200
Views
54
CrossRef citations to date
0
Altmetric
Review

Neuroimmune–endocrine crosstalk in schizophrenia and mood disorders

&
Pages 1017-1038 | Published online: 10 Jan 2014

References

  • Laruelle M, Kegeles LS, Abi-Dargham A. Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann. NY Acad. Sci.1003, 138–158 (2003).
  • Kugaya A, Sanacora G. Beyond monoamines: glutamatergic function in mood disorders. CNS. Spectr.10, 808–819 (2005).
  • Müller N, Schwarz MJ. The immune–glutamatergic interaction: towards an integrated view of schizophrenia. J. Psychiatr. Res. (2006) (In press).
  • Müller N, Schwarz MJ. Inflammation induces serotonergic deficiency and glutamatergic hyperfunction in depression: towards an integrated view. Mol. Psychiatry (2006) (In press).
  • Carlsson A. The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology1, 179–186 (1988).
  • Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML. Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu. Rev. Pharmacol. Toxicol.41, 237–260 (2001).
  • Miller DW, Abercrombie ED. Effects of MK-801 on spontaneous and amphetamine-stimulated dopamine release in striatum measured with in vivo microdialysis in awake rats. Brain Res. Bull.40, 57–62 (1996).
  • Laruelle M, Abi-Dargham A, van Dyck CH et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc. Natl Acad. Sci. USA93, 9235–9240 (1996).
  • Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmuller B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci. Lett.20, 379–382 (1980).
  • Krystal JH, Karper LP, Seibyl JP et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry51, 199–214 (1994).
  • Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psychiatry52, 998–1007 (1995).
  • Sumiyoshi T, Anil AE, Jin D, Jayathilake K, Lee M, Meltzer HY. Plasma glycine and serine levels in schizophrenia compared to normal controls and major depression: relation to negative symptoms. Int. J. Neuropsychopharmacol.7, 1–8 (2004).
  • Sumiyoshi T, Jin D, Jayathilake K, Lee M, Meltzer HY. Prediction of the ability of clozapine to treat negative symptoms from plasma glycine and serine levels in schizophrenia. Int. J. Neuropsychopharmacol.8, 451–455 (2005).
  • Tamminga CA, Cascella N, Fakouhl TD, Hertin RL. Enhancement of NMDA-mediated transmission in schizophrenia: effects of milacemide. In: Novel Antipsychotic Drugs. Meltzer HY (Ed.), Raven Press, NY, USA, 171–177 (1992).
  • Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch. Gen. Psychiatry56, 29–36 (1999).
  • Pilowsky LS, Bressan RA, Stone JM et al. First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol. Psychiatry11, 118–119 (2006).
  • Matussek N. Neurobiologie und depression. Med. Monatsschr.3, 109–112 (1966).
  • Coppen A, Swade C. 5-HT and depression: the present position. In: New Concepts In Depression. Briley M, Fillion G (Eds), MacMillan Press, London, UK, 120–136 (1988).
  • Yan QS, Reith ME, Jobe PC, Dailey JW. Dizocilpine (MK-801) increases not only dopamine but also serotonin and norepinephrine transmissions in the nucleus accumbens as measured by microdialysis in freely moving rats. Brain Res.765, 149–158 (1997).
  • Martin P, Carlsson ML, Hjorth S. Systemic PCP treatment elevates brain extracellular 5-HT: a microdialysis study in awake rats. Neuroreport9, 2985–2988 (1998).
  • Kim JS, Schmid-Burgk W, Claus D, Kornhuber HH. Increased serum glutamate in depressed patients. Arch. Psychiatr. Nervenkr.232, 299–304 (1982).
  • Altamura CA, Mauri MC, Ferrara A, Moro AR, D’Andrea G, Zamberlan F. Plasma and platelet excitatory amino acids in psychiatric disorders. Am. J. Psychiatry150, 1731–1733 (1993).
  • Mauri MC, Ferrara A, Boscati L et al. Plasma and platelet amino acid concentrations in patients affected by major depression and under fluvoxamine treatment. Neuropsychobiology37, 124–129 (1998).
  • Maes M, Verkerk R, Vandoolaeghe E, Lin A, Scharpe S. Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine, alanine and arginine in treatment-resistant depression: modulation by treatment with antidepressants and prediction of clinical responsivity. Acta Psychiatr. Scand.97, 302–308 (1998).
  • Sanacora G, Gueorguieva R, Epperson CN et al. Subtype-specific alterations of γ-aminobutyric acid and glutamate in patients with major depression. Arch. Gen. Psychiatry61, 705–713 (2004).
  • Nowak G, Ordway GA, Paul IA. Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res.675, 157–164 (1995).
  • Nudmamud-Thanoi S, Reynolds GP. The NR1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in schizophrenia and affective disorders. Neurosci. Lett.372, 173–177 (2004).
  • Scarr E, Pavey G, Sundram S, MacKinnon A, Dean B. Decreased hippocampal NMDA, but not kainate or AMPA receptors in bipolar disorder. Bipolar. Disord.5, 257–264 (2003).
  • Maj J, Rogoz Z, Skuza G, Sowinska H. Effects of MK-801 and antidepressant drugs in the forced swimming test in rats. Eur. Neuropsychopharmacol.2, 37–41 (1992).
  • Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur. J. Pharmacol.185, 1–10 (1990).
  • Yilmaz A, Schulz D, Aksoy A, Canbeyli R. Prolonged effect of an anesthetic dose of ketamine on behavioral despair. Pharmacol. Biochem. Behav.71, 341–344 (2002).
  • Ossowska G, Klenk-Majewska B, Szymczyk G. The effect of NMDA antagonists on footshock-induced fighting behavior in chronically stressed rats. J. Physiol. Pharmacol.48, 127–135 (1997).
  • Crane GE. Cyloserine as an antidepressant agent. Am. J. Psychiatry115, 1025–1026 (1959).
  • Huber TJ, Dietrich DE, Emrich HM. Possible use of amantadine in depression. Pharmacopsychiatry32, 47–55 (1999).
  • Stryjer R, Strous RD, Shaked G et al. Amantadine as augmentation therapy in the management of treatment-resistant depression. Int. Clin. Psychopharmacol.18, 93–96 (2003).
  • Kudoh A, Takahira Y, Katagai H, Takazawa T. Small-dose ketamine improves the postoperative state of depressed patients.Anesth. Analg.95, 114–118 (2002).
  • Ostroff R, Gonzales M, Sanacora G. Antidepressant effect of ketamine during ECT. Am. J. Psychiatry162, 1385–1386 (2005).
  • Frizzo ME, Dall’Onder LP, Dalcin KB, Souza DO. Riluzole enhances glutamate uptake in rat astrocyte cultures. Cell Mol. Neurobiol.24, 123–128 (2004).
  • Coric V, Milanovic S, Wasylink S, Patel P, Malison R, Krystal JH. Beneficial effects of the antiglutamatergic agent riluzole in a patient diagnosed with obsessive–compulsive disorder and major depressive disorder. Psychopharmacology (Berl.)167, 219–220 (2003).
  • Sanacora G, Kendell SF, Fenton L, Coric V, Krystal JH. Riluzole augmentation for treatment-resistant depression. Am. J. Psychiatry161, 2132 (2004).
  • Zarate CA Jr, Payne JL, Quiroz J et al. An open-label trial of riluzole in patients with treatment-resistant major depression. Am. J. Psychiatry161, 171–174 (2004).
  • Zarate CA Jr, Quiroz JA, Singh JB et al. An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression. Biol. Psychiatry57, 430–432 (2005).
  • Brown AS, Begg MD, Gravenstein S et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch. Gen. Psychiatry61, 774–780 (2004).
  • Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Bernstein D, Yolken RH. Maternal infections and subsequent psychosis among offspring. Arch. Gen. Psychiatry58, 1032–1037 (2001).
  • Westergaard T, Mortensen PB, Pedersen CB, Wohlfahrt J, Melbye M. Exposure to prenatal and childhood infections and the risk of schizophrenia: suggestions from a study of sibship characteristics and influenza prevalence. Arch. Gen. Psychiatry56, 993–998 (1999).
  • Zuckerman L, Weiner I. Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J. Psychiatr. Res.39, 311–323 (2005).
  • Gattaz WF, Abrahao AL, Foccacia R. Childhood meningitis, brain maturation and the risk of psychosis. Eur. Arch. Psychiatry Clin. Neurosci.254, 23–26 (2004).
  • Koponen H, Rantakallio P, Veijola J, Jones P, Jokelainen J, Isohanni M. Childhood central nervous system infections and risk for schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci.254, 9–13 (2004).
  • Körschenhausen DA, Hampel HJ, Ackenheil M, Penning R, Müller N. Fibrin degradation products in post mortem brain tissue of schizophrenics: a possible marker for underlying inflammatory processes. Schizophr. Res.19, 103–109 (1996).
  • Bechter K, Schreiner V, Herzog S et al. CSF filtration as experimental therapy in therapyresistant psychoses in borna disease virus-seropositive patients. Psychiatr. Prax.30, 216–220 (2003).
  • Dantzer R. Cytokine-induced sickness behavior: where do we stand? Brain Behav. Immun.15, 7–24 (2001).
  • Reichenberg A, Yirmiya R, Schuld A et al. Cytokine-associated emotional and cognitive disturbances in humans. Arch. Gen. Psychiatry58, 445–452 (2001).
  • Reichenberg A, Kraus T, Haack M, Schuld A, Pollmacher T, Yirmiya R. Endotoxin-induced changes in food consumption in healthy volunteers are associated with TNF-α and IL-6 secretion. Psychoneuroendocrinology27, 945–956 (2002).
  • Zalcman S, Green-Johnson JM, Murray L et al. Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and -6. Brain Res.643, 40–49 (1994).
  • Schwarz MJ, Chiang S, Müller N, Ackenheil M. T-helper-1 and T-helper-2 responses in psychiatric disorders. Brain Behav. Immun.15, 340–370 (2001).
  • Wichers MC, Koek GH, Robaeys G, Verkerk R, Scharpe S, Maes M. IDO and interferon-α-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol. Psychiatry.10, 538–544 (2005).
  • Leonard BE. The HPA and immune axes in stress: the involvement of the serotonergic system. Eur. Psychiatry20(Suppl. 3), S302–S306 (2005).
  • Rajkowska G. Astroglia in the cortex of schizophrenics: histopathology finding. World J. Biol. Psychiatry6, 74 (2005).
  • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol.164, 6166–6173 (2000).
  • Wilke I, Arolt V, Rothermundt M, Weitzsch C, Hornberg M, Kirchner H. Investigations of cytokine production in whole blood cultures of paranoid and residual schizophrenic patients. Eur. Arch. Psychiatry Clin. Neurosci.246, 279–284 (1996).
  • Müller N, Riedel M, Ackenheil M, Schwarz MJ. Cellular and humoral immune system in schizophrenia: a conceptual re-evaluation. World J. Biol. Psychiatry1, 173–179 (2000).
  • Sperner-Unterweger B, Miller C, Holzner B, Widner B, Fleischhacker WW, Fuchs D. Measurement of neopterin, kynurenine and tryptophan in sera of schizophrenic patients. In: Psychiatry, Psychoimmunology, and Viruses. Müller N (Ed.), Springer, Wien, Austria, 115–119 (1999).
  • Müller N, Ackenheil M, Hofschuster E, Mempel W, Eckstein R. Cellular immunity in schizophrenic patients before and during neuroleptic treatment. Psychiatry Res.37, 147–160 (1991).
  • Schwarz MJ, Riedel M, Ackenheil M, Müller N. Decreased levels of soluble intercellular adhesion molecule-1 (sICAM-1) in unmedicated and medicated schizophrenic patients. Biol. Psychiatry47, 29–33 (2000).
  • Haack M, Hinze-Selch D, Fenzel T et al. Plasma levels of cytokines and soluble cytokine receptors in psychiatric patients upon hospital admission: effects of confounding factors and diagnosis. J. Psychiatr. Res.33, 407–418 (1999).
  • Molholm HB. Hyposensitivity to foreign protein in schizophrenic patients. Psychiatr. Quarterly16, 565–571 (1942).
  • Riedel M, Spellmann I, Schwarz MJ et al. Decreased T cellular immune response in schizophrenic patients. J. Psychiatr. Res. (2006).
  • Cazzullo CL, Scarone S, Grassi B et al. Cytokines production in chronic schizophrenia patients with or without paranoid behavior. Prog. Neuropsychopharmacol. Biol. Psychiatry22, 947–957 (1998).
  • van Kammen DP, McAllister-Sistilli CG, Kelley ME. Relationship between immune and behavioral measures in schizophrenia. In: Current Update in Psychoimmunology. Wieselmann G (Ed.), Springer, Wien, Austria, 51–55 (1997).
  • Mittleman BB, Castellanos FX, Jacobsens LK, Rapoport JL, Swedo SE, Shearer GM. Cerebrospinal fluid cytokines in pediatric neuropsychiatric disease. J. Immunol.159, 2994–2999 (1997).
  • Leonard BE. Is there an immunological basis for schizophrenia? Expert Rev. Clin. Immunol.1(1), 103–112 (2005).
  • Müller N, Hofschuster E, Ackenheil M, Mempel W, Eckstein R. Investigations of the cellular immunity during depression and the free interval: evidence for an immune activation in affective psychosis. Prog. Neuropsychopharmacol. Biol. Psychiatry17, 713–730 (1993).
  • Maes M, Meltzer HY, Bosmans E et al. Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J. Affect. Disord.34, 301–309 (1995).
  • Maes M, Meltzer HY, Buckley P, Bosmans E. Plasma-soluble interleukin-2 and transferrin receptor in schizophrenia and major depression. Eur. Arch. Psychiatry Clin. Neurosci.244, 325–329 (1995).
  • Irwin M. Immune correlates of depression. Adv. Exp. Med. Biol.46, 1–24 (1999).
  • Nunes SOV, Reiche EMV, Morimoto HK et al. Immune and hormonal activity in adults suffering from depression. Braz. J. Med. Biol. Res.35, 581–587 (2002).
  • Müller N, Schwarz MJ. Immunology in anxiety and depression. In: Handbook of Depression and Anxiety. Kasper S, den Boer JA, Sitsen JMA (Eds), Marcel Dekker, NY, USA, 267–288 (2002).
  • Mikova O, Yakimova R, Bosmans E, Kenis G, Maes M. Increased serum tumor necrosis factor α concentrations in major depression and multiple sclerosis. Eur. Neuropsychopharmacol.11, 203–208 (2001).
  • Herbert TB, Cohen S. Depression and immunity: a meta-analytic review. Psychol. Bull.113, 472–486 (1993).
  • Seidel A, Arolt V, Hunstiger M, Rink L, Behnisch A, Kirchner H. Major depressive disorder is associated with elevated monocyte counts. Acta Psychiatr. Scand.94, 198–204 (1996).
  • Rothermundt M, Arolt V, Fenker J, Gutbrodt H, Peters M, Kirchner H. Different immune patterns in melancholic and non-melancholic major depression. Eur. Arch. Psychiatry Clin. Neurosci.251, 90–97 (2001).
  • Duch DS, Woolf JH, Nichol CA, Davidson JR, Garbutt JC. Urinary excretion of biopterin and neopterin in psychiatric disorders. Psychiatry Res.11, 83–89 (1984).
  • Dunbar PR, Hill J, Neale TJ, Mellsop GW. Neopterin measurement provides evidence of altered cell-mediated immunity in patients with depression, but not with schizophrenia. Psychol. Med.22, 1051–1057 (1992).
  • Maes M, Scharpe S, Meltzer HY et al. Increased neopterin and interferon-γ secretion and lower availability of L-tryptophan in major depression: further evidence for an immune response. Psychiatry Res.54, 143–160 (1994).
  • Bonaccorso S, Lin AH, Verkerk R et al. Immune markers in fibromyalgia: comparison with major depressed patients and normal volunteers. J. Affect. Disord.48, 75–82 (1998).
  • Maes M, Scharpe S, Meltzer HY et al. Relationships between interleukin-6 activity, acute phase proteins, and function of the hypothalamic–pituitary–adrenal axis in severe depression. Psychiatry Res.49, 11–27 (1993).
  • Schiepers OJ, Wichers MC, Maes M. Cytokines and major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry29, 201–217 (2005).
  • Jun TY, Pae CU, Hoon H et al. Possible association between -G308A tumour necrosis factor-α gene polymorphism and major depressive disorder in the Korean population. Psychiatr. Genet.13, 179–181 (2003).
  • Fertuzinhos SM, Oliveira JR, Nishimura AL et al. Analysis of IL-1α, IL-1β, and IL-1RA [correction of IL-RA] polymorphisms in dysthymia. J. Mol. Neurosci.22, 251–256 (2004).
  • Rosa A, Peralta V, Papiol S et al. Interleukin-1β (IL-1β) gene and increased risk for the depressive symptom-dimension in schizophrenia spectrum disorders. Am. J. Med. Genet. B NeuroPsychiatr. Genet.124, 10–14 (2004).
  • Seidel A, Arolt V, Hunstiger M, Rink L, Behnisch A, Kirchner H. Increased CD56+ natural killer cells and related cytokines in major depression. Clin. Immunol. Immunopathol.78, 83–85 (1996).
  • Myint AM, Leonard BE, Steinbusch HW, Kim YK. Th1, Th2, and Th3 cytokine alterations in major depression. J. Affect. Disord.88, 167–173 (2005).
  • Sluzewska A, Rybakowski J, Bosmans E et al. Indicators of immune activation in major depression. Psychiatry Res.64, 161–167 (1996).
  • Maes M, Bosmans E, Calabrese J, Smith R, Meltzer HY. Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J. Psychiatr. Res.29, 141–152 (1995).
  • Schäfer M, Horn M, Schmidt F et al. Correlation between sICAM-1 and depressive symptoms during adjuvant treatment of melanoma with interferon-α. Brain Behav. Immun.18, 555–562 (2004).
  • Thomas AJ, Ferrier IN, Kalaria RN et al. Elevation in late-life depression of intercellular adhesion molecule-1 expression in the dorsolateral prefrontal cortex. Am. J. Psychiatry157, 1682–1684 (2000).
  • Rieckmann P, Nunke K, Burchhardt M et al. Soluble intercellular adhesion molecule-1 in cerebrospinal fluid: an indicator for the inflammatory impairment of the blood–cerebrospinal fluid barrier. J. Neuroimmunol.47, 133–140 (1993).
  • Lane JH, Sasseville VG, Smith MO et al. Neuroinvasion by simian immunodeficiency virus coincides with increased numbers of perivascular macrophages/microglia and intrathecal immune activation. J. Neurovirol.2, 423–432 (1996).
  • Mendlovic S, Mozes E, Eilat E et al. Immune activation in non-treated suicidal major depression. Immunol. Lett.67, 105–108 (1999).
  • Penttinen J. Hypothesis: low serum cholesterol, suicide, and interleukin-2. Am. J. Epidemiol.141, 716–718 (1995).
  • Nassberger L, Traskman-Bendz L. Increased soluble interleukin-2 receptor concentrations in suicide attempters. Acta Psychiatr. Scand.88, 48–52 (1993).
  • Baron DA, Hardie T, Baron SH. Possible association of interleukin-2 treatment with depression and suicide. J. Am. Osteopath. Assoc.93, 799–800 (1993).
  • Kronfol Z, House JD. Immune function in mania. Biol. Psychiatry24, 341–343 (1988).
  • Liu HC, Yang YY, Chou YM, Chen KP, Shen WW, Leu SJ. Immunologic variables in acute mania of bipolar disorder. J. Neuroimmunol.150, 116–122 (2004).
  • Su KP, Leu SJ, Yang YY, Shen WW, Chou YM, Tsai SY. Reduced production of interferon-γ but not interleukin-10 in bipolar mania and subsequent remission. J. Affect. Disord.71, 205–209 (2002).
  • Boufidou F, Nikolaou C, Alevizos B, Liappas IA, Christodoulou GN. Cytokine production in bipolar affective disorder patients under lithium treatment. J. Affect. Disord.82, 309–313 (2004).
  • Breunis MN, Kupka RW, Nolen WA et al. High numbers of circulating activated T cells and raised levels of serum IL-2 receptor in bipolar disorder. Biol. Psychiatry53, 157–165 (2003).
  • Kim YK, Myint AM, Lee BH et al. T-helper types 1, 2, and 3 cytokine interactions in symptomatic manic patients. Psychiatry Res.129, 267–272 (2004).
  • O’brien SM, Scully P, Scott LV, Dinan TG. Cytokine profiles in bipolar affective disorder: focus on acutely ill patients. J. Affect. Disord.90, 263–267 (2006).
  • Meijer A, Zakay-Rones Z, Morag A. Post-influenzal psychiatric disorder in adolescents. Acta Psychiatr. Scand.78, 176–181 (1988).
  • Müller N, Gizycki-Nienhaus B, Günther W, Meurer M. Depression as a cerebral manifestation of scleroderma: immunological findings in serum and cerebrospinal fluid. Biol. Psychiatry31, 1151–1156 (1992).
  • Hall S, Smith A. Investigation of the effects and aftereffects of naturally occurring upper respiratory tract illnesses on mood and performance. Physiol. Behav.59, 569–577 (1996).
  • Yirmiya R, Weidenfeld J, Pollak Y et al. Cytokines, “depression due to a general medical condition,” and antidepressant drugs. Adv. Exp. Med. Biol.461, 283–316 (1999).
  • Pollak Y, Ovadia H, Goshen I et al. Behavioral aspects of experimental autoimmune encephalomyelitis. J. Neuroimmunol.104, 31–36 (2000).
  • Sakic B, Denburg JA, Denburg SD, Szechtman H. Blunted sensitivity to sucrose in autoimmune MRL-lpr mice: a curve-shift study. Brain Res. Bull.41, 305–311 (1996).
  • Yirmiya R. Depression in medical illness: the role of the immune system. West J. Med.173, 333–336 (2000).
  • Bonaccorso S, Marino V, Puzella A et al. Increased depressive ratings in patients with hepatitis C receiving interferon-α-based immunotherapy are related to interferon-α-induced changes in the serotonergic system. J. Clin. Psychopharmacol.22, 86–90 (2002).
  • Kraus MR, Schafer A, Faller H, Csef H, Scheurlen M. Psychiatric symptoms in patients with chronic hepatitis C receiving interferon α-2b therapy.J. Clin. Psychiatry64, 708–714 (2003).
  • Dieperink E, Ho SB, Tetrick L, Thuras P, Dua K, Willenbring ML. Suicidal ideation during interferon-α2b and ribavirin treatment of patients with chronic hepatitis C. Gen. Hosp. Psychiatry26, 237–240 (2004).
  • Wichers MC, Kenis G, Leue C, Koek G, Robaeys G, Maes M. Baseline immune activation as a risk factor for the onset of depression during interferon-α treatment. Biol. Psychiatry (2006) (In press).
  • Capuron L, Ravaud A, Neveu PJ, Miller AH, Maes M, Dantzer R. Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol. Psychiatry7, 468–473 (2002).
  • Capuron L, Neurauter G, Musselman DL et al. Interferon-α-induced changes in tryptophan metabolism. Relationship to depression and paroxetine treatment. Biol. Psychiatry54, 906–914 (2003).
  • Patten SB, Francis G, Metz LM, Lopez-Bresnahan M, Chang P, Curtin F. The relationship between depression and interferon β-1α therapy in patients with multiple sclerosis. Mult. Scler.11, 175–181 (2005).
  • Amirkhani A, Rajda C, Arvidsson B et al. Interferon-β affects the tryptophan metabolism in multiple sclerosis patients. Eur. J. Neurol.12, 625–631 (2005).
  • Marzi M, Vigano A, Trabattoni D et al. Characterization of type 1 and type 2 cytokine production profile in physiologic and pathologic human pregnancy. Clin. Exp. Immunol.106, 127–133 (1996).
  • Saito S, Sakai M, Sasaki Y, Tanebe K, Tsuda H, Michimata T. Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and pre-eclampsia. Clin. Exp. Immunol.117, 550–555 (1999).
  • Maes M, Verkerk R, Bonaccorso S, Ombelet W, Bosmans E, Scharpe S. Depressive and anxiety symptoms in the early puerperium are related to increased degradation of tryptophan into kynurenine, a phenomenon which is related to immune activation. Life Sci.71, 1837–1848 (2002).
  • Ostensen M, Forger F, Nelson JL, Schuhmacher A, Hebisch G, Villiger PM. Pregnancy in patients with rheumatic disease: anti-inflammatory cytokines increase in pregnancy and decrease post partum. Ann. Rheum. Dis.64, 839–844 (2005).
  • Stein GS. The pattern of mental change and body weight change in the first post-partum week. J. Psychosom. Res.24, 165–171 (1980).
  • Josefsson A, Berg G, Nordin C, Sydsjo G. Prevalence of depressive symptoms in late pregnancy and postpartum. Acta Obstet. Gynecol. Scand.80, 251–255 (2001).
  • O’Hara MW, Swain AM. Rates and risk of post-partum depression – a meta-analysis. In. Rev. Psychiatry8, 37–54 (1996).
  • Kohl C, Walch T, Huber R et al. Measurement of tryptophan, kynurenine and neopterin in women with and without postpartum blues. J. Affect. Disord.86, 135–142 (2005).
  • Gard PR, Handley SL, Parsons AD, Waldron G. A multivariate investigation of postpartum mood disturbance. Br. J. Psychiatry148, 567–575 (1986).
  • Abou-Saleh MT, Ghubash R, Karim L, Krymski M, Anderson DN. The role of pterins and related factors in the biology of early postpartum depression. Eur. Neuropsychopharmacol.9, 295–300 (1999).
  • Müller N, Riedel M, Schwarz MJ et al. Immunomodulatory effects of neuroleptics to the cytokine system and the cellular immune system in schizophrenia. In: Current Update in Psychoimmunology. Wieselmann G (Ed.), Springer, Wien, Austria, 57–67 (1997).
  • Müller N, Empl M, Riedel M, Schwarz M, Ackenheil M. Neuroleptic treatment increases soluble IL-2 receptors and decreases soluble IL-6 receptors in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci.247, 308–313 (1997).
  • Müller N, Riedel M, Hadjamu M, Schwarz MJ, Ackenheil M, Gruber R. Increase in expression of adhesion molecule receptors on T-helper cells during antipsychotic treatment and relationship to blood–brain barrier permeability in schizophrenia. Am. J. Psychiatry156, 634–636 (1999).
  • Pollmächer T, Schuld A, Kraus T, Haack M, Hinze-Selch D. On the clinical relevance of clozapine-triggered release of cytokines and soluble cytokine-receptors. Fortschr. Neurol. Psychiatr.69(Suppl. 2), S65–S74 (2001).
  • Ozek M, Toreci K, Akkok I, Guvener Z. Influence of therapy on antibody-formation. Psychopharmacologia.21, 401–412 (1971).
  • Tanaka KF, Shintani F, Fujii Y, Yagi G, Asai M. Serum interleukin-18 levels are elevated in schizophrenia. Psychiatry Res.96, 75–80 (2000).
  • Maes M, Bosmans E, De Jongh R, Kenis G, Vandoolaeghe E, Neels H. Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine9, 853–858 (1997).
  • Bengtsson BO, Zhu J, Thorell LH, Olsson T, Link H, Walinder J. Effects of zimeldine and its metabolites, clomipramine, imipramine and maprotiline in experimental allergic neuritis in Lewis rats. J. Neuroimmunol.39, 109–122 (1992).
  • Song C, Leonard BE. An acute phase protein response in the olfactory bulbectomised rat: effect of sertraline treatment. Med. Sci. Res.22, 313–314 (1994).
  • Zhu J, Bengtsson BO, Mix E, Thorell LH, Olsson T, Link H. Effect of monoamine reuptake inhibiting antidepressants on major histocompatibility complex expression on macrophages in normal rats and rats with experimental allergic neuritis (EAN). Immunopharmacology27, 225–244 (1994).
  • Maes M, Song C, Lin AH et al. Negative immunoregulatory effects of antidepressants: inhibition of interferon-γ and stimulation of interleukin-10 secretion. Neuropsychopharmacology20, 370–379 (1999).
  • Seidel A, Arolt V, Hunstiger M, Rink L, Behnisch A, Kirchner H. Cytokine production and serum proteins in depression. Scand. J. Immunol.41, 534–538 (1995).
  • Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H. Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology22, 370–379 (2000).
  • Kenis G, Maes M. Effects of antidepressants on the production of cytokines. Int. J. Neuropsychopharmacol.5, 401–412 (2002).
  • Basterzi AD, Aydemir C, Kisa C et al. IL-6 levels decrease with SSRI treatment in patients with major depression. Hum. Psychopharmacol.20, 473–476 (2005).
  • Frommberger UH, Bauer J, Haselbauer P, Fraulin A, Riemann D, Berger M. Interleukin-6-(IL-6) plasma levels in depression and schizophrenia: comparison between the acute state and after remission. Eur. Arch. Psychiatry Clin. Neurosci.247, 228–233 (1997).
  • Narita K, Murata T, Takahashi T, Kosaka H, Omata N, Wada Y. Plasma levels of adiponectin and tumor necrosis factor-α in patients with remitted major depression receiving long-term maintenance antidepressant therapy. Prog. Neuropsychopharmacol. Biol. Psychiatry (2006) (In press).
  • Sluzewska A, Rybakowski JK, Laciak M, Mackiewicz A, Sobieska M, Wiktorowicz K. Interleukin-6 serum levels in depressed patients before and after treatment with fluoxetine. Ann. NY Acad. Sci.762, 474–476 (1995).
  • Frommberger UH, Bauer J, Haselbauer P, Fraulin A, Riemann D, Berger M. Interleukin-6-(IL-6) plasma levels in depression and schizophrenia: comparison between the acute state and after remission. Eur. Arch. Psychiatry Clin. Neurosci.247, 228–233 (1997).
  • Pollak Y, Yirmiya R. Cytokine-induced changes in mood and behavior: implications for ‘depression due to a general medical condition’, immunotherapy and antidepressive treatment. Int. J. Neuropsychopharmacol.5, 389–399 (2002).
  • Mtabaji JP, Manku MS, Horrobin DF. Actions of the tricyclic antidepressant clomipramine on responses to pressor agents. Interactions with prostaglandin E2. Prostaglandins14, 125–132 (1977).
  • Yaron I, Shirazi I, Judovich R, Levartovsky D, Caspi D, Yaron M. Fluoxetine and amitriptyline inhibit nitric oxide, prostaglandin E2, and hyaluronic acid production in human synovial cells and synovial tissue cultures. Arthritis Rheum.42, 2561–2568 (1999).
  • Hestad KA, Tonseth S, Stoen CD, Ueland T, Aukrust P. Raised plasma levels of tumor necrosis factor α in patients with depression: normalization during electroconvulsive therapy. J. ECT19, 183–188 (2003).
  • Dimitrov S, Lange T, Tieken S, Fehm HL, Born J. Sleep associated regulation of T helper 1/T helper 2 cytokine balance in humans. Brain Behav. Immun.18, 341–348 (2004).
  • Benedetti F, Lucca A, Brambilla F, Colombo C, Smeraldi E. Interleukine-6 serum levels correlate with response to antidepressant sleep deprivation and sleep phase advance. Prog. Neuropsychopharmacol. Biol. Psychiatry26, 1167–1170 (2002).
  • Blumenthal JA, Babyak MA, Moore KA et al. Effects of exercise training on older patients with major depression. Arch. Intern. Med.159, 2349–2356 (1999).
  • Martinsen EW. Benefits of exercise for the treatment of depression. Sports Med.9, 380–389 (1990).
  • Babyak M, Blumenthal JA, Herman S et al. Exercise treatment for major depression: maintenance of therapeutic benefit at 10 months. Psychosom. Med.62, 633–638 (2000).
  • Pedersen BK, Febbraio M. Muscle-derived interleukin-6 – a possible link between skeletal muscle, adipose tissue, liver, and Brain. Brain Behav. Immun.19, 371–376 (2005).
  • Akira S, Taga T, Kishimoto T. Interleukin-6 in biology and medicine. Adv. Immunol.54, 1–78 (1993).
  • Ostrowski K, Schjerling P, Pedersen BK. Physical activity and plasma interleukin-6 in humans--effect of intensity of exercise. Eur. J. Appl. Physiol.83, 512–515 (2000).
  • Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J. Physiol.515(Pt 1), 287–291 (1999).
  • Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J. Appl. Physiol.98, 1154–1162 (2005).
  • Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-α production in humans. FASEB J.17, 884–886 (2003).
  • Keller C, Keller P, Giralt M, Hidalgo J, Pedersen BK. Exercise normalises overexpression of TNF-α in knockout mice. Biochem. Biophys. Res. Commun.321, 179–182 (2004).
  • Ito Y, Yonekura R, Maruta K et al. Tryptophan metabolism was accelerated by exercise in rat. Adv. Exp. Med. Biol.527, 531–535 (2003).
  • Li J, Ding YH, Rafols JA, Lai Q, McAllister JP, Ding Y. Increased astrocyte proliferation in rats after running exercise. Neurosci. Lett.386, 160–164 (2005).
  • Nybo L, Nielsen B, Pedersen BK, Moller K, Secher NH. Interleukin-6 release from the human brain during prolonged exercise. J. Physiol.542, 991–995 (2002).
  • Van Wagoner NJ, Benveniste EN. Interleukin-6 expression and regulation in astrocytes. J. Neuroimmunol.100, 124–139 (1999).
  • Dietrich MO, Tort AB, Schaf DV et al. Increase in serum S100B protein level after a swimming race. Can. J. Appl. Physiol.28, 710–716 (2003).
  • Otto M, Holthusen S, Bahn E et al. Boxing and running lead to a rise in serum levels of S-100B protein. Int. J. Sports Med.21, 551–555 (2000).
  • Stone TW. Neuropharmacology of quinolinic and kynurenic acids. Pharmacol. Rev.45, 309–379 (1993).
  • Schwarcz R, Pellicciari R. Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J. Pharmacol. Exp. Ther.303, 1–10 (2002).
  • Kessler M, Terramani T, Lynch G, Baudry M. A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J. Neurochem.52, 1319–1328 (1989).
  • Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX. The brain metabolite kynurenic acid inhibits α7 nicotinic receptor activity and increases non-α7 nicotinic receptor expression: physiopathological implications. J. Neurosci.21, 7463–7473 (2001).
  • Grohmann U, Fallarino F, Puccetti P. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol.24, 242–248 (2003).
  • Takikawa O, Yoshida R, Kido R, Hayaishi O. Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase. J. Biol. Chem.261, 3648–3653 (1986).
  • Miller CL, Llenos IC, Dulay JR, Barillo MM, Yolken RH, Weis S. Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol. Dis.15, 618–629 (2004).
  • Aloisi F, Ria F, Adorini L. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol. Today21, 141–147 (2000).
  • Guillemin GJ, Smith DG, Smythe GA, Armati PJ, Brew BJ. Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv. Exp. Med. Biol.527, 105–112 (2003).
  • Guillemin GJ, Wang L, Brew BJ. Quinolinic acid selectively induces apoptosis of human astrocytes: potential role in AIDS dementia complex. J. Neuroinflammation2, 16 (2005).
  • Alberati GD, Ricciardi CP, Kohler C, Cesura AM. Regulation of the kynurenine metabolic pathway by interferon-γ in murine cloned macrophages and microglial cells. J. Neurochem.66, 996–1004 (1996).
  • Mellor AL, Munn DH. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol. Today20, 469–473 (1999).
  • Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med.189, 1363–1372 (1999).
  • Weiss G, Murr C, Zoller H et al. Modulation of neopterin formation and tryptophan degradation by Th1- and Th2-derived cytokines in human monocytic cells. Clin. Exp. Immunol.116, 435–440 (1999).
  • Braun D, Longman RS, Albert ML. A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood106, 2375–2381 (2005).
  • Kwidzinski E, Bunse J, Aktas O et al. Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. FASEB J.19, 1347–1349 (2005).
  • Robinson CM, Hale PT, Carlin JM. The role of IFN-γ and TNF-α-responsive regulatory elements in the synergistic induction of indoleamine dioxygenase. J. Interferon Cytokine Res.25, 20–30 (2005).
  • Linnoila M, Whorton AR, Rubinow DR, Cowdry RW, Ninan PT, Waters RN. CSF prostaglandin levels in depressed and schizophrenic patients. Arch. Gen. Psychiatry40, 405–406 (1983).
  • Carlin JM, Ozaki Y, Byrne GI, Brown RR, Borden EC. Interferons and indoleamine 2,3-dioxygenase: role in antimicrobial and antitumor effects. Experientia45, 535–541 (1989).
  • Taylor MW, Feng GS. Relationship between interferon-γ, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J.5, 2516–2522 (1991).
  • Lidberg L, Belfrage H, Bertilsson L, Evenden MM, Asberg M. Suicide attempts and impulse control disorder are related to low cerebrospinal fluid 5-HIAA in mentally disordered violent offenders. Acta Psychiatr. Scand.101, 395–402 (2000).
  • Mann JJ, Malone KM. Cerebrospinal fluid amines and higher-lethality suicide attempts in depressed inpatients. Biol. Psychiatry41, 162–171 (1997).
  • Nordstrom P, Samuelsson M, Asberg M et al. CSF 5-HIAA predicts suicide risk after attempted suicide. Suicide Life Threat. Behav.24, 1–9 (1994).
  • Xiao BG, Link H. Is there a balance between microglia and astrocytes in regulating Th1/Th2-cell responses and neuropathologies? Immunol. Today20, 477–479 (1999).
  • Aloisi F, Penna G, Cerase J, Menendez IB, Adorini L. IL-12 production by central nervous system microglia is inhibited by astrocytes. J. Immunol.159, 1604–1612 (1997).
  • Lara DR, Gama CS, Belmonte-de-Abreu P et al. Increased serum S100B protein in schizophrenia: a study in medication-free patients. J. Psychiatr. Res.35, 11–14 (2001).
  • Schroeter ML, Abdul-Khaliq H, Fruhauf S et al. Serum S100B is increased during early treatment with antipsychotics and in deficit schizophrenia. Schizophr. Res.62, 231–236 (2003).
  • Rothermundt M, Ponath G, Arolt V. S100B in schizophrenic psychosis. Int. Rev. Neurobiol.59, 445–470 (2004).
  • Schmitt A, Bertsch T, Henning U et al. Increased serum S100B in elderly, chronic schizophrenic patients: negative correlation with deficit symptoms. Schizophr. Res.80, 305–313 (2005).
  • Rothermundt M, Falkai P, Ponath G et al. Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol. Psychiatry9, 897–899 (2004).
  • Bayer TA, Buslei R, Havas L, Falkai P. Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci. Lett.271, 126–128 (1999).
  • Cotter D, Pariante C, Rajkowska G. Glial pathology in major psychiatric disorders. In: The Post-Mortem Brain In Psychiatric Research. Agam G, Belmaker RH, Everall I (Eds), Kluwer Acad Pub, Boston, MA, USA, 291–324 (2002).
  • Ongur D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc. Natl Acad. Sci. USA95, 13290–13295 (1998).
  • Rajkowska G, Miguel-Hidalgo JJ, Wei J et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol. Psychiatry45, 1085–1098 (1999).
  • Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol. Psychiatry49, 741–752 (2001).
  • Rajkowska G. Depression: what we can learn from postmortem studies. Neuroscientist9, 273–284 (2003).
  • Johnston-WilsonNL, Sims CD, Hofmann JP et al. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. Mol. Psychiatry5, 142–149 (2000).
  • Miguel-Hidalgo JJ, Baucom C, Dilley G et al. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol. Psychiatry48, 861–873 (2000).
  • Si X, Miguel-Hidalgo JJ, O’Dwyer G, Stockmeier CA, Rajkowska G. Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression. Neuropsychopharmacology29, 2088–2096 (2004).
  • Davis S, Thomas A, Perry R, Oakley A, Kalaria RN, O’Brien JT. Glial fibrillary acidic protein in late life major depressive disorder: an immunocytochemical study. J. Neurol. Neurosurg. Psychiatry73, 556–560 (2002).
  • Choudary PV, Molnar M, Evans SJ et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc. Natl. Acad. Sci. USA102, 15653–15658 (2005).
  • Gegelashvili G, Robinson MB, Trotti D, Rauen T. Regulation of glutamate transporters in health and disease. Prog. Brain Res.132, 267–286 (2001).
  • Auger C, Attwell D. Fast removal of synaptic glutamate by postsynaptic transporters. Neuron28, 547–558 (2000).
  • Danbolt NC. Glutamate uptake. Prog. Neurobiol.65, 1–105 (2001).
  • Heyes MP, Chen CY, Major EO, Saito K. Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem. J.326, 351–356 (1997).
  • Speciale C, Schwarcz R. On the production and disposition of quinolinic acid in rat brain and liver slices. J. Neurochem.60, 212–218 (1993).
  • Kiss C, Ceresoli-Borroni G, Guidetti P, Zielke CL, Zielke HR, Schwarcz R. Kynurenate production by cultured human astrocytes. J. Neural Transm.110, 1–14 (2003).
  • Guillemin GJ, Smythe GA, Veas LA, Takikawa O, Brew BJ. Aβ 1–42 induces production of quinolinic acid by human macrophages and microglia. Neuroreport14, 2311–2315 (2003).
  • Chiarugi A, Carpenedo R, Moroni F. Kynurenine disposition in blood and brain of mice: effects of selective inhibitors of kynurenine hydroxylase and of kynureninase. J. Neurochem.67, 692–698 (1996).
  • Miller CL, Llenos IC, Dulay JR, Weis S. Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res.1073–1074, 25–37 (2006).
  • Saito K, Crowley JS, Markey SP, Heyes MP. A mechanism for increased quinolinic acid formation following acute systemic immune stimulation. J. Biol. Chem.268, 15496–15503 (1993).
  • Heyes MP, Saito K, Lackner A, Wiley CA, Achim CL, Markey SP. Sources of the neurotoxin quinolinic acid in the brain of HIV-1-infected patients and retrovirus-infected macaques. FASEB J.12, 881–896 (1998).
  • Heyes MP, Saito K, Crowley JS et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain115, 1249–1273 (1992).
  • Martin A, Heyes MP, Salazar AM et al. Progressive slowing of reaction time and increasing cerebrospinal fluid concentrations of quinolinic acid in HIV-infected individuals. J. Neuropsychiatry Clin. Neurosci.4, 270–279 (1992).
  • Martin A, Heyes MP, Salazar AM, Law WA, Williams J. Impaired motor skill learning, slowed reaction time, and elevated cerebrospinal fluid quinilonic acid in a sub-group of HIV-infected individuals. Neuropsychology7, 147–149 (1993).
  • Heyes MP, Brew BJ, Martin A et al. Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann. Neurol.29, 202–209 (1991).
  • Lapin IP. Neurokynurenines (NEKY) as common neurochemical links of stress and anxiety. Adv. Exp. Med. Biol.527, 121–125 (2003).
  • Fedele E, Foster AC. An evaluation of the role of extracellular amino acids in the delayed neurodegeneration induced by quinolinic acid in the rat striatum. Neuroscience52, 911–917 (1993).
  • Chen Q, Surmeier DJ, Reiner A. NMDA and non-NMDA receptor-mediated excitotoxicity are potentiated in cultured striatal neurons by prior chronic depolarization. Exp. Neurol.159, 283–296 (1999).
  • Myint AM, Kim YK. Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med. Hypotheses61, 519–525 (2003).
  • Myint AM, Verkerk R, Kim YK, Scharpe S, Steinbusch HW, Leonard BE. Tryptophan depletion and kynurenine pathway in depression: evidence of imbalance neuroprotection-neurodegeneration. Neuropsychopharmacol.15(Suppl. 3), 399 (2005).
  • Alberati GD, Cesura AM. Expression of the kynurenine enzymes in macrophages and microglial cells: regulation by immune modulators. Amino. Acids14, 251–255 (1998).
  • Chiarugi A, Calvani M, Meli E, Traggiai E, Moroni F. Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. J. Neuroimmunol.120, 190–198 (2001).
  • Kaiya H, Uematsu M, Ofuji M et al. Elevated plasma prostaglandin E2 levels in schizophrenia. J. Neural Transm.77, 39–46 (1989).
  • Das I, Khan NS. Increased arachidonic acid induced platelet chemiluminescence indicates cyclooxygenase overactivity in schizophrenic subjects. Prostaglandins Leukot. Essent. Fatty Acids58, 165–168 (1998).
  • Yokota O, Terada S, Ishihara T et al. Neuronal expression of cyclooxygenase-2, a pro-inflammatory protein, in the hippocampus of patients with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry28, 715–721 (2004).
  • Dai YQ, Jin DZ, Zhu XZ, Lei DL. Triptolide inhibits COX-2 expression via NF-κ B pathway in astrocytes. Neurosci. Res.55, 154–160 (2006).
  • Yiangou Y, Facer P, Durrenberger P et al. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol.6, 12 (2006).
  • Hinz B, Brune K, Pahl A. Prostaglandin E(2) upregulates cyclooxygenase-2 expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biochem. Biophys. Res. Commun.272, 744–748 (2000).
  • Song C, Lin A, Bonaccorso S et al. The inflammatory response system and the availability of plasma tryptophan in patients with primary sleep disorders and major depression. J. Affect. Disord.49, 211–219 (1998).
  • Ohishi K, Ueno R, Nishino S, Sakai T, Hayaishi O. Increased level of salivary prostaglandins in patients with major depression. Biol. Psychiatry23, 326–334 (1988).
  • Calabrese JR, Skwerer RG, Barna B et al. Depression, immunocompetence, and prostaglandins of the E series. Psychiatry Res.17, 41–47 (1986).
  • Plata-Salaman CR. Immunoregulators in the nervous system. Neurosci. Biobehav. Rev.15, 185–215 (1991).
  • Roy A, Pickar D, Paul S, Doran A, Chrousos GP, Gold PW. CSF corticotropin-releasing hormone in depressed patients and normal control subjects. Am. J. Psychiatry144, 641–645 (1987).
  • Hasler G, Drevets WC, Manji HK, Charney DS. Discovering endophenotypes for major depression. Neuropsychopharmacology29, 1765–1781 (2004).
  • Burke HM, Davis MC, Otte C, Mohr DC. Depression and cortisol responses to psychological stress: a meta-analysis. Psychoneuroendocrinology30, 846–856 (2005).
  • Berk M, Wadee AA, Kuschke RH, O’Neill-Kerr A. Acute phase proteins in major depression. J. Psychosom. Res.43, 529–534 (1997).
  • Katila H, Appelberg B, Hurme M, Rimon R. Plasma levels of interleukin-1 β and interleukin-6 in schizophrenia, other psychoses, and affective disorders. Schizophr. Res.12, 29–34 (1994).
  • Brambilla F, Maggioni M. Blood levels of cytokines in elderly patients with major depressive disorder. Acta Psychiatr. Scand.97, 309–313 (1998).
  • Ershler WB, Sun WH, Binkley N et al. Interleukin-6 and aging: blood levels and mononuclear cell production increase with advancing age and in vitro production is modifiable by dietary restriction. Lymphokine Cytokine Res.12, 225–230 (1993).
  • O’brien SM, Scott LV, Dinan TG. Cytokines: abnormalities in major depression and implications for pharmacological treatment. Hum. Psychopharmacol.19, 397–403 (2004).
  • Pugh CR, Nguyen KT, Gonyea JL et al. Role of interleukin-1 β in impairment of contextual fear conditioning caused by social isolation. Behav. Brain Res.106, 109–118 (1999).
  • Nguyen KT, Deak T, Owens SM et al. Exposure to acute stress induces brain interleukin-1β protein in the rat. J. Neurosci.18, 2239–2246 (1998).
  • Bacher M, Meinhardt A, Lan HY et al. MIF expression in the rat brain: implications for neuronal function. Mol. Med.4, 217–230 (1998).
  • Niino M, Ogata A, Kikuchi S, Tashiro K, Nishihira J. Macrophage migration inhibitory factor in the cerebrospinal fluid of patients with conventional and optic-spinal forms of multiple sclerosis and neuro-Behcet's disease. J. Neurol. Sci.179, 127–131 (2000).
  • Suzuki T, Ogata A, Tashiro K et al. Japanese encephalitis virus up-regulates expression of macrophage migration inhibitory factor (MIF) mRNA in the mouse brain. Biochim. Biophys. Acta1517, 100–106 (2000).
  • Madrigal JL, Garcia-Bueno B, Moro MA, Lizasoain I, Lorenzo P, Leza JC. Relationship between cyclooxygenase-2 and nitric oxide synthase-2 in rat cortex after stress. Eur. J. Neurosci.18, 1701–1705 (2003).
  • Besedovsky H, del Rey A, Sorkin E, Dinarello CA. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science233, 652–654 (1986).
  • Berkenbosch F, van Oers J, del Rey A, Tilders F, Besedovsky H. Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science238, 524–526 (1987).
  • Sundar SK, Cierpial MA, Kilts C, Ritchie JC, Weiss JM. Brain IL-1-induced immunosuppression occurs through activation of both pituitary-adrenal axis and sympathetic nervous system by corticotropin-releasing factor. J. Neurosci.10, 3701–3706 (1990).
  • Weiss JM, Quan N, Sundar SK. Immunological consequences of Interleukin-1 in the brain. Neuropsychopharmacol.10, 833 (1994).
  • Sapolsky RM. A mechanism for glucocorticoid toxicity in the hippocampus: increased neuronal vulnerability to metabolic insults. J. Neurosci.5, 1228–1232 (1985).
  • Woolley CS, Gould E, McEwen BS. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res.531, 225–231 (1990).
  • Campbell S, Macqueen G. The role of the hippocampus in the pathophysiology of major depression. J. Psychiatry Neurosci.29, 417–426 (2004).
  • Moghaddam B, Bolinao ML, Stein-Behrens B, Sapolsky R. Glucocorticoids mediate the stress-induced extracellular accumulation of glutamate. Brain Res.655, 251–254 (1994).
  • Stein-Behrens BA, Lin WJ, Sapolsky RM. Physiological elevations of glucocorticoids potentiate glutamate accumulation in the hippocampus. J. Neurochem.63, 596–602 (1994).
  • Takahashi T, Kimoto T, Tanabe N, Hattori TA, Yasumatsu N, Kawato S. Corticosterone acutely prolonged N-methyl-D-aspartate receptor-mediated Ca2+ elevation in cultured rat hippocampal neurons. J. Neurochem.83, 1441–1451 (2002).
  • Nair A, Bonneau RH. Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. J. Neuroimmunol.171, 72–85 (2006).
  • Cao C, Matsumura K, Ozaki M, Watanabe Y. Lipopolysaccharide injected into the cerebral ventricle evokes fever through induction of cyclooxygenase-2 in brain endothelial cells. J. Neurosci.19, 716–725 (1999).
  • Quinlivan JA, Beazley LD, Archer M, Evans SF, Newnham JP, Dunlop SA. Repeated prenatal corticosteroids reduce glial fibrillary acidic protein in the ovine central nervous system. J. Perinat. Med.30, 209–219 (2002).
  • Nichols NR, Zieba M, Bye N. Do glucocorticoids contribute to brain aging? Brain Res. Brain Res. Rev.37, 273–286 (2001).
  • Pyeon D, Diaz FJ, Splitter GA. Prostaglandin E(2) increases bovine leukemia virus tax and pol mRNA levels via cyclooxygenase 2: regulation by interleukin-2, interleukin-10, and bovine leukemia virus. J. Virol.74, 5740–5745 (2000).
  • Stolina M, Sharma S, Lin Y et al. Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J. Immunol.164, 361–370 (2000).
  • Harris SG, Padilla J, Koumas L, Ray D, Phipps RP. Prostaglandins as modulators of immunity. Trends Immunol.23, 144–150 (2002).
  • Litherland SA, Xie XT, Hutson AD et al. Aberrant prostaglandin synthase 2 expression defines an antigen-presenting cell defect for insulin-dependent diabetes mellitus. J. Clin. Invest.104, 515–523 (1999).
  • Schwieler L, Erhardt S, Erhardt C, Engberg G. Prostaglandin-mediated control of rat brain kynurenic acid synthesis-opposite actions by COX-1 and COX-2 isoforms. J. Neural Transm.112, 863–872 (2005).
  • Browning CH. Nonsteroidal anti-inflammatory drugs and severe psychiatric side effects. Int. J. Psychiatry Med.26, 25–34 (1996).
  • Jiang HK, Chang DM. Non-steroidal anti-inflammatory drugs with adverse psychiatric reactions: five case reports. Clin. Rheumatol.18, 339–345 (1999).
  • Müller N, Riedel M, Scheppach C et al. Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am. J. Psychiatry159, 1029–1034 (2002).
  • Müller N, Riedel M, Dehning S et al. Is the therapeutic effect of celecoxib in schizophrenia depending from duration of disease? Neuropsychopharmacology29, 176 (2004).
  • Müller N, Riedel M, Schwarz MJ, Engel RR. Clinical effects of COX-2 inhibitors on cognition in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci.255, 149–151 (2005).
  • Müller N, Ulmschneider M, Scheppach C et al. COX-2 inhibition as a treatment approach in schizophrenia: immunological considerations and clinical effects of celecoxib add-on therapy. Eur. Arch. Psychiatry Clin. Neurosci.254, 14–22 (2004).
  • Rapaport MH, Delrahim KK, Bresee CJ, Maddux RE, Ahmadpour O, Dolnak D. Celecoxib augmentation of continuously ill patients with schizophrenia. Biol. Psychiatry57, 1594–1596 (2005).
  • Casolini P, Catalani A, Zuena AR, Angelucci L. Inhibition of COX-2 reduces the age-dependent increase of hippocampal inflammatory markers, corticosterone secretion, and behavioral impairments in the rat. J. Neurosci. Res.68, 337–343 (2002).
  • Hu F, Wang X, Pace TW, Wu H, Miller AH. Inhibition of COX-2 by celecoxib enhances glucocorticoid receptor function. Mol. Psychiatry10, 426–428 (2005).
  • Song C, Leonard BE. Fundamentals of psychoneuroimmunology. J Wiley and Sons, Chichester, NY, USA (2000).
  • Sandrini M, Vitale G, Pini LA. Effect of rofecoxib on nociception and the serotonin system in the rat Brain.Inflamm. Res.51, 154–159 (2002).
  • Salzberg-Brenhouse HC, Chen EY, Emerich DF et al. Inhibitors of cyclooxygenase-2, but not cyclooxygenase-1 provide structural and functional protection against quinolinic acid-induced neurodegeneration. J. Pharmacol. Exp. Ther.306, 218–228 (2003).
  • Collantes-Esteves E, Fernandez-Perrez CH. Improved self-control of ostheoarthritis pain and self-reported health status in non-responders to celecoxib switched to rofecoxib: results of PAVIA, an open-label post-marketing survey in spain. Curr. Med. Res. Opin.19, 402–410 (2003).
  • Müller N, Schwarz MJ, Dehning S et al. The cyclo-oxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: Results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Molecular Psychiatry (2006) (In press).
  • Dogne JM, Hanson J, Supuran C, Pratico D. Coxibs and cardiovascular side effects: from light to shadow. Curr. Pharm. Des.12, 971–975 (2006).
  • Brophy JM. Celecoxib and cardiovascular risks. Expert Opin. Drug Saf.4, 1005–1015 (2005).
  • Wang D, Wang M, Cheng Y, FitzGerald GA. Cardiovascular hazard and non-steroidal anti-inflammatory drugs. Curr. Opin. Pharmacol.5, 204–210 (2005).
  • Bresalier RS, Sandler RS, Quan H et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N. Engl. J. Med.352, 1092–1102 (2005).
  • Solomon SD, McMurray JJ, Pfeffer MA et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med.352, 1071–1080 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.