62
Views
13
CrossRef citations to date
0
Altmetric
Review

Advances in the treatment of pediatric brain tumors

, , , , &
Pages 879-893 | Published online: 10 Jan 2014

References

  • Kleihues P, Louis DN, Scheithauer BW et al. The WHO classification of tumors of the nervous system. I Neuropathol Exp. Neural. 61,215-226 (2002). Excellent treatise on the breadth of tumors of the nervous system.
  • Radner H, Blumcke I, Reifenberger G, Wiestler OD. The new who classification of tumors of the nervous system 2000. Pathology and genetics. Pathologe 23, 260–283 (2002).
  • Ullrich NJ, Pomeroy SL. Pediatric brain tumors. Neural. Clin. 21,897–902 (2003).
  • Saran E Recent advances in paediatric neuro-oncology. CUI7: Opin. Neural 15, 671–677 (2002).
  • Pollack IF. Pediatric brain tumors. Sem. Surgical Oncol 16,73–90 (1999).
  • Rilliet B, Vernet O. Gliomas in children: a review. Childs Nerv. Sys. 16,735–741 (2000).
  • Freeman CR, Farmer JP, Montes J. Low- grade astrocytomas in children: evolving management strategies. Int. J: Racliat. Oncol Biol. Phys. 41,979-987 (1998).
  • Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of brain tumours. Brain Pathol 3,255–268 (1993).
  • Fernandez C, Figarella-Branger D, Girard N eta]. Pilocytic astrocytomas in children: prognostic factors — a retrospective study of 80 cases. Neurosurgety53, 544–553 (2003).
  • •Reiterates important factors in pilocytic astrocytomas.
  • Pollack IF, Claassen D, Alshboul Q, Janosky JE, Deutsch M. Low-grade gliomas of the cerebral hemispheres in children — an analysis of 71 cases. J: Neurosurg. 82,536-547 (1995).
  • Laws ERJ, Taylor WF, Clifton MB, Okazalci H. Neurosurgical management of low-grade astrocytoma of the cerebral hemisphere. Neumsurg. 61,665–673 (1984).
  • Hirsch JF, Rose CS, Pierre-Kahn A. Benign astrocytic and oligodendroglial tumors of the cerebral hemispheres in children. J: Neurosurg. 70,568–572 (1989).
  • Mercuri S, Russo A, Palma L. Hemispheric supratentorial astrocytomas in children. Long-term results in 29 cases. J: Neumsurg. 55,170-173 (1981).
  • Griffin TW, Beaufait D, Blasko JC. Cystic cerebellar astrocytomas in childhood. Cancer 44, 276–280 (1979).
  • Garcia DM, Marks JE, Latin HR, Kleiefoth AB. Childhood cerebellar astrocytomas: is there a role for postoperative irradiation? int. j Racliat. Oncol Biol. Phys. 18,815–819 (1990).
  • Conway PD, Oechler HW, Kun LE, Murray KJ. Importance of histologic condition and treatment of pediatric cerebellar astrocytomas. Cancer 67, 2772–2775 (1991).
  • Dirks PB, Jay V, Becker LE et al. Development of anaplastic changes in low-grade astrocytomas of childhood. Neurosurgety34, 68–78 (1994). Important article which demonstrates the benign nature of low-grade astrocytoma in the absence of radiation therapy.
  • Tihan T, Fisher PG, Kepner JL et al. Pediatric astrocytomas with monomorphous pilomyxoid features and a less favorable outcome. J. Neuropathol Experimental Nemo'. 58,1061–1068 (1999).
  • Komatar RJ, Burger PC, Carson BS eta]. Pilocytic and pilomyxoid hypothalamic/ chiasmatic astrocytomas. Neurosurgety54, 72–80 (2004).
  • Janss AJ, Grundy R, Cnaan A et al. Optic pathway and hypothalamic chiasmatic gliomas in children younger than age 5 years with a 6-year follow-up. Cancer75, 1051–1059 (1995).
  • Bruggers CS, Friedman HS, Phillips PC et al. Leptomeningeal dissemination of optic pathway gliomas in three children. Am. Ophthalmol 111,719–723 (1991).
  • Civitello LA, Packer RJ, Rorke LB, Siegel K, Sutton LN, Schut L. Leptomeningeal dissemination of low-grade gliomas in childhood. Neurology38, 562–566 (1988).
  • Mamalek AN, Prados MD, Obana WG, Cogen PH, Edwards MS. Treatment options and prognosis for multicentric juvenile pilocytic astrocytoma. I Neurosurg. 81,24–30 (1994).
  • Perilongo G, Carollo C, Salviati L et al. Diencephalic syndrome and disseminated juvenile pilocytic astrocytomas of the hypothalamic-optic chiasm region. Cancer 80,142–146 (1997).
  • Bowers DC, Gargan L, Kapur P et al. Study of the MIB-1 labeling index as a predictor of tumor progression in pilocytic astrocytomas in children and adolescents. j Clin. Oncol 21,2968–2973 (2003).
  • Listemick R, Louis DN, Packer RJ, Gutmann DH. Optic pathway gliomas in children with neurofibromatosis.1. Consensus statement from the NF1 optic pathway glioma task force. Ann. Neural. 41, 143–149 (1997).
  • Listemick R, Charrow J, Greenwald M, Mets M. Natural history of optic pathway tumors in children with neurofibromatosis type-I — a longitudinal study. J. Pediatrics 125,63–66 (1994).
  • Pollack IE Brain tumors in children. N Engl. J. Med. 331,1500–1507 (1994).
  • Alkhani AM, Boop FA, Rutka JT. Involution of enhancing intrinsic tectal tumors after endoscopic third ventriculostomy. Report of two cases. j Neurosurg. 91,863–866 (1999).
  • Kihlstrom L, Lindquist C, Lindquist M, Karlsson B. Stereotactic radiosurgery for tectal low-grade gliomas. Acta Neurochir. 62(Suppl.), 55–57 (1994).
  • Mottolese C, Signorelli F, Madrassy G eta]. Quadrigeminal plate tumors. A late evaluation of their surgical treatment in 25 children. Childs' Nerv. Sys. 15,421 (1999).
  • Freeman CR, Farmer JP. Pediatric brain stem gliomas: a review. Int. j Radiat. Oncol Biol. Phys. 40,265–271 (1998).
  • Pollack IF. The role of surgery in pediatric gliomas. Ail/MOTICOi 42,271-288 (1999).
  • •Helps understanding of the the classification of brainstem gliomas.
  • Jennings MT, Iyengar S. Pharmacotherapy of malignant astrocytomas of children and adults — current strategies and future trends. CNS Drugs 15,719–743 (2001).
  • Reardon DA, Gajjar A, Sanford RA eta]. Bithalamic involvement predicts poor outcome among children with thalamic glial tumors. Pediatric Neurosurgery29, 29–35 (1998).
  • Bloom HJ, Glees J, Bell J. The treatment and long-term prognosis of children with intracranial tumors: a study of 610 cases 1950–1981. Int. J. Radiat. Oncol Biol. Phys. 18,723-745 (1990).
  • Woo SY, Donaldson SS, Cox RS. Astrocytoma in children: 14 years' experience at Stanford University Medical Center.j Clin. Oncol 6,1001–1007 (1988).
  • Bernstein M, Hoffman HJ, Halliday WC, Hendrick B, Humphreys RR Thalamic tumors in children. Long-term follow-up and treatment guidelines. J. Neurosurg. 6, 649–656 (1984).
  • Rodriguez LA, Edwards MSB, Levin VA. Management of hypothalamic gliomas in children: an analysis of 33 cases. Neurosurgery26, 242–247 (1990).
  • Hoffman HJ, Soloniuk DS, Humphreys RP et al. Management and outcome of low-grade astrocytomas of the midline in children: a retrospective review. Neurosurgery33, 964–971 (1993).
  • West CGH, Gattamaneni R, Blair V. Radiotherapy in the treatment of low-grade astrocytomas 1: a survival analysis. Childs' Nerv. Sys. 11,438-442 (1995).
  • Merchant TE, Zhu YP, Thompson SJ, Sontag MR, Heideman RL, Kun LE.
  • Adams EJ, Suter B, Warrington AR Design guided conformal radiotherapy. Radiother. Oncol 60,289–297 (2001).
  • Raco A, Raimondi AJ, D’Alonzo A, Esposito V, Valentino V. Radiosurgery in the management of pediatric brain tumors. Child s Nerv. Sys. 16,287–295 (2000).
  • Reddy AT, Packer RJ. Chemotherapy for low-grade gliomas. Child s Nerv. Sys. 15, 506–513 (1999).
  • Packer RJ, Ater JL, Allen JC et al. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. I Neurosurg. 86,747–754 (1997).
  • Pollack IE, Boyett JM, Finlay JL. Chemotherapy for high-grade gliomas of childhood. Childs Nerv. Sys. 15,529–544 (1999).
  • Campbell JW, Pollack IF, Martinez AJ, Shultz BL. High-grade astrocytomas in children: radiologically complete resection is associated with an excellent long-term prognosis. Neumsurgety38, 258–264 (1996).
  • Finlay JL, Boyett JM, Yates AJ, Wisoff JH. Randomized Phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine and prednisone with the eight drugs in 1 day regimen. J. Clin. Oncol 13,112–123 (1995).
  • Wisoff JH, Boyett JM, Berger MS et al. Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children's Cancer Group Trial No. CCG-945. I Neumsurg. 89,52-59 (1998).
  • Lopez-Aguilar E, Sepulveda-Vildosola AC, Rivera-Marquez H et al. Preirradiation ifosfamide, carboplatin and etoposide (ICE) for the treatment of high-grade astrocytomas in children. Childs Nerv. Sys. 19,818–823 (2003).
  • Wolff JEA, Gnekow AK, Kortmann RD et al. Preradiation chemotherapy for pediatric patients with high-grade glioma. Cancer 94,264–271 (2002).
  • Finlay JL, Wisoff JH. The impact of extent of resection in the management of malignant gliomas of childhood. Childs' Nerv. Sys. 15,786–788 (1999).
  • Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain. Pathol 6,217–223 (1996).
  • Rich JN, Reardon DA, Peery T et al. Phase II trial of gefitinib in recurrent glioblastoma. I Clin. Oncol 22,133–142 (2004).
  • Barker AJ, Gibson KH, Grundy W et al. Studies leading to the identification of ZD1839 (IRESSA): an orally-active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg. Med. Chem. Lett. 11,1911-1914 (2001).
  • Chakravarti A, Seiferheld W Robbins I et al. Phase I results from RTOG BR-0211, a Phase VII study of an oral epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), ZD 1839 (Iressa), with radiation therapy in glioblastoma multiforme (GBM). Int. J. Radiat. Oncol Biol. Phys. 57, S329 (2003).
  • •Points the way to new treatment modalities based on the known molecular pathobiology of these tumors.
  • Modjtahedi H, Moscatello DK, Box G et al Targeting of cells expressing wild type EGFR and type-III mutant EGFR (EGFRVIII) by antiEGFR MAb ICR62: a two-pronged attack for tumour therapy. Int.j Cancer 105,273–280 (2003).
  • Mischel PS, Cloughesy TF. Targeted molecular therapy of GBM. Brain Pathol 13,52–61 (2003).
  • ••Reviews the novel molecular therapies forthe treatment of glioblastoma multiforrne. Covers a wide spectrum of different possible therapeutic targets.
  • Wu G, Barth RF, Yang W eta]. Site-specific conjugation of boron-containing dendrimers to antiEGF receptor monoclonal antibody cetuximab (IMC—C225) and its evaluation as a potential delivery agent for neutron capture therapy. Biocohjug. Chem. 15, 185–194 (2004).
  • Mautner VP Tatagiba M, Guthoff R, Samii M, Pulst SM. Neurofibromatosis 2 in the pediatric age group. Neumsurgery33, 92–96 (1993).
  • Sieb JP, Pulst SM, Buch A. Familial CNS tumors. J. Neural. 239,343–344 (1992).
  • Teo C, Nakaji P, Symons P, Tobias V, Cohn R, Smee R. Ependymoma. Childs Nerv Sys. 19,270–285 (2003).
  • Grabb PA, Albright AL, Pang D. Dissemination of supratentorial malignant gliomas via the cerebrospinal fluid in children. Neurosurgery30,64–71 (1992).
  • Ito U, Tomita H, Yamazaki S, Takada Y, Inaba Y. CT findings of leptomeningeal and periventricular dissemination of tumors. Report of four cases. Gun. Neural Neurosurg. 88,115–120 (1986).
  • Naganska E, Matyja E, Zabek M, Jagielski J. Disseminated spinal and cerebral ependymoma with unusual histological pattern: clinicopathological study of a case with retrograde tumor spread. Folia Neuropathol 38,135–141 (2000).
  • Carbone M, Rizzo P, Pass HI. Simian virus 40, poliovaccines and human tumors: a review of recent developments. Oncogene 15,1877–1888 (1997).
  • Croul S, Otte J, Khalili K. Brain tumors and polyomaviruses. j Neurovirol 9, 173–182 (2003).
  • Zhen HN, Zhang X, Bu XY et al. Expression of the simian virus 40 large tumor antigen (Tag) and formation of Tag-p53 and Tag-pRb complexes in human brain tumors. Cancer 86,2124–2132 (1999).
  • Kirchstein RL, Rabson AS, O'Conor GT. Ependymomas produced in Syrian hamsters by adenovirus 7, strain E46 (hybrid of adenovirus 7 and 5V40). Proc. Soc. Exp. Biol. Merl 120,484–487 (1965).
  • Kirschstein RL, Gerber P. Ependymomas produced after intracerebral inoculation of 5V40 into new-born hamsters. Nature 195, 299–300 (1962).
  • Huang B, Starostik P, Kuhl J, Tonn JC, Roggendorf W Loss of heterozygosity on chromosome 22 in human ependymomas. Acta Neuropathol 103,415–420 (2002).
  • Koschny R, Koschny T, Froster UG, Krupp W, Zuber MA. Comparative genomic hybridization in glioma: a meta-analysis of 509 cases. Cancer Genet. Cytogenet. 135, 147–159 (2002).
  • Yokota T, Tachizawa T, Fukino K et al. A family with spinal anaplastic ependymoma: evidence of loss of chromosome 22q in tumor. Hum. Genet. 48,598-602 (2003).
  • Jeuken JW, Sprenger SH, Gilhuis J, Teepen HL, Grotenhuis AJ, Wesseling Correlation between localization, age, and chromosomal imbalances in ependymal tumours as detected by CGH. I Pathol 197,238–244 (2002).
  • Ebert C, von Haken M, Meyer-Puttlitz B et al Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am. Pathol 155,627–632 (1999).
  • Grill J, Avet-Loiseau H, Lellouch-Tubiana A et al. Comparative genomic hybridization detects specific cytogenetic abnormalities in pediatric ependymomas and choroid plexus papillomas. Cancer Genet. Cytogenet. 136, 121–125 (2002).
  • Carter M, Nicholson J, Ross F et al. Genetic abnormalities detected in ependymomas by comparative genomic hybridisation. BE J. Cancer 86,929–939 (2002).
  • Granzow M, Popp S, Weber S et al. Isochromosome lq as an early genetic event in a child with intracranial ependymoma characterized by molecular cytogenetics. Cancer Genet. Cytogenet. 130,79–83 (2001).
  • Ward S, Harding B, Wilkins P et al. Gain of lq and loss of 22 are the most common changes detected by comparative genomic hybridisation in paediatric ependymoma. Genes Chromosomes Cancer 32,59–66 (2001).
  • Gilbertson RJ, Bentley L, Hernan R et al ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease. Clin. Cancer Res. 8, 3054–3064 (2002).
  • Bortolotto S, Chiado-Piat L, Cavalla P, Bosone I, Mauro A, Schiffer D. CDKN2A/ p16 in ependymomas. j Neurooncol 54, 9–13 (2001).
  • Rousseau E, Ruchoux MM, Scaravilli F et al. CDKN2A, CDKN2B and p14ARF are frequently and differentially methylated in ependymal tumours. Neuropathol Appl Neurobial 29,574–583 (2003).
  • Friedman JA, Wetjen NM, Atkinson JL. Utility of intraoperative ultrasound for tumors of the cauda equina. Spine 28, 288–291 (2003).
  • Emestus RI, Schroder R, Stutzer H, Klug N. Prognostic relevance of localization and grading in intracranial ependymomas of childhood. Childs Nerv. Sys. 12,522–526 (1996).
  • Sutton LN, Goldwein J, Perilongo G et al. Prognostic factors in childhood ependymomas. Pecliatr Neurosurg. 16, 57–65 (1990).
  • Robertson PL, Zeltzer PM, Boyett JM eta]. Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: a report of the Children's Cancer Group. I Neurosurg. 88, 695–703 (1998).
  • Sutton LN, Goldwein J, Perilongo G et al. Prognostic factors in childhood ependymomas. Pediatric Neurosurg. 16, 57–65 (1990).
  • Pollack IF, Gerszten PC, Martinez AJ et al. Intracranial ependymomas of childhood: long-term outcome and prognostic factors. Neurosurgery37, 655–666 (1995). Highlights the important factors in ependymoma, especially the importance of residual disease.
  • Rezai AR, Woo HH, Lee M, Cohen H, Zagzag D, Epstein FJ. Disseminated ependymomas of the central nervous system. I Neurosurg. 85,618–624 (1996).
  • Mansur DB, Drzymala RE, Rich KM, Klein EE, Simpson JR. The efficacy of stereotactic radiosurgery in the management of intracranial ependymoma. Neurooncol 66,187–190 (2003).
  • Endo H, Kumabe T, Jokura H, Shirane R, Tominaga T Stereotactic radiosurgery for nodular dissemination of anaplastic ependymoma. Acta Neurochir 146, 291–298 (2004).
  • Weil MD. Advances in stereotactic radiosurgery for brain neoplasms. CI.117: Neural. Neurosci. Rep. 1,233-237 (2001).
  • Hodgson DC, Goumnerova LC, Loeffler JS eta]. Radiosurgery in the management of pediatric brain tumors. int. j Radiat. Oncol Biol. Phys. 50,929–935 (2001).
  • Adamson TE. Craniopharyngiomas. Neurosurgery39, 1070–1071 (1996).
  • Adamson TE, Wiestler OD, Kleihues P, Yasargil MG. Correlation of clinical and pathological features in surgically treated craniopharyngiomas. I Neumsurg. 73, 12–17 (1990).
  • Vargas JR, Pino JA, Murad TM. Craniopharyngioma in two siblings. JAIVIA 246,1807–1808 (1981).
  • Boch AL, van Effenterre R, Kujas M. Craniopharyngiomas in two consanguineous siblings: case report. Neurosurgery41, 1185–1187 (1997).
  • Van Effenterre R, Boch AL. Craniopharyngioma in adults and children: a study of 122 surgical cases. j Neumsurg. 97,3–11 (2002).
  • Rashidi M, DaSilva VR, Minagar A, Rutka JT Nonmalignant pediatric brain tumors. Curl: Neural Neurosci. Rep. 3,200–205 (2003).
  • Kepes JJ, Chen WY, Pang LC, Kepes M. Tumors of the central nervous system in Taiwan, Republic of China. Surg. Neural 22,149–156 (1984).
  • Yasargil MG, Curcic M, Siegenthaler G, Teddy PJ, Roth P Total removal of craniopharyngiomas. Approaches and long-term results in 144 patients. I Neumsurg. 73,3-11 (1990).
  • Kulkami V, Daniel RT, Pranatartiharan R. Spontaneous intraventricular rupture of craniopharyngioma cysts. Surg. Neural 54, 249–253 (2000).
  • Nishio Y, Takashima S, Taguchi Y etal. A case of craniopharyngioma with chemical meningitis as an initial symptom. No. To. Shinkei. 53,957–960 (2001).
  • Hayward R. The present and future management of childhood craniopharyngioma. Child s Nary. Sys. 15, 764–769 (1999).
  • Rienstein S, Adams EF, Pilzer D, Goldring AA, Goldman B, Friedman E. Comparative genomic hybridization analysis of craniopharyngiomas. I Neumsurg. 98, 162–164 (2003).
  • Rickert CH, Paulus W Lack of chromosomal imbalances in adamantinomatous and papillary craniopharyngiomas. j Neural Neurosurg. PTchiarry74, 260–261 (2003).
  • Karnes PS, Tran TN, Cui MY eta]. Cytogenetic analysis of 39 pediatric central nervous system tumors. Cancer Genet. Cyrogener. 59,12-19 (1992).
  • Hoffman HJ. Surgical management of craniopharyngioma. Pedlarl: Neurosurg. 21\(Suppl. 1), 44–49 (1994).
  • Hoffman HJ, De Silva M, Humphreys RP, Drake JM, Smith ML, Blaser SI. Aggressive surgical management of craniopharyngiomas in children. j Neurosurg. 76,47-52 (1992). iii Regine WF, Mohiuddin M, Kramer S. Long-term results of pediatric and adult craniopharyngiomas treated with combined surgery and radiation. Radiother. Oncol 27, 13–21 (1993).
  • Rajan B, Ashley S, Gorman C eta]. Craniopharyngioma-a long-term results following limited surgery and radiotherapy. Radiother. Oncol 26,1–10 (1993).
  • Stripp DC, Maity A, Jams AJ eta]. Surgery with or without radiation therapy in the management of craniopharyngiomas in children and young adults. int. j Radiat. Oncol Biol. fiy. 58,714–720 (2004).
  • Kalapuralcal JA, Goldman S, Hsieh YC, Tomita T, Marymont MET. Clinical outcome in children with craniopharyngioma treated with primary surgery and radiotherapy deferred until relapse. Med. Pedlarl: 0=1 40, 214–218 (2003).
  • Van den Berge JH, Blaauw G, Breeman WA, Rahmy A, Wijngaarde R. Intracavitary brachytherapy of cystic craniopharyngiomas. I Neurosurg 77, 545–550 (1992).
  • Cavalheiro S, Sparapani FV, Franco JO, da Silva MC, Braga FM. Use of bleomycin in intratumoral chemotherapy for cystic craniopharyngioma. Case report. J. Neurosurg. 84,124–126 (1996).
  • Sagoh M, Murakami H, Hirose Y, Mayanagi K. Occlusive cerebrovasculopathy after internal radiation and bleomycin therapy for craniopharyngioma-case report. Neural. Med. Chir. 37,920–923 (1997).
  • Savas A, Erdem A, Tun K, Kanpolat Y. Fatal toxic effect of bleomycin on brain tissue after intracystic chemotherapy for a craniopharyngioma: case report. Neurosurgery46, 213–217 (2000).
  • Amendola BE, Wolf A, Coy SR, Amendola MA. Role of radiosurgery in craniopharyngiomas: a preliminary report. Med. Pedlarl: Oncol 41,123–127 (2003).
  • Jackson AS, St George EJ, Hayward RJ, Plowman PN. Stereotactic radiosurgery. XVII: Recurrent intrasellar craniopharyngioma. Br. J. Neurosurg. 17, 138–143 (2003).
  • Ulfarsson E, Lindquist C, Roberts M et al. Gamma knife radiosurgery for craniopharyngiomas: long-term results in the first Swedish patients. I Neumsurg. 97, 613–622 (2002).
  • Arseni C, Ciurea AV Statistical survey of 276 cases of medulloblastoma (1935-1978). Acta Neurochir. 57,159–162 (1981).
  • Deen DF, Chiarodo A, Grimm EA et al. Brain Tumor Working Group Report on the 9th International Conference on Brain Tumor Research and Therapy. Organ System Program, National Cancer Institute. I Neurooncol 16,243–272 (1993).
  • Packer RJ, Goldwein J, Nicholson HS et al Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children's Cancer Group Study.I Clin. Oncol 17,2127–2136 (1999).
  • ••Important article demonstrating the trendtoward decreased radiation doses for average-risk medulloblastoma.
  • Goldwein JW, Radcliffe J, Johnson J et al. Updated results of a pilot study of low dose craniospinal irradiation plus chemotherapy for children under five with cerebellar primitive neuroectodermal tumors (medulloblastoma). Int. J. Radiat. Oncol Biol. Phys. 34,899–904 (1996).
  • Packer RJ, Sutton ME, Elterman RD. Outcome for children with medulloblastoma treated with radiation and cisplain, CCNU and vincristine chemotherapy. J. Neurosurg. 81,690–698 (1994).
  • Spiegler BJ, Bouffet E, Greenberg ML, Rutka JT, Mabbott DJ. Change in neurocognitive functioning after treatment with cranial radiation in childhood. I. Clin. Oncol 22,706–713 (2004).
  • Gilbertson R, Wickramasinghe C, Hernan R et al. Clinical and molecular stratification of disease risk in medulloblastoma. Br. J. Cancer85, 705–712 (2001).
  • Grotzer MA, Jams AJ, Fung K et al. TrkC expression predicts good clinical outcome in primitive neuroectodermal brain tumors. Clin. Oncol 18,1027–1035 (2000).
  • Gilbertson RJ, Pearson AD. Prognostic significance of the c-erb-B2 oncogene product in childhood medulloblastoma. Br. J. Cancer 71,473–477 (1995).
  • Pomeroy SL, Tamayo P, Gaasenbeek M et al Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415,436–442 (2002).
  • •Demonstrates the power of novel molecular techniques such as microarrays in stratifying similar tumor types. Molecular techniques such as these may be used in the future to direct therapies.
  • Raffel C, Jenkins RB, Frederick L eta]. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 57,842–845 (1997).
  • Taylor MD, Liu L, Raffel C eta]. Mutations in SUFU predispose to medulloblastoma. Nature Genet. 31, 306–310 (2002).
  • Taipale J, Chen JK, Cooper MK et al Effects of oncogenic mutations in smoothened and patched can be reversed by cyclopamine. Nature 406,1005–1009 (2000).
  • Chen JK, Taipale J, Young KE, Maiti T, Beachy PA. Small molecule modulation of Smoothened activity. Proc. Natl Acad. Sc]. USA 99,14071–14076 (2002).
  • Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16,2743–2748 (2002).
  • Berman DM, Karhadkar SS, Hallahan AR et al Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297,1559–1561 (2002).
  • •Shows the potential of drugs that modulate the hedgehog signaling pathway in the treatment of medulloblastoma. Although most of the data presented represents a murine model, there is one figure showing the effectiveness of cyclopamine on human medullblastoma.
  • Reifenberger J, Wolter M, Weber RG et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 58, 1798–1803 (1998).
  • Albright AL, Packer RJ, Zimmerman RA, Rorke LB, Boyett JM, Hammond GD. Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children's Cancer Group. Neumsurgety33, 1026–1030 (1993).
  • Hoffman JM. New advances in brain tumor imaging. CUI7: Opin. Oncol 13, 148–153 (2001).
  • Kaibara T, Tyson RL, Sutherland GR. Human cerebral neoplasms studied using MR spectroscopy: a review. Biochem. Cell Biol. 76,477-486 (1998).
  • Preul MC, Caramanos Z, Collins DL, Pokrupa R, Arnold DL. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nature Med. 2,317–325 (1996).
  • Tamiya T, Kinoshita K, Ono Y, Matsumoto K, Furuta T, Ohmoto T Proton magnetic resonance spectroscopy reflects cellular proliferative activity in astrocytomas. Neuroracliology 42, 333–338 (2000).
  • Schlemmer HP, Bachert P, Henze M eta]. Differentiation of radiation necrosis from tumor progression using proton magnetic resonance spectroscopy. Neuroracliology 44, 216–222 (2002).
  • McKnight TR, von dem Bussche MET, Vigneron DB et al Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. I Neurosurg. 97, 794–802 (2002).
  • Hendler T, Pianka P, Sigal M et al Delineating gray and white matter involvement in brain lesions: three-dimensional alignment of functional magnetic resonance and diffusion-tensor imaging. Aiyliusurg. 99,1018–1027 (2003).
  • Clark CA, Barrick TR, Murphy MM, Bell BA. White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning? Neuroimage 20,1601–1608 (2003).
  • Keles GE, Lundin DA, Lamborn KR, Chang EF, Ojemann G, Berger MS. Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. I Neurosurg. 100, 369–375 (2004).
  • Henry RG, Berman JI, Nagarajan SS, Mukherjee P, Berger MS. Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping. Neuroimage 21,616–622 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.