50
Views
20
CrossRef citations to date
0
Altmetric
Review

Applications of emerging molecular technologies in glioblastoma multiforme

, , , &
Pages 1497-1506 | Published online: 09 Jan 2014

References

  • Frosch MP, Anthony DC, Girolami UD. The Central Nervous System. In: Robbins and Cotran Pathologic Basis of Disease (7th Edition). Kumar V, Abbas AK, Fausto N (Eds). Elsevier Saunders, PA, USA 1401–1410 (2005).
  • Rosell R, de Las Peñas R, Balaña C et al. Translational research in glioblastoma multiforme: molecular criteria for patient selection. Future Oncol.4(2), 219–228 (2008).
  • Lacroix M, Abi-Said D, Fourney DR et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J. Neurosurg.95(2), 190–198 (2001).
  • Buckner JC. Factors influencing survival in high-grade gliomas. Semin. Oncol.30(Suppl. 19), 10–14 (2003).
  • DeAngelis LM. Brain tumors. N. Engl. J. Med.344(2), 114–123 (2001).
  • Walker MD, Alexander E Jr, Hunt WE et al. Evalutation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas: a cooperative clinical trial. J. Neurosurg.49(3), 333–343 (1978).
  • Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science270(5235), 467–470 (1995).
  • Houillier C, Lejeune J, Benouaich-Amiel A et al. Prognostic impact of molecular markers in a series of 220 primary glioblastomas. Cancer106(10), 2218–2223 (2006).
  • Karlbom AE, James CD, Boethius J et al. Loss of heterozygosity in malignant gliomas involves at least three distinct regions on chromosome 10. Hum. Genet.92(2), 169–174 (1993).
  • Rasheed BK, McLendon RE, Friedman HS et al. Chromosome 10 deletion mapping in human gliomas: a common deletion region in 10q25. Oncogene10(11), 2243–2246 (1995).
  • Fults D, Pedone CA, Thompson GE et al. Microsatellite deletion mapping on chromosome 10q and mutation analysis of MMAC1, FAS, and MXI1 in human glioblastoma multiforme. Int. J. Oncol.12(4), 905–910 (1998).
  • Homma T, Fukushima T, Vaccarella S et al. Correlation among pathology, genotype, and patient outcomes in glioblastoma. J. Neuropathol. Exp. Neurol.65(9), 846–854 (2006).
  • Stupp R, Hegi ME, van den Bent MJ et al. Changing paradigms-an update on the multidisciplinary management of malignant glioma. Oncologist11(2), 165–180 (2006).
  • Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc. Natl Acad. Sci. USA84(19), 6899–6903 (1987).
  • Ekstrand AJ, Sugawa N, James CD, Collins VP. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc. Natl Acad. Sci. USA89(10), 4309–4313 (1992).
  • Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol.170(5), 1445–1453 (2007).
  • Ruano Y, Mollejo M, Ribalta T et al. Identification of novel candidate target genes in amplicons of glioblastoma multiforme tumors detected by expression and CGH microarray profiling. Mol. Cancer5, 39 (2006).
  • Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol.6(3), 217–223 (1996).
  • Tohma Y, Gratas C, Biernat W et al.PTEN (MMAC1 ) mutations are frequent in primary glioblastomas (de novo ) but not in secondary glioblastomas. J. Neuropathol. Exp. Neurol.57(7), 684–689 (1998).
  • Nicholas MK, Lukas RV, Jafri NF, Faoro L, Salgia R. Epidermal growth factor receptor-mediated signal transduction in the development and therapy of gliomas. Clin. Cancer Res.12(24), 7261–7270 (2006).
  • Wong RW, Guillaud L. The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine Growth Factor Rev.15(2–3), 147–156 (2004).
  • Moscatello DK, Holgado-Madruga M, Emlet DR, Montgomery RB, Wong AJ. Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J. Biol. Chem.273(1), 200–206 (1998).
  • Lorimer IA, Lavictoire SJ. Activation of extracellular-regulated kinases by normal and mutant EGF receptors. Biochim. Biophys. Acta1538(1), 1–9 (2001).
  • Li B, Yuan M, Kim IA, Chang CM, Bernhard EJ, Shu HK. Mutant epidermal growth factor receptor displays increased signaling through the phosphatidylinositol-3 kinase/AKT pathway and promotes radioresistance in cells of astrocytic origin. Oncogene23(26), 4594–4602 (2004).
  • Narita Y, Nagane M, Mishima K, Huang HJ, Furnari FB, Cavenee WK. Mutant epidermal growth factor receptor signaling down-regulates p27 through activation of the phosphatidylinositol 3-kinase/Akt pathway in glioblastomas. Cancer Res.62(22), 6764–6769 (2002).
  • Nagane M, Coufal F, Lin H, Bogler O, Cavenee WK, Huang HJ. A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res.56(21), 5079–5086 (1996).
  • Sugawa N, Yamamoto K, Ueda S et al. Function of aberrant EGFR in malignant gliomas. Brain Tumor Pathol.15(1), 53–57 (1998).
  • Lal A, Glazer CA, Martinson HM et al. Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res.62(12), 3335–3339 (2002).
  • Steck PA, Pershouse MA, Jasser SA et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet.15(4), 356–362 (1997).
  • Li J, Yen C, Liaw D et al.PTEN , a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science275(5308), 1943–1947 (1997).
  • Dahia PL. PTEN, a unique tumor suppressor gene. Endocr. Relat. Cancer7(2), 115–129 (2000).
  • Knobbe CB, Merlo A, Reifenberger G. Pten signaling in gliomas. Neuro-oncology4(3), 196–211 (2002).
  • Myers MP, Stolarov JP, Eng C et al. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc. Natl Acad. Sci. USA94(17), 9052–9057 (1997).
  • Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem.273(22), 13375–13378 (1998).
  • Cantley LC. The phosphoinositide 3-kinase pathway. Science296(5573), 1655–1657 (2002).
  • Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science280(5369), 1614–1617 (1998).
  • Dey N, Crosswell HE, De P et al. The protein phosphatase activity of PTEN regulates SRC family kinases and controls glioma migration. Cancer Res.68(6), 1862–1871 (2008).
  • Raftopoulou M, Etienne-Manneville S, Self A, Nicholls S, Hall A. Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. Science303(5661), 1179–1181 (2004).
  • Li Y, Guessous F, Kwon S et al. PTEN has tumor-promoting properties in the setting of gain-of-function p53 mutations. Cancer Res.68(6), 1723–1731 (2008).
  • Watanabe K, Sato K, Biernat W et al. Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin. Cancer Res.3(4), 523–530 (1997).
  • Reifenberger G, Reifenberger J, Ichimura K, Meltzer PS, Collins VP. Amplification of multiple genes from chromosomal region 12q13–14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. Cancer Res.54(16), 4299–4303 (1994).
  • Nakamura M, Watanabe T, Klangby U et al. p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol.11(2), 159–168 (2001).
  • Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat. Rev. Cancer6(12), 909–923 (2006).
  • Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumor initiating cells. Nature432(7015), 396–401 (2004).
  • Galderisi U, Cipollaro M, Giordano A. Stem cells and brain cancer. Cell Death Differ.13(1), 5–11 (2006).
  • Meletis K, Wirta V, Hede SM et al. p53 suppresses the self-renewal of adult neural stem cells. Development133(2), 363–369 (2006).
  • Lin T, Chao C, Saito S et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol.7(2), 165–171 (2005).
  • Puduvalli VK, Kyritsis AP, Hess KR et al. Patterns of expression of Rb and p16 in astrocytic gliomas, and correlation with survival. Int. J. Oncol.17(5), 963–969 (2000).
  • Flemington EK, Speck SH, Kaelin WG Jr. E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc. Natl Acad. Sci. USA,90(15), 6914–6918 (1993).
  • Helin K, Harlow E, Fattaey A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol. Cell Biol.13(10), 6501–6508 (1993).
  • Cobrinik D. Pocket proteins and cell cycle control. Oncogene24(17), 2796–2809 (2005).
  • Rich JN, Reardon DA, Peery T et al. Phase II trial of gefitinib in recurrent glioblastoma. J. Clin. Oncol.22(1), 133–142 (2004).
  • Prados MD, Lamborn KR, Chang S et al. Phase I study of erlotinib HCl alone and combined with temozolomide in patients with stable or recurrent malignant glioma. Neuro-oncology8(1), 67–78 (2006).
  • Eoli M, Menghi F, Bruzzone MG et al. Methylation of O6-methylguanine DNA methyltransferase and loss of heterozygosity on 19q and/or 17p are overlapping features of secondary glioblastomas with prolonged survival. Clin. Cancer Res.13(9), 2606–2613 (2007).
  • Stupp R, Dietrich PY, Ostermann Kraljevic S et al. Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J. Clin. Oncol.20(5), 1375–1382 (2002).
  • Hegi ME, Diserens AC, Godard S et al. Clinical trial substantiated the predictive value of 0–6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin. Cancer Res.10(6), 1871–1874 (2004).
  • Hegi ME, Diserens AC, Gorlia T et al. MGMT gene silencing and benefit from temozolamide in glioblastoma. N. Engl. J. Med.352(10), 997–1003 (2005).
  • Stupp R, Mason WP, van der Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Landes ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature409(6822), 860–921 (2001).
  • Humphery-Smith I. A human proteome project with a beginning and an end. Proteomics4(9), 2519–2521 (2004).
  • Schwartz SA, Weil RJ, Thompson RC et al. Proteomic-based prognosis of brain tumor patients using direct-tissue matrix-assisted laser desorption ionization mass spectrometry. Cancer Res.65(17), 7674–7681 (2005).
  • Bouamrani A, Ternier J, Ratel D et al. Direct-tisse SELDI-TOF mass spectrometry analysis: a new application for clinical proteomics. Clin. Chem.52(11), 2103–2106 (2006).
  • Furuta M, Weil RJ, Vortmeyer AO et al. Protein patterns and proteins that identify subtypes of glioblastoma multiforme. Oncogene23(40), 6806–6814 (2004).
  • Hobbs SK, Shi G, Homer R, Harsh G, Atlas SW, Bednarski MI. Magnetic resonance image-guided proteomics of human glioblastoma multiforme. J. Magn. Reson. Imaging18(5), 530–536 (2003).
  • Stenman UH, Hakama M, Knekt P, Aromaa A, Teppo L, Leinonen J. Serum concentrations of prostate specific antigen and its complex with α1-antichymotrypsin before diagnosis of prostate cancer. Lancet344(8937), 1594–1598 (1994).
  • Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer5(11), 845–856 (2005).
  • Petrik V, Saadoun S, Loosemore A et al. Serum α2-HS glycoprotein predicts survival in patients with glioblastoma. Clin. Chem.54(4), 713–722 (2008).
  • Laws ER, Parney IF, Huang W et al. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the glioma outcomes project. J. Neurosurg.99(3), 467–473 (2003).
  • Devaux BC, O’Fallon JR, Kelly PJ.Resection, biopsy, and survival in malignant glial neoplasms: a retrospective study of clinical parameters, therapy and outcome. J. Neurosurg.78(5), 767–775 (1993).
  • de la Iglesia N, Konopka G, Puram SV et al. Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes Dev.22(4), 449–462 (2008).
  • Hanash SM, Bobek MP, Rickman DS et al. Integrating cancer genomics and proteomics in the post-genome era. Proteomics2(1), 69–75 (2002).
  • Nicoloso MS, Calin GA. MicroRNA involvement in brain tumors: from bench to bedside. Brain Pathol.18(1), 122–129 (2008).
  • Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res.65(14), 6029–6033 (2005).
  • Medina R, Zaidi SK, Liu CG et al. MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res.68(8), 2773–2780 (2008).
  • Kefas B, Godlewski J, Comeau L et al. MicroRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res.68(10), 3566–3572 (2008).
  • Ciafré SA, Galardi S, Mangiola A et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem. Biophys. Res. Commun.334(4), 1351–1358 (2005).
  • Hsu CW, Juan HF, Huang HC. Characterization of microRNA-regulated protein-protein interaction network. Proteomics8(10), 1975–1979 (2008).
  • Liu G, Wong-Staal F, Li QX. Development of new RNAi therapeutics. Histol. Histopathol.22(2), 211–217 (2007).
  • Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res.67(19), 8994–9000 (2007).
  • Krutzfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature438(7068), 685–689 (2005).
  • Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther.13(6), 496–502 (2006).
  • German JB, Hammock BD, Watkins SM. Metabolomics: building on a century of biochemistry to guide human health. Metabolomics1(1), 3–9 (2005).
  • Lindon JC, Holmes E, Nicholson JK. Metabonomics and its role in drug development and disease diagnosis. Expert Rev. Mol. Diag.4(2), 89–99 (2004).
  • Griffin JL, Kauppinen RA. A metabolomics perspective of human brain tumours. FEBS J.274(5), 1132–1139 (2007).
  • Lindon JC, Nicholson JK, Holmes E et al. Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicol. Appl. Pharmacol.187(3), 137–146 (2003).
  • Kitano H. Systems biology: a brief overview. Science295(5560), 1662–1664 (2002).
  • Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet.2, 343–372 (2001).
  • van der Greef J, Martin S, Juhasz P et al. The art and practice of systems biology in medicine: mapping patterns of relationships. J. Proteome Res.6(4), 1540–1559 (2007).
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B57(1), 289–300 (1995).
  • Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA98(9), 5116–5121 (2001).
  • Steuer R, Kurths J, Fiehn O, Weckwerth W. Interpreting correlations in metabolomic networks. Biochem. Soc. Trans.31(Pt 6), 1476–1478 (2003).
  • Steuer R, Kurths J, Fiehn O, Weckwerth W. Observing and interpreting correlations in metabolomic networks. Bioinformatics19(8), 1019–1026 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.