNA-7 gene in Chinese patients with Parkinson’s disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2012;37(12):1189–1192.
  • Lemaitre H, Mattay VS, Sambataro F, et al. Genetic variation in FGF20 modulates hippocampal biology. J Neurosci. 2010;30(17):5992–5997.
  • Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.
  • Chandrasekaran S, Bonchev D. A network view on Parkinson’s disease. Comput Struct Biotechnol J. 2013;7:e201304004.
  • Santosh PS, Arora N, Sarma P, et al. Interaction map and selection of microRNA targets in Parkinson’s disease-related genes. J Biomed Biotechnol. 2009;2009:363145.
  • Barbato C, Ruberti F, Cogoni C. Searching for MIND: microRNAs in neurodegenerative diseases. J Biomed Biotechnol. 2009;2009:871313.
  • Hao B, Chen X, Dai D, et al. Bioinformatic analysis of microRNA expression in Parkinson’s disease. Mol Med Rep. 2015;11(2):1079–1084.
  • Chatterjee P, Bhattacharyya M, Bandyopadhyay S, et al. Studying the system-level involvement of microRNAs in Parkinson’s disease. PLoS One. 2014;9(4):e93751.
  • Khoo SK, Petillo D, Kang UJ, et al. Plasma-based circulating MicroRNA biomarkers for Parkinson’s disease. J Parkinsons Dis. 2012;2(4):321–331.
  • Vallelunga A, Ragusa M, Di Mauro S, et al. Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and Multiple System Atrophy. Front Cell Neurosci. 2014;8:156.
  • Botta-Orfila T, Morato X, Compta Y, et al. Identification of blood serum micro-RNAs associated with idiopathic and LRRK2 Parkinson’s disease. J Neurosci Res. 2014;92(8):1071–1077.
  • Margis R, Margis R, Rieder CR. Identification of blood microRNAs associated to Parkinson’s disease. J Biotechnol. 2011;152(3):96–101.
  • Fernandez-Santiago R, Iranzo A, Gaig C, et al. MicroRNA association with synucleinopathy conversion in rapid eye movement behavior disorder. Ann Neurol. 2015;77(5):895–901.
  • Cardo LF, Coto E, de Mena L, et al Profile of microRNAs in the plasma of Parkinson’s disease patients and healthy controls. J Neurol. 2013;260(5):1420–1422.
  • Cardo LF, Coto E, Ribacoba R, et al. MiRNA profile in the substantia nigra of Parkinson’s disease and healthy subjects. J Mol Neurosci. 2014;54(4):830–836.
  • Serafin A, Foco L, Blankenburg H, et al. Identification of a set of endogenous reference genes for miRNA expression studies in Parkinson’s disease blood samples. BMC Res Notes. 2014;7:715.
  • Serafin A, Foco L, Zanigni S, et al. Overexpression of blood microRNAs 103a, 30b, and 29a in L-dopa-treated patients with PD. Neurology. 2015;84(7):645–653.
  • Alieva A, Filatova EV, Karabanov AV, et al. miRNA expression is highly sensitive to a drug therapy in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(1):72–74.
  • Deep-Brain Stimulation for Parkinson's Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345(13):956–963.
  • Deuschl G, Schade-Brittinger C, Krack P, et al. A Randomized Trial of Deep-Brain Stimulation for Parkinson’s Disease. New England J Med. 2006;355(9):896–908.
  • Rodriguez-Oroz MC, Obeso JA, Lang AE, et al. Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain. 2005;128(10):2240–2249.
  • Plaha P, Gill SS. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. NeuroReport. 2005;16(17):1883–1887.
  • Weaver FM, Follett K, Stern M, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson’s disease: a randomized controlled trial. JAMA. 2009;301(1):63–73.
  • Stefani A, Lozano AM, Peppe A, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain. 2007;130(6):1596–1607.
  • Kumar R, Lozano AM, Kim YJ, et al. Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology. 1998;51(3):850–855.
  • Lin LF, Doherty DH, Lile JD, et al. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993;260(5111):1130–1132.
  • Iravani MM, Sadeghian M, Leung CCM, et al. Lipopolysaccharide-induced nigral inflammation leads to increased IL-1β tissue content and expression of astrocytic glial cell line-derived neurotrophic factor. Neurosci Lett. 2012;510(2):138–142.
  • Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s Disease. Science. 2000;290(5492):767–773.
  • Gash DM, Zhang Z, Ovadia A, et al. Functional recovery in parkinsonian monkeys treated with GDNF. Nature. 1996;380(6571):252–255
  • Li L, Chen H, Chen F, et al. Effects of glial cell line-derived neurotrophic factor on microRNA expression in a 6-hydroxydopamine-injured dopaminergic cell line. J Neural Transm. 2013;120(11):1511–1523.
  • Chang SJ, Weng SL, Hsieh JY, et al. MicroRNA-34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells. BMC Med Genomics. 2011;4:65.
  • Gangaraju VK, Lin H. MicroRNAs: key regulators of stem cells. Nat Rev Mol Biol. 2009;10(2):116–125.
  • Lindvall O, Kokaia Z. Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders–how to make it work. Nat Med. 2004;10:S42–S50
  • Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006;441(7097):1094–1096.
  • Lim PK, Patel SA, Gregory LA, et al. Neurogenesis: role for microRNAs and mesenchymal stem cells in pathological states. Curr Med Chem. 2010;17(20):2159–2167.
  • Kim J-H, Auerbach JM, Rodríguez-Gómez JA, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature. 2002;418(6893):50–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.