7
Views
1
CrossRef citations to date
0
Altmetric
Review

Gene therapy for malignant brain tumors

, , , &
Pages 685-701 | Published online: 10 Jan 2014

References

  • Papers of special note have been highlighted as:
  • of interest
  • of considerable interest
  • Legler LM, Ries LA, Smith MA et al. Brain and other central nervous system cancers, recent trends in incidence and mortality. J. Natl. Cancer. Inst. 91(16), 13821390 (1999).
  • Rostomily R, Keles GE, Berger MS. Radical surgery in the management of low-grade and high-grade gliomas. Baillieres Clin. Neurol. 5(2), 345369 (1996).
  • Chang CH, Horton J, Schoenfeld D et al. Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint Radiation Therapy Oncology Group and Eastern Co-operative Oncology Group study. Cancer Res. 52(6), 9971007 (1983).
  • Green SB, Byar DP, Walker MD et al. Comparisons of carmustine, procarbazine and high-dose methylprednisolone as additions to surgery and radiotherapy for the treatment of malignant glioma. Cancer Treat. Rep. 67(2), 121132 (1983).
  • Kornblith PL, Walker M. Chemotherapy for malignant gliomas. J. Neurosurg. 68(1), 117 (1988).
  • Walker MD,Green SB, Byar DP et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N. Engl. J. Med. 303(23), 13231329 (1980).
  • Walker MD, Alexander E Jr, Hunt WE et al. Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A co-operative clinical trial. J. Neurosurg. 49(3), 333–343 (1978).
  • Barker FG, Chang SM, Gutin PH et al. Survival and functional status after resection of recurrent glioblastoma multiforme. Neurosurgery 42(4), 709720 (1998).
  • Mohan DS, Suh JH, Phan JL et al. Outcome in elderly patients undergoing definitive surgery and radiation therapy for supratentorial glioblastoma multiforme at a tertiary care institution. Int. J. Radiat. Oncol. Biol. Phys. 42(5), 981987 (1998).
  • Short MP, Choi BC, Lee JK, Malick A, Breakefield XO, Martuza RL. Gene delivery to glioma cells in rat brain by grafting of a retrovirus packaging cell line. J. Neurosci. Res. 27(3), 427439 (1990).
  • Gonzales MF. Classification and pathogenesis of brain tumors. In: Brain Tumors. Kaye AH, L Er (Eds). Churchill Livingstone, London, UK (1995).
  • Osborne RH, Houben M, Tijssen CC, Coebergh JWW, van Duijn CM. The genetic epidemiology of glioma. Neurology 57, 17511755 (2001).
  • Pietsch T, Wiestler O. Molecular neuropathology of astrocytic brain tumors. J. Neuro-oncol. 35, 211222 (1997).
  • Giaccia AJ, Kastan MB. The complexity of p53 modulation, emerging patterns from divergent signals. Genes Dev. 12, 2979 2983 (1998).
  • Shapiro JR. Genetics of nervous system tumors. Hematology/oncology Clin. N. Am. 15(6), 114 (2001).
  • Extensive review of the genetic changes present in brain tumors and the sequence of events leading to their transformation.
  • Hill JR, Kuriyama N, Kuriyama H, Israel MA. Molecular genetics of brain tumors. Arch Neurol. 56, 439441 (1999).
  • Hoang-Xuan K, Merel P, Vega F et al. Analysis of the NF2 tumor-suppressor gene and of chromosome 22 deletions in gliomas. Int. J. Cancer 60, 478481 (1995).
  • Bigner SH, Mark J, Mahaley MS, Bigner DD. Patterns of the early, gross chromosomal changes in malignant human gliomas. Hereditas 101, 103113 (1984).
  • Weiss WA. Genetics of brain tumors. Curr. Opin. Pediatr. 12, 543548 (2000).
  • Central Brain Tumor Registry of the United States.
  • Zattara-Cannoni H, Gambarelli D, Lena G et al. Are juvenile pilocytic astrocytomas benign tumors? Cancer Genet. Cytogenet. 104, 157160 (1998).
  • Sanoudou D, Tingby O, Ferguson-Smith MA, Collins VP, Coleman N. Analysis of pilocytic astrocytoma by comparative genomic hybridization. Br. J. Cancer. 82(6), 12181222 (2000).
  • Vondeimling A, Louis DN, Menon AG et al. Deletions on the long arm of chromosome 17 in pilocytic astrocytoma. Acta. Neuropathol. Berl. 86, 81 (1993).
  • Hayes VM, Dirven CMF, Dam A et al. High frequency of TP53 mutations in juvenile pylocitic astrocytomas indicates role of TP53 in the development of these tumors. Brain Pathol. 9, 463467 (1999).
  • Roberts P, Chumas PD, Picton S, Bridges L, Livingstone JH, Sheridan E. A review of the cytogenetics of 58 pediatric brain tumors. Cancer Genet. Cytogenet. 131(1), 1 12 (2001).
  • Dave BJ, Hess MM, Pickering DL et al. Rearrangement of chromosome band 1p36 in nonHodgkins lymphoma. Clin. Cancer Res. 5, 14011409 (1999).
  • Cavenee WK et al. Astrocytic tumors. In: Pathology and Genetics, Tumours of the Nervous System. Kleihues WK, Cavenee (Eds). IARC Press, Lyon, France, 954 (2000).
  • Lopes MB, Vandenberg SR, Scheithauer BW. Histopathology, immunochemistry and ultrastructure of brain tumors In: Brain Tumors. Kaye AH, E Rl Jr, (Eds). Churchill Livingstone, Hong Kong (1995).
  • Shapiro JR. Genetics of brain neoplasms. Curr. Neurol. Neurosci. Rep. 1(3), 217224 (2001).
  • He J, Olson JJ, James CJ. Lack of p16INK4 or retinoblastoma protein (pRb), or amplification-associated overexpression of cdk4 is observed in distinct subsets of malignant glial tumors and cell lines. Cancer Res. 55(21), 48334836 (1995).
  • Kunwar S, Mohapatra G, Bollen A et al. Genetic subgroups of anaplastic astrocytomas correlate with patient age and survival. Cancer Res. 61(20), 76837688 (2001).
  • Hara A, Saegusa M, Mikami T, Okayasu I. Loss of DCC expression in astrocytomas, relation to p53 abnormalities, cell kinetics and survival. J. Clin. Pathol. 54(11), 860 865 (2001).
  • Lloyd RV, Erickson LA, Jin L et al. p27kip1, a multifunctional cyclindependent kinase inhibitor with prognostic significance in human cancer. Am. J. Pathol. 1542, 313323 (1999).
  • Ekstrand AJ, Sugawa N, James CD, Collins VP. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or Cterminal tails. Proc. Natl. Acad. Sci. USA 89(10), 43094313 (1992).
  • Yamazaki H, Fukui Y, Ueyama Y et al. Amplification of the structurally and functionally altered epidermal growth factor receptor gene (c-erbB) in human brain tumors. Mol. Cell. Biol. 8(4), 18161820 (1988).
  • Ekstrand AJ, Liu L, He J et al. Altered subcellular location of an activated and tumour-associated epidermal growth factor receptor. Oncogene 10(7), 14551460 (1995).
  • Tang P, Steck PA, Yung WK. The autocrine loop of TGF-alpha/EGFR and brain tumors. J. Neuro-oncol. 35(3), 303314 (1997).
  • Hermanson M, Funa K, Hartman M et al. Platelet-derived growth factor and its receptors in human glioma tissue, expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res. 52(11), 3213 3219 (1992).
  • Goldman CK, Kim J, Wong WL et al. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells, a model of glioblastoma multiforme pathophysiology. Mol. Biol. Cell. 4(1), 121133 (1993).
  • Tohma Y, Gratas C, Biernat W et al. PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas. J. Neuropathol. Exp. Neurol. 57(7), 684689 (1998).
  • Besson A, Robbins SM, Yong VW. PTEN/ MMAC1/TEP1 in signal transduction and tumorigenesis. Eur. J. Biochem. 263(3), 605611 (1999).
  • Fueyo J, GomezManzano C, Yung WKA et al. Adenovirus-mediated p16/CDKN2 gene transfer induces growth arrest and modifies the transformed phenotype of glioma cells. Oncogene 12(1), 103110 (1996).
  • Walker C, Joyce KA, Thompson-Hehir J et al. Characterisation of molecular alterations in microdissected archival gliomas. Acta. Neuropathol. (Berl) 101(4), 321333 (2001).
  • Lin H, Bondy NL, Langford LA et al. Allelic deletion analyses of MMAC/PTEN and DMBT1 loci in gliomas, relationship to prognostic significance. Clin. Cancer Res. 4(10), 24472454 (1998).
  • Sonoda Y, Ozawa T, Aldape KD et al. Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer Res. 61(18), 66746678 (2001).
  • Loeper S, Romeike BFM, Heckmann N et al. Frequent mitotic errors in tumor cells of genetically micro-heterogeneus glioblastomas. Cytogenet. Cell Genet. 94, 1 8 (2001).
  • Burton EC, Lamborn KR, Forsyth P et al. Aberrant p53, MDM2 and proliferation differ in glioblastomas from long-term compared with typical survivors. Clin. Cancer Res. 8(1), 180187 (2002).
  • Barker FG, Simmons ML, Chang SM et al. EGFR overexpression and radiation response in glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 51(2), 410418 (2001).
  • Bigner SH, Matthews MR, Rasheed BKA et al. Molecular genetic aspects of oligodendrogliomas including analysis by comparative genomic hybridization. Am. J. Pathol. 155(2), 375386 (1999).
  • Bortolotto S, Chiado-Piat L, Cavalla P et al. CDKN2A/p16 inactivation in the prognosis of oligodendrogliomas. Int. J. Cancer 88(4), 554557 (2000).
  • Reardon DA, Entrekin RE, Sublett J et al. Chromosome arm 6q loss is the most common recurrent autosomal alteration detected in primary pediatric ependymoma. Genes Chrom. Can. 24(3), 230237 (1999).
  • Reifenberger J, Reifenberger G, Liu L et al. Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am. J. Pathol. 145(5), 11751190 (1994).
  • Maintz D, Fiedler K, Koopmann J et al. Molecular genetic evidence for subtypes of oligoastrocytomas. J. Neuropathol. Exp. Neurol. 56(10), 10981104 (1997).
  • Wallace MR, Marchuk DA, Andersen LB et al. Type 1 Neurofibromatosis gene, identification of a large transcript disrupted in three NF1 patients. Science 249, 181 186 (1990).
  • Guttman D, Collins F. Recent progress toward understanding the molecular biology of von Recklinghausen neurofibromatosis. Ann. Neurol. 31, 555 561 (1991).
  • Lynch TM, Gutmann DH. Neurofibromatosis 1. Neurol. Clin. 20(3), 841865 (2002).
  • Karnes PS. Neurofibromatosis, a common neurocutaneous disorder. Mayo. Clin. Proc. 73(11), 10711076 (1998).
  • Tikoo A, Varga M, Ramesh V, Gusella J, Maruta H. An antiRas function of the neurofibromatosis Type 2 gene product (NF2/Merlin). J. Biol. Chem. 269, 23387 23390 (1994).
  • Gutmann DH, Zhang YJ, Hasbani MJ et al. Expression of the tuberous sclerosis complex gene products, hamartin and tuberin, in central nervous system tissues. Acta Neuropathol. (Berl) 99(3), 223230 (2000).
  • Thapar K, Fukuyama K, Rutka J. Neurogenetics and the molecular biology of human brain tumors. In: Brain Tumors. Kaye AH, Er L, (Eds). Churchill Livingstone, Hong Kong (1995).
  • Hamilton SR, Liu B, Parsons RE et al. The molecular basis of Turcot's syndrome. N. Engl. J. Med. 332(13), 839847 (1995).
  • Fathallah-Shaykh H. New molecular strategies to cure brain tumors. Arch. Neurol. 56, 449453 (1999).
  • Engelhard HH. Gene therapy for brain tumors, the fundamentals. Surg. Neurol. 54, 39 (2000).
  • Sasaki M, Plate KH. Gene therapy of malignant glioma, recent advances in experimental and clinical studies. Ann. Oncol. 9, 11551166 (1998).
  • O'Rourke DM, Qian XL, Zhang HT et al. Transreceptor inhibition of human glioblastoma cells by erbB family ectodomains. Proc. Natl. Acad. Sci. USA 94, 32503255 (1997).
  • Redemann N, Holzmann B, Vonruden T et al. Antioncogenic activity of signalingdefective epidermal growth factor receptor mutants. Mol. Cell. Biol. 12, 491498 (1992).
  • Oldfield EH, Ram Z, Culver KW, Blaese RM, Devroom HL Gene therapy for the treatment of brain tumors using intratumoral transduction with the thymidine kinase gene and intraavenous ganciclovir. Hum. Gene Ther. 4, 3969 (1993).
  • First clinical trial using gene therapy for brain tumors.
  • Dong YH, Wen P, Manome Y et al. In vivo replication-deficient adenovirus vectormediated transduction of the cytosine deaminase gene sensitizer glioma cells to 5- fluorocytosine. Hum. Gene Ther. 7, 713 720 (1996).
  • Huber BE, Austin EA, Good SS et al. In vivo antitumor activity of 5-fluorocytosine on human colorectal carcinoma cells genetically modified to express cytosine deaminase. Cancer Res. 53(46194626) (1993).
  • Ono Y, Ikeda K, Wei MX et al. Regression of experimental brain tumors with 6- Thioxanthine and Escherichia coli gpt gene therapy. Hum. Gene Ther. 8, 20432055 (1997).
  • Ross G, Erickson R, Knorr D et al. Gene therapy in the United States: a five-year status report. Hum. Gene Ther. 7(14), 1781–1790 (1996).
  • Nitta T, Sato K. Specific-inhibition of C-sis protein-synthesis and cela proliferation with antisense oligodeoxynucleotides in human glioma-cells. Neurosurgery 34(2), 309–314 (1994).
  • Kim KJ, Li B, Winer J et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor-growth in vivo. Nature 362(6423), 841–844 (1993).
  • Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. glioblastoma growth inhibited in vivo by a dominant-negative flk-1 mutant. Nature 367(6463), 576–579 (1994).
  • Strawn LM, McMahon G, App H et al. Flk-1 as a target for tumor growth inhibition. Cancer Res. 56(15), 3540–3545 (1996).
  • Wilcox ME, Yang WQ, Senger D et al. Reovirus as an oncolytic agent against experimental human malignant gliomas. J. Natl. Cancer Inst. 93(12), 903–912 (2001).
  • Iwadate Y, Yamaura A, Sato Y, Sakiyama S, Tagawa M. Induction of immunity in peripheral tissues combined with intracerebral transplantation of interleukin- 2-producing cells eliminates established brain tumors. Cancer Res. 61(24), 8769–8774 (2001).
  • Cavalieri S, Cazzaniga S, Geuna M et al. Human T-lymphocytes transduced by lentiviral vectors in the absence of TCRactivation maintain an intact immune competence. Blood 102(2), 497–505 (2003).
  • Okada H, Villa L, Attanucci J et al. Cytokine gene therapy of gliomas: effective induction of therapeutic immunity to intracranial tumors by peripheral immunization with interleukin-4 transduced glioma cells. Gene Ther. 8(15), 1157–1166 (2001).
  • Parsa AT, Chi JH, Hurley PT, Jeyapalan SA, Bruce JN. Immunomodulation of glioma cells after gene therapy: Induction of major histocompatibility complex Class I but not class II antigen in vitro. Neurosurgery 49(3), 681–688 (2001).
  • Tseng SH, Hsieh CL, Lin SM, Hwang LH. Regression of orthotopic brain tumors by cytokine-assisted tumor vaccines primed in the brain. Cancer Gene Ther. 6(4), 302–312 (1999).
  • Tseng SH, Hwang LH, Lin SM. Induction of antitumor immunity by intracerebrally implanted rat C6 glioma cells genetically engineered to secrete cytokines. J. Immunother. 20(5), 334–342 (1997).
  • Yamanaka R, Zullo SA, Tanaka R, Blaese M, Xanthopoulos KG. Enhancement of antitumor immune response in glioma models in mice by genetically modified dendritic cells pulsed with Semliki Forest virus-mediated complementary DNA. J. Neurosurg. 94(3), 474–481 (2001).
  • Deshmukh P, Glick RP, Lichtor T, Moser R, Cohen EP. Immunogene therapy with interleukin-2-secreting fibroblasts for intracerebrally metastasizing breast cancer in mice. J. Neurosurg. 94(2), 287–292 (2001).
  • Okada H, Lunsford LD, Kondziolka D et al. Gene therapy of malignant gliomas: a pilot study of vaccination with irradiated autologous glioma and dendritic cells admired with IL-4 transduced fibroblasts to elicit an immune response. Hum. Gene Ther. 12(5), 575–595 (2001).
  • Shinoura N, Saito K, Yoshida Y et al. Adenovirus-mediated transfer of Bax with caspase-8 controlled by myelin basic protein promoter exerts an enhanced cytotoxic effect in gliomas. Cancer Gene Ther. 7(5), 739–748 (2000).
  • Alavi JB, Eck SL. Gene therapy for malignant gliomas. Hematol. Oncol. Clin. North Am. 12(3), 617 (1998).
  • Gaucheron J, Boulanger C, Santaella C et al. In vitro cationic lipid-mediated gene delivery with fluorinated glycerophosphoethanolamine helper lipids. Bioconjugate Chem. 12(6), 949–963 (2001).
  • Felgner PL, Gadek TR, Holm M et al. Lipofection - a highly efficient, lipidmediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84(21), 7413–7417 (1987).
  • Radler JO, Koltover I, Salditt T, Safinya CR. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275(5301), 810–814 (1997).
  • Gershon H, Ghirlando R, Guttman SB, Minsky A. mode of formation and structural features of DNA cationic liposome complexes used for transfection. Biochemistry 32(28), 7143–7151 (1993).
  • Koltover I, Salditt T, Radler JO, Safinya CR. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281(5373), 78–81 (1998).
  • Koltover I, Wagner K, Safinya CR. DNA condensation in two dimensions. Proc. Natl. Acad. Sci. USA 97(26), 14046–14051 (2000).
  • Templeton NS, Lasic DD, Frederik PM et al. Improved DNA: Liposome complexes for increased systemic delivery and gene expression. Nat. Biotechnol. 15(7), 647–652 (1997).
  • Zuidam NJ, Barenholz Y, Minsky A. Chiral DNA packaging in DNA-cationic liposome assemblies. FEBS Lett. 457(3), 419–422 (1999).
  • Tseng WC, Haselton FR, Giorgio TD. Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. J. Biol. Chem. 272(41), 25641–25647 (1997).
  • Gregoriadis G, Saffie R, deSouza JB. Liposome-mediated DNA vaccination. FEBS Lett. 402(2-3), 107–110 (1997).
  • Behr JP, Demeneix B, Loeffler JP, Mutul JP. Efficient gene-transfer into mammalian primary endocrine-cells with lipopolyamine-coated DNA. Proc. Natl. Acad. Sci. USA 86(18), 6982–6986 (1989).
  • Boukhnikachvili T, AguerreChariol O, Airiau M et al. Structure of in-serum transfecting DNA-cationic lipid complexes. FEBS Lett. 409(2), 188–194 (1997).
  • Walker S, Sofia MJ, Kakarla R et al. Cationic facial amphiphiles: a promising class of transfection agents. Proc. Natl. Acad. Sci. USA 93(4), 1585–1590 (1996).
  • Ruysschaert JM, Elouahabi A, Willeaume V et al. a novel cationic amphiphile for transfection of mammalian cells. Biochem. Biophys. Res. Commun. 203(3), 1622–1628 (1994).
  • Solodin I, Brown CS, Bruno MS et al. A novel series of amphiphilic imidazolinium compounds for in vitro and in vivo gene delivery. Biochemistry 34(41), 13537–13544 (1995).
  • Domb AJ, Levy M. Polymers in Gene Therapy: Frontiers in Biological Polymer Application. Technomic (Eds). Lancaster, PA, USA (1999).
  • Putnam D, Gentry CA, Pack DW, Langer R. Polymer-based gene delivery with low cytotoxicity by a unique balance of sidechain termini. Proc. Natl. Acad. Sci. USA 98(3), 1200 (2001).
  • Remy JS, Abdallah B, Zanta MA et al. Gene transfer with lipospermines and polyethylenimines. Adv. Drug Deliv. Rev. 30(1–3), 85–95 (1998).
  • Vanderkerken S, Vanheede T, Toncheva V et al. Synthesis and evaluation of poly(ethylene glycol)-polylysine block copolymers as carriers for gene delivery. J. Bioact. Compat. Polym. 15(2), 115–138 (2000).
  • Azzam T, Eliyahu H, Shapira L et al. Polysaccharide-oligoamine based conjugates for gene delivery. J. Med. Chem. 45(9), 1817–1824 (2002).
  • Azzam T, Raskin A, Makovitzki A et al. Cationic polysaccharides for gene delivery. Macromolecules 35(27), 9947–9953 (2002).
  • Larsen C. In: Dextran Prodrugs. Christesen, VA (Ed.). Copenhagen, Denmark (1990).
  • Marshall E. Clinical trials - gene therapy death prompts review of adenovirus vector. Science 286(5448), 2244–2245 (1999).
  • Wolff JA, Malone RW, Williams P et al. Direct gene transfer into mouse muscle in vivo. Science 247(4949), 1465–1468 (1990).
  • Wang RB, Doolan DL, Le TP et al. Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 282(5388), 476–480 (1998).
  • Vale PR, Symes JF, Esakof DD et al. Direct myocardial gene transfer of VEGF165 in patients with end-stage coronary artery disease: 12-month results of a phase I/II clinical trial. J. Am. Coll. Cardiol. 37(2), A285-A285 (2001).
  • Stopeck AT, Jones A, Hersh EM et al. Phase II study of direct intralesional gene transfer of allovectin-7, an HLA-B7/beta 2- microglobulin DNA-liposome complex, in patients with metastatic melanoma. Clin. Cancer Res. 7(8), 2285–2291 (2001).
  • Belldegrun A, Tso CL, Zisman A et al. Interleukin-2 gene therapy for prostate cancer: Phase I clinical trial and basic biology. Hum. Gene Ther. 12(8), 883–892 (2001).
  • Affleck DG, Yu L, Bull DA, Bailey SH, Kim SW. Augmentation of myocardial transfection using TerplexDNA: a novel gene delivery system. Gene Ther. 8(5), 349–353 (2001).
  • Ward CM, Pechar M, Oupicky D, Ulbrich K, Seymour LW. Modification of pLL/ DNA complexes with a multivalent hydrophilic polymer permits folatemediated targeting in vitro and prolonged plasma circulation in vivo. J. Gene. Med. 4(5), 536–547 (2002).
  • Ferber D. Gene therapy: Safer and virusfree? Science 294(5547), 1638–1642 (2001).
  • Mah C, Byrne BJ, Flotte TR. Virus-based gene delivery systems. Clin. Pharmacokinet. 41(12), 901–911 (2002).
  • Berns KI. Parvovirus Replication. Microbiol. Rev. 54(3), 316–329 (1990).
  • Rabinowitz JE, Samulski J. Adenoassociated virus expression systems for gene transfer. Curr. Opin. Biotechnol. 9(5), 470–475 (1998).
  • Wagner JA, Reynolds T, Moran ML et al. Efficient and persistent gene transfer of AAV-CFTR in maxillary sinus. Lancet 351(9117), 1702–1703 (1998).
  • Wagner JA, Moran ML, Messner AH et al. A phase I/II study of tgAAV-CF for the treatment of chronic sinusitis in patients with cystic fibrosis. Hum. Gene Ther. 9(6), 889–909 (1998).
  • Kay MA, Manno CS, Ragni MV et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nature Genet. 24(3), 257–261 (2000).
  • Flotte TR, Afione SA, Zeitlin PL. Adenoassociated virus vector geneexpression occurs in nondividing cells in the absence of vector DNA integration. Am. J. Respir. Cell Mol. Biol. 11(5), 517–521 (1994).
  • Kearns WG, Afione SA, Fulmer SB et al. Recombinant adeno-associated virus (AAVCFTR) vectors do not integrate in a sitespecific fashion in an immortalized epithelial cell line. Gene Ther. 3(9), 748–755 (1996).
  • Auricchio A, Rivera VM, Clackson T et al. Pharmacological regulation of protein expression from adeno-associated viral vectors in the eye. Mol. Ther. 6(2), 238–242 (2002).
  • Stone D, David A, Bolognani F, Lowenstein PR, Castro MG. Viral vectors for gene delivery and gene therapy within the endocrine system. J. Endocrinol. 164(2), 103–118 (2000).
  • Gao GP, Alvira MR, Wang LL et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl. Acad. Sci. USA 99(18), 11854–11859 (2002).
  • Knowles MR, Hohneker KW, Zhou ZQ et al. A controlled-study of adenoviralvector- mediated gene-transfer in the nasal epithelium of patients with cystic fibrosis. N. Engl. J. Med. 333(13), 823–831 (1995).
  • Crystal RG, McElvaney NG, Rosenfeld MA et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nature Genet. 8(1), 42–51 (1994).
  • Check E. Gene therapy: a tragic setback. Nature 420(6912), 116–118 (2002).
  • Morral N, Parks RJ, Zhou HS et al. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of a(1)- antitrypsin with negligible toxicity. Hum. Gene Ther. 9(18), 2709–2716 (1998).
  • Schiedner G, Morral N, Parks RJ et al. Genomic DNA transfer with a highcapacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nature Genet. 18(2), 180–183 (1998).
  • Fisher KD, Stallwood Y, Green NK et al. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther. 8(5), 341–348 (2001).
  • Croyle MA, Chirmule N, Zhang Y, Wilson JM. PEGylation of E1-deleted adenovirus vectors allows significant gene expression on readministration to liver. Hum. Gene Ther. 13(15), 1887–1900 (2002).
  • Miller AD, Jolly DJ, Friedmann T, Verma IM. a transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (Hprt) - genetransfer into cells obtained from humans deficient in Hprt. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences. 80(15), 4709–4713 (1983).
  • Miller AD, Ong ES, Rosenfeld MG, Verma IM, Evans RM. Infectious and selectable retrovirus containing an inducible rat growth-hormone minigene. Science 225(4666), 993–998 (1984).
  • Mann R, Mulligan RC, Baltimore D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33(1), 153–159 (1983).
  • Cepko CL, Roberts BE, Mulligan RC. Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell 37(3), 1053–1062 (1984).
  • Cone RD, Mulligan RC. High-efficiency gene-transfer into mammalian-cells - generation of helper-free recombinant retrovirus with broad mammalian host range. Proceedings of the National Academy of Sciences of the United States of America- Biological Sciences. 81(20), 6349–6353 (1984).
  • Cavazzana-Calvo M, Hacein-Bey S, Basile CD et al. Gene therapy of human severe combined immunodeficiency (SCID)- X1 disease. Science 288(5466), 669–672 (2000).
  • Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK. vesicular stomatitisvirus g glycoprotein pseudotyped retroviral vectors - concentration to very high-titer and efficient gene-transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90(17), 8033–8037 (1993).
  • Naldini L, Blomer U, Gallay P et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259), 263–267 (1996).
  • Poeschla EM, Wong-Staal F, Looney DJ. Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat. Med. 4(3), 354–357 (1998).
  • Kafri T, Blomer U, Peterson DA, Gage FH, Verma IM. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nature Genet. 17(3), 314–317 (1997).
  • Miyoshi H, Smith KA, Mosier DE, Verma IM, Torbett BE. Transduction of human CD34(+) cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283(5402), 682–686 (1999).
  • Follenzi A, Sabatino G, Lombardo A, Boccaccio C, Naldini L. Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum. Gene Ther. 13(2), 243–260 (2002).
  • Ikeda Y, Collins MKL, Radcliffe PA, Mitrophanous KA, Takeuchi Y. Gene transduction efficiency in cells of different species by HIV and EIAV vectors. Gene Ther. 9(14), 932–938 (2002).
  • Kafri T, van Praag H, Ouyang L, Gage FH, Verma IM. A packaging cell line for lentivirus vectors. J. Virol. 73(1), 576–584 (1999).
  • Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM. Development of a selfinactivating lentivirus vector. J. Virol. 72(10), 8150–8157 (1998).
  • Spaete RR, Frenkel N. The herpes-simplex virus amplicon - a new eukaryotic defective- virus cloning amplifying vector. Cell, 30(1), 295–304 (1982).
  • Spaete RR, Frenkel N. the herpes-simplex virus amplicon - analyses of cis-acting replication functions. Proc. Natl. Acad. Sci. USA 82(3), 694–698 (1985).
  • Geller AI, Yu L, Wang YM, Fraefel C. Helper virus-free herpes simplex virus-1 plasmid vectors for gene therapy of Parkinson's disease and other neurological disorders. Exp. Neurol. 144(1), 98–102 (1997).
  • Kwong AD, Frenkel N. Herpes-simplex virus amplicon - effect of size on replication of constructed defective genomes containing eukaryotic DNA-sequences. J. Virol. 51(3), 595–603 (1984).
  • Samaniego LA, Neiderhiser L, DeLuca NA. Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J. Virol. 72(4), 3307–3320 (1998).
  • Rooney JF, Wohlenberg C, Cremer KJ, Moss B, Notkins AL. Immunization with a vaccinia virus recombinant expressing herpes-simplex virus type-1 glycoprotein-d - long-term protection and effect of revaccination. J. Virol. 62(5), 1530–1534 (1988).
  • Tsukamoto H, Wells DJ, Brown SC et al. Enhanced expression of recombinant dystrophin following intramuscular injection of Epstein-Barr virus (EBV)-based mini- chromosome vectors in mdx mice. Gene Ther. 6(7), 1331–1335 (1999).
  • Nakanishi M, Mizuguchia H, Ashihara K et al. Gene transfer vectors based on Sendai virus. J. Control. Release 54(1), 61–68 (1998).
  • Nakanishi M, Mizuguchi H, Ashihara K et al. Gene delivery systems using the Sendai virus. Mol. Membr. Biol.16(1), 123–127 (1999).
  • Herweijer H, Latendresse JS, Williams P et al. A plasmid-based self-amplifying sindbis-virus vector. Hum. Gene Ther. 6(9), 1161–1167 (1995).
  • Berglund P, Sjoberg M, Garoff H et al. Semliki Forest virus expression system - production of conditionally infectious recombinant particles. BioTechnology 11(8), 916–920 (1993).
  • Ram Z, Culver KW, Oshiro EM et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat. Med. 3(12), 1354–1361 (1997).
  • Shaw EG, Scheithauer BW, Ofallon JR. Supratentorial gliomas: a comparative study by grade and histologic type. J. Neuro- Oncol. 31(3), 273–278 (1997).
  • Lundstrom K. Latest development in viral vectors for gene therapy. Trends Biotechnol. 21(3), 117–122 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.