113
Views
24
CrossRef citations to date
0
Altmetric
Review

Genetics of Parkinson’s disease and parkinsonism

, &
Pages 657-666 | Published online: 10 Jan 2014

References

  • Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet363(9423), 1783–1793 (2004).
  • Gowers WR. A Manual of the Diseases of the Nervous System. Blakiston, PA, USA (1902).
  • Payami H, Larsen K, Bernard S, Nutt J. Increased risk of Parkinson’s disease in parents and siblings of patients. Ann. Neurol.36(4), 659–661 (1994).
  • Autere JM, Moilanen JS, Myllyla VV, Majamaa K. Familial aggregation of Parkinson’s disease in a Finnish population. J. Neurol. Neurosurg. Psychiatry69(1), 107–109 (2000).
  • Sveinbjornsdottir S, Hicks AA, Jonsson T et al. Familial aggregation of Parkinson’s disease in Iceland. N. Engl. J. Med.343(24), 1765–1770 (2000).
  • Preux PM, Condet A, Anglade C et al. Parkinson’s disease and environmental factors. Matched case-control study in the Limousin region, France. Neuroepidemiology19(6), 333–337 (2000).
  • Rocca WA, McDonnell SK, Strain KJ et al. Familial aggregation of Parkinson’s disease: the Mayo Clinic family study. Ann. Neurol.56(4), 495–502 (2004).
  • Trojanowski JQ, Lee VM. Parkinson’s disease and related α-synucleinopathies are brain amyloidoses. Ann. NY Acad. Sci.991, 107–110 (2003).
  • Valente EM, Abou-Sleiman PM, Caputo V et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science304(5674), 1158–1160 (2004).
  • Polymeropoulos MH, Lavedan C, Leroy E et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science276(5321), 2045–2047 (1997).
  • Kitada T, Asakawa S, Hattori N et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature392(6676), 605–608 (1998).
  • Bonifati V, Rizzu P, van Baren MJ et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science299(5604), 256–259 (2003).
  • Paisan-Ruiz C, Jain S, Evans EW et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron44(4), 595–600 (2004).
  • Zimprich A, Biskup S, Leitner P et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron44(4), 601–607 (2004).
  • Le WD, Xu P, Jankovic J et al. Mutation in NR4A2 associated with familial Parkinson disease. Nat. Genet.33(1), 85–89 (2003).
  • Marx FP, Holzmann C, Strauss KM et al. Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson’s disease. Hum. Mol. Genet.12(11), 1223–1231 (2003).
  • Carr J, de la Fuente-Fernandez R, Schulzer M et al. Familial and sporadic Parkinson’s disease usually display the same clinical features. Parkinsonism Relat. Disord.9(4), 201–204 (2003).
  • Golbe LI, Di Iorio G, Sanges G et al. Clinical genetic analysis of Parkinson’s disease in the Contursi kindred. Ann. Neurol.40(5), 767–775 (1996).
  • Papapetropoulos S, Paschalis C, Athanassiadou A et al. Clinical phenotype in patients with α-synuclein Parkinson’s disease living in Greece in comparison with patients with sporadic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry70(5), 662–665 (2001).
  • Kruger R, Kuhn W, Muller T et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat. Genet.18(2), 106–108 (1998).
  • Zarranz JJ, Alegre J, Gomez-Esteban JC et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol.55(2), 164–173 (2004).
  • Vaughan J, Durr A, Tassin J et al. The α-synuclein Ala53Thr mutation is not a common cause of familial Parkinson’s disease: a study of 230 European cases. European Consortium on Genetic Susceptibility in Parkinson’s Disease. Ann. Neurol.44(2), 270–273 (1998).
  • Farrer M, Maraganore DM, Lockhart P et al. α-synuclein gene haplotypes are associated with Parkinson’s disease. Hum. Mol. Genet.10(17), 1847–1851 (2001).
  • Pals P, Lincoln S, Manning J et al. α-synuclein promoter confers susceptibility to Parkinson’s disease. Ann. Neurol.56(4), 591–595 (2004).
  • Chartier-Harlin MC, Kachergus J, Roumier C et al. α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet364(9440), 1167–1169 (2004).
  • Ibanez P, Bonnet AM, Debarges B et al. Causal relation between α-synuclein gene duplication and familial Parkinson’s disease. Lancet364(9440), 1169–1171 (2004).
  • Muenter MD, Forno LS, Hornykiewicz O et al. Hereditary form of parkinsonism – dementia. Ann. Neurol.43(6), 768–781 (1998).
  • Tan EK, Chai A, Teo YY et al. α-synuclein haplotypes implicated in risk of Parkinson’s disease. Neurology62(1), 128–131 (2004).
  • Singleton AB, Farrer M, Johnson J et al. α-synuclein locus triplication causes Parkinson’s disease. Science302(5646), 841 (2003).
  • Farrer M, Kachergus J, Forno L et al. Comparison of kindreds with parkinsonism and α-synuclein genomic multiplications. Ann. Neurol.55(2), 174–179 (2004).
  • Maraganore DM, de Andrade M, Elbaz A et al. Collaborative analysis of α-synuclein gene promoter variability and Parkinson disease. JAMA296(6), 661–670 (2006).
  • Spillantini MG, Schmidt ML, Lee VM et al. α-synuclein in Lewy bodies. Nature388(6645), 839–840 (1997).
  • Spillantini MG, Goedert M. The a-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Ann. NY Acad. Sci.920, 16–27 (2000).
  • Lee VM, Trojanowski JQ. Mechanisms of Parkinson’s disease linked to pathological α-synuclein: new targets for drug discovery. Neuron52(1), 33–38 (2006).
  • Nuscher B, Kamp F, Mehnert T et al. α-synuclein has a high affinity for packing defects in a bilayer membrane: a thermodynamics study. J. Biol. Chem.279(21), 21966–21975 (2004).
  • Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC. α-synuclein cooperates with CSPα in preventing neurodegeneration. Cell123(3), 383–396 (2005).
  • Chen Q, Thorpe J, Keller JN. α-synuclein alters proteasome function, protein synthesis, and stationary phase viability. J. Biol. Chem.280(34), 30009–30017 (2005).
  • Gasser T, Muller-Myhsok B, Wszolek ZK et al. A susceptibility locus for Parkinson’s disease maps to chromosome 2p13. Nat. Genet.18(3), 262–265 (1998).
  • Pankratz N, Uniacke SK, Halter CA et al. Genes influencing Parkinson disease onset: replication of PARK3 and identification of novel loci. Neurology62(9), 1616–1618 (2004).
  • DeStefano AL, Golbe LI, Mark MH et al. Genome-wide scan for Parkinson’s disease: the GenePD Study. Neurology57(6), 1124–1126 (2001).
  • Martinez M, Brice A, Vaughan JR et al. Genome-wide scan linkage analysis for Parkinson’s disease: the European genetic study of Parkinson’s disease. J. Med. Genet.41(12), 900–907 (2004).
  • West AB, Zimprich A, Lockhart PJ et al. Refinement of the PARK3 locus on chromosome 2p13 and the analysis of 14 candidate genes. Eur. J. Hum. Genet.9(9), 659–666 (2001).
  • Sharma M, Mueller JC, Zimprich A et al. The sepiapterin reductase gene region reveals association in the PARK3 locus: analysis of familial and sporadic Parkinson’s disease in European populations. J. Med. Genet.43(7), 557–562 (2006).
  • Leroy E, Boyer R, Auburger G et al. The ubiquitin pathway in Parkinson’s disease. Nature395(6701), 451–452 (1998).
  • Maraganore DM, Farrer MJ, Hardy JA et al. Case-control study of the ubiquitin carboxy-terminal hydrolase L1 gene in Parkinson’s disease. Neurology53(8), 1858–1860 (1999).
  • Maraganore DM, Lesnick TG, Elbaz A et al. UCHL1 is a Parkinson’s disease susceptibility gene. Ann. Neurol.55(4), 512–521 (2004).
  • Meray RK, Lansbury PT Jr. Reversible monoubiquitination regulates the Parkinson’s disease-associated ubiquitin hydrolase UCH-L1. J. Biol. Chem.282(14), 10567–10575 (2007).
  • Zimprich A, Muller-Myhsok B, Farrer M et al. The PARK8 locus in autosomal dominant parkinsonism: confirmation of linkage and further delineation of the disease-containing interval. Am. J. Hum. Genet.74(1), 11–19 (2004).
  • Hasegawa K, Kowa H. Autosomal dominant familial Parkinson disease: older onset of age, and good response to levodopa therapy. Eur. Neurol.38(Suppl. 1), 39–43 (1997).
  • Wszolek ZK, Pfeiffer RF, Tsuboi Y et al. Autosomal dominant parkinsonism associated with variable synuclein and tau pathology. Neurology62(9), 1619–1622 (2004).
  • Khan NL, Jain S, Lynch JM et al. Mutations in the gene LRRK2 encoding dardarin (PARK8) cause familial Parkinson’s disease: clinical, pathological, olfactory and functional imaging and genetic data. Brain128(Pt 12), 2786–2796 (2005).
  • Di Fonzo A, Tassorelli C, De Mari M et al. Comprehensive analysis of the LRRK2 gene in sixty families with Parkinson’s disease. Eur. J. Hum. Genet.14(3), 322–331 (2006).
  • Kachergus J, Mata IF, Hulihan M et al. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am. J. Hum. Genet.76(4), 672–680 (2005).
  • Nichols WC, Pankratz N, Hernandez D et al. Genetic screening for a single common LRRK2 mutation in familial Parkinson’s disease. Lancet365(9457), 410–412 (2005).
  • Bras JM, Guerreiro RJ, Ribeiro MH et al. G2019S dardarin substitution is a common cause of Parkinson’s disease in a Portuguese cohort. Mov. Disord.20(12), 1653–1655 (2005).
  • Saunders-Pullman R, Lipton RB, Senthil G et al. Increased frequency of the LRRK2 G2019S mutation in an elderly Ashkenazi Jewish population is not associated with dementia. Neurosci. Lett.402(1–2), 92–96 (2006).
  • Lesage S, Ibanez P, Lohmann E et al. G2019S LRRK2 mutation in French and North African families with Parkinson’s disease. Ann. Neurol.58(5), 784–787 (2005).
  • Kay DM, Kramer P, Higgins D, Zabetian CP, Payami H. Escaping Parkinson’s disease: a neurologically healthy octogenarian with the LRRK2 G2019S mutation. Mov. Disord.20(8), 1077–1078 (2005).
  • Pankratz N, Pauciulo MW, Elsaesser VE et al. Mutations in LRRK2 other than G2019S are rare in a north American-based sample of familial Parkinson’s disease. Mov. Disord.21(12), 2257–2260 (2006).
  • Funayama M, Li Y, Tomiyama H et al. Leucine-rich repeat kinase 2 G2385R variant is a risk factor for Parkinson disease in Asian population. Neuroreport18(3), 273–275 (2007).
  • Fung HC, Chen CM, Hardy J, Singleton AB, Wu YR. A common genetic factor for Parkinson disease in ethnic Chinese population in Taiwan. BMC Neurol.6, 47 (2006).
  • Macleod D, Dowman J, Hammond R et al. The familial parkinsonism gene LRRK2 regulates neurite process morphology. Neuron52(4), 587–593 (2006).
  • Pankratz N, Nichols WC, Uniacke SK et al. Significant linkage of Parkinson disease to chromosome 2q36–37. Am. J. Hum. Genet.72(4), 1053–1057 (2003).
  • Prestel J, Sharma M, Leitner P et al. PARK11 is not linked with Parkinson’s disease in European families. Eur. J. Hum. Genet.13(2), 193–197 (2005).
  • Fung HC, Scholz S, Matarin M et al. Genome-wide genotyping in Parkinson’s disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol.5(11), 911–916 (2006).
  • Elbaz A, Nelson LM, Payami H et al. Lack of replication of thirteen single-nucleotide polymorphisms implicated in Parkinson’s disease: a large-scale international study. Lancet Neurol.5(11), 917–923 (2006).
  • Periquet M, Latouche M, Lohmann E et al. Parkin mutations are frequent in patients with isolated early-onset parkinsonism. Brain126(Pt 6), 1271–1278 (2003).
  • Lohmann E, Periquet M, Bonifati V et al. How much phenotypic variation can be attributed to parkin genotype? Ann. Neurol.54(2), 176–185 (2003).
  • Khan NL, Graham E, Critchley P et al. Parkin disease: a phenotypic study of a large case series. Brain126(Pt 6), 1279–1292 (2003).
  • Yamamura Y, Hattori N, Matsumine H, Kuzuhara S, Mizuno Y. Autosomal recessive early-onset parkinsonism with diurnal fluctuation: clinicopathologic characteristics and molecular genetic identification. Brain Dev.22(Suppl. 1) S87–S91 (2000).
  • Farrer M, Chan P, Chen R et al. Lewy bodies and parkinsonism in families with parkin mutations. Ann. Neurol.50(3), 293–300 (2001).
  • Mori H, Kondo T, Yokochi M et al. Pathologic and biochemical studies of juvenile parkinsonism linked to chromosome 6q. Neurology51(3), 890–892 (1998).
  • Lucking CB, Durr A, Bonifati V et al. Association between early-onset Parkinson’s disease and mutations in the parkin gene. N. Engl. J. Med.342(21), 1560–1567 (2000).
  • Foroud T, Uniacke SK, Liu L et al. Heterozygosity for a mutation in the parkin gene leads to later onset Parkinson disease. Neurology60(5), 796–801 (2003).
  • Hedrich K, Kann M, Lanthaler AJ et al. The importance of gene dosage studies: mutational analysis of the parkin gene in early-onset parkinsonism. Hum. Mol. Genet.10(16), 1649–1656 (2001).
  • Hedrich K, Eskelson C, Wilmot B et al. Distribution, type, and origin of Parkin mutations: review and case studies. Mov. Disord.19(10), 1146–1157 (2004).
  • Shimura H, Hattori N, Kubo S et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet.25(3), 302–305 (2000).
  • Upadhya SC, Hegde AN. A potential proteasome-interacting motif within the ubiquitin-like domain of parkin and other proteins. Trends Biochem. Sci.28(6), 280–283 (2003).
  • Moore DJ. Parkin: a multifaceted ubiquitin ligase. Biochem. Soc. Trans.34(Pt 5), 749–753 (2006).
  • Yang Y, Nishimura I, Imai Y, Takahashi R, Lu B. Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron37(6), 911–924 (2003).
  • Smith WW, Pei Z, Jiang H et al. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc. Natl Acad. Sci. USA102(51), 18676–18681 (2005).
  • Moore DJ, Zhang L, Troncoso J et al. Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum. Mol. Genet.14(1), 71–84 (2005).
  • Valente EM, Bentivoglio AR, Dixon PH et al. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am. J. Hum. Genet.68(4), 895–900 (2001).
  • Valente EM, Brancati F, Ferraris A et al. PARK6-linked parkinsonism occurs in several European families. Ann. Neurol.51(1), 14–18 (2002).
  • Valente EM, Salvi S, Ialongo T et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann. Neurol.56(3), 336–341 (2004).
  • Rohe CF, Montagna P, Breedveld G et al. Homozygous PINK1 C-terminus mutation causing early-onset parkinsonism. Ann. Neurol.56(3), 427–431 (2004).
  • Hatano Y, Li Y, Sato K et al. Novel PINK1 mutations in early-onset parkinsonism. Ann. Neurol.56(3), 424–427 (2004).
  • Healy DG, Abou-Sleiman PM, Gibson JM et al. PINK1 (PARK6) associated Parkinson disease in Ireland. Neurology63(8), 1486–1488 (2004).
  • Hedrich K, Hagenah J, Djarmati A et al. Clinical spectrum of homozygous and heterozygous PINK1 mutations in a large German family with Parkinson disease: role of a single hit? Arch. Neurol.63(6), 833–838 (2006).
  • Abou-Sleiman PM, Muqit MM, McDonald NQ et al. A heterozygous effect for PINK1 mutations in Parkinson’s disease? Ann. Neurol.60(4), 414–419 (2006).
  • Toft M, Myhre R, Pielsticker L et al. PINK1 mutation heterozygosity and the risk of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry78(1), 82–84 (2007).
  • Khan NL, Valente EM, Bentivoglio AR et al. Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET study. Ann. Neurol.52(6), 849–853 (2002).
  • Ibanez P, Lesage S, Lohmann E et al. Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain129(Pt 3), 686–694 (2006).
  • Hatano Y, Sato K, Elibol B et al. PARK6-linked autosomal recessive early-onset parkinsonism in Asian populations. Neurology63(8), 1482–1485 (2004).
  • Gandhi S, Muqit MM, Stanyer L et al. PINK1 protein in normal human brain and Parkinson’s disease. Brain129(Pt 7), 1720–1731 (2006).
  • Clark IE, Dodson MW, Jiang C et al. Drosophila PINK1 is required for mitochondrial function and interacts genetically with parkin. Nature441(7097), 1162–1166 (2006).
  • Yang Y, Gehrke S, Imai Y et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila PINK1 is rescued by Parkin. Proc. Natl Acad. Sci. USA103(28), 10793–10798 (2006).
  • Park J, Lee SB, Lee S et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature441(7097), 1157–1161 (2006).
  • Hague S, Rogaeva E, Hernandez D et al. Early-onset Parkinson’s disease caused by a compound heterozygous DJ-1 mutation. Ann. Neurol.54(2), 271–274 (2003).
  • Abou-Sleiman PM, Healy DG, Quinn N, Lees AJ, Wood NW. The role of pathogenic DJ-1 mutations in Parkinson’s disease. Ann. Neurol.54(3), 283–286 (2003).
  • Hedrich K, Djarmati A, Schafer N et al. DJ-1 (PARK7) mutations are less frequent than Parkin (PARK2) mutations in early-onset Parkinson disease. Neurology62(3), 389–394 (2004).
  • Dekker M, Bonifati V, van Swieten J et al. Clinical features and neuroimaging of PARK7-linked parkinsonism. Mov. Disord.18(7), 751–757 (2003).
  • Lev N, Roncevich D, Ickowicz D, Melamed E, Offen D. Role of DJ-1 in Parkinson’s disease. J. Mol. Neurosci.29(3), 215–225 (2006).
  • Canet-Aviles RM, Wilson MA, Miller DW et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc. Natl Acad. Sci. USA101(24), 9103–9108 (2004).
  • Kim RH, Smith PD, Aleyasin H et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc. Natl Acad. Sci. USA102(14), 5215–5220 (2005).
  • Najim al-Din AS, Wriekat A, Mubaidin A, Dasouki M, Hiari M. Pallido-pyramidal degeneration, supranuclear upgaze paresis and dementia: Kufor-Rakeb syndrome. Acta Neurol. Scand.89(5), 347–352 (1994).
  • Hampshire DJ, Roberts E, Crow Y et al. Kufor-Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36. J. Med. Genet.38(10), 680–682 (2001).
  • Williams DR, Hadeed A, al-Din AS, Wreikat AL, Lees AJ. Kufor Rakeb disease: autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Mov. Disord.20(10), 1264–1271 (2005).
  • Ramirez A, Heimbach A, Grundemann J et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet.38(10), 1184–1191 (2006).
  • Hicks AA, Petursson H, Jonsson T et al. A susceptibility gene for late-onset idiopathic Parkinson’s disease. Ann. Neurol.52(5), 549–555 (2002).
  • Li YJ, Scott WK, Hedges DJ et al. Age at onset in two common neurodegenerative diseases is genetically controlled. Am. J. Hum. Genet.70(4), 985–993 (2002).
  • Oliveira SA, Li YJ, Noureddine MA et al. Identification of risk and age-at-onset genes on chromosome 1p in Parkinson disease. Am. J. Hum. Genet.77(2), 252–264 (2005).
  • Pankratz N, Nichols WC, Uniacke SK et al. Genome screen to identify susceptibility genes for Parkinson disease in a sample without parkin mutations. Am. J. Hum. Genet.71(1), 124–135 (2002).
  • Strauss KM, Martins LM, Plun-Favreau H et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum. Mol. Genet.14(15), 2099–2111 (2005).
  • Tan EK, Khajavi M, Thornby JI et al. Variability and validity of polymorphism association studies in Parkinson’s disease. Neurology55(4), 533–538 (2000).
  • Jankovic J, Chen S, Le WD. The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Prog. Neurobiol.77(1–2), 128–138 (2005).
  • Nichols WC, Uniacke SK, Pankratz N et al. Evaluation of the role of Nurr1 in a large sample of familial Parkinson’s disease. Mov. Disord.19(6), 649–655 (2004).
  • Healy DG, Abou-Sleiman PM, Ahmadi KR et al. NR4A2 genetic variation in sporadic Parkinson’s disease: a genewide approach. Mov. Disord.21(11), 1960–1963 (2006).
  • Engelender S, Kaminsky Z, Guo X et al. Synphilin-1 associates with α-synuclein and promotes the formation of cytosolic inclusions. Nat. Genet.22(1), 110–114 (1999).
  • Marx FP, Soehn AS, Berg D et al. The proteasomal subunit S6 ATPase is a novel synphilin-1 interacting protein – implications for Parkinson’s disease. FASEB J.21(8), 1759–1767 (2007).
  • Mamah CE, Lesnick TG, Lincoln SJ et al. Interaction of α-synuclein and tau genotypes in Parkinson’s disease. Ann. Neurol.57(3), 439–443 (2005).
  • Healy DG, Abou-Sleiman PM, Lees AJ et al. Tau gene and Parkinson’s disease: a case-control study and meta-analysis. J. Neurol. Neurosurg. Psychiatry75(7), 962–965 (2004).
  • Zhang J, Song Y, Chen H, Fan D. The tau gene haplotype h1 confers a susceptibility to Parkinson’s disease. Eur. Neurol.53(1), 15–21 (2005).
  • Arima K, Hirai S, Sunohara N et al. Cellular co-localization of phosphorylated tau- and NACP/α-synuclein-epitopes in lewy bodies in sporadic Parkinson’s disease and in dementia with Lewy bodies. Brain Res.843(1–2), 53–61 (1999).
  • Ishizawa T, Mattila P, Davies P, Wang D, Dickson DW. Colocalization of tau and α-synuclein epitopes in Lewy bodies. J. Neuropathol. Exp. Neurol.62(4), 389–397 (2003).
  • Kwok JB, Teber ET, Loy C et al. Tau haplotypes regulate transcription and are associated with Parkinson’s disease. Ann. Neurol.55(3), 329–334 (2004).
  • Goker-Alpan O, Schiffmann R, LaMarca ME et al. Parkinsonism among Gaucher disease carriers. J. Med. Genet.41(12), 937–940 (2004).
  • Aharon-Peretz J, Rosenbaum H, Gershoni-Baruch R. Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N. Engl. J. Med.351(19), 1972–1977 (2004).
  • Hruska KS, Goker-Alpan O, Sidransky E. Gaucher disease and the synucleinopathies. J. Biomed. Biotechnol.2006(3), 78549 (2006).
  • Clark LN, Haamer E, Mejia-Santana H et al. Construction and validation of a Parkinson’s disease mutation genotyping array for the Parkin gene. Mov. Disord.22(7), 932–937 (2007).
  • Mazzulli JR, Mishizen AJ, Giasson BI et al. Cytosolic catechols inhibit α-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates. J. Neurosci.26(39), 10068–10078 (2006).
  • Paleologou KE, Irvine GB, El-Agnaf OM. Α-synuclein aggregation in neurodegenerative diseases and its inhibition as a potential therapeutic strategy. Biochem. Soc. Trans.33(Pt 5), 1106–1110 (2005).
  • Emadi S, Barkhordarian H, Wang MS, Schulz P, Sierks MR. Isolation of a human single chain antibody fragment against oligomeric α-synuclein that inhibits aggregation and prevents α-synuclein-induced toxicity. J. Mol. Biol.368(4), 1132–1144 (2007).
  • Perez-Tur J. Parkinson’s disease genetics: a complex disease comes to the clinic. Lancet Neurol.5(11), 896–897 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.