175
Views
51
CrossRef citations to date
0
Altmetric
Review

MRI for identification of progression in brain tumors: from morphology to function

, &
Pages 1507-1525 | Published online: 09 Jan 2014

References

  • Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol.64(6), 479–489 (2005).
  • Behin A, Hoang-Xuan K, Carpentier AF et al. Primary brain tumours in adults. Lancet361(9354), 323–331 (2003).
  • Cenacchi G, Giangaspero F. Emerging tumor entities and variants of CNS neoplasms. J. Neuropathol. Exp. Neurol.63(3), 185–192 (2004).
  • Stieber VW. Low-grade gliomas. Curr. Treat. Options. Oncol.2(6), 495–506 (2001).
  • Kleihues P, Ohgaki H. Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro-oncology1(1), 44–51 (1999).
  • Walker AE, Robins M, Weinfeld FD. Epidemiology of brain tumors: the national survey of intracranial neoplasms. Neurology35(2), 219–226 (1985).
  • Longstreth WT Jr, Dennis LK, McGuire VM et al. Epidemiology of intracranial meningioma. Cancer72(3), 639–648 (1993).
  • Patchell RA. Brain metastases. Neurol. Clin.9(4), 817–824 (1991).
  • Jacobs AH, Kracht LW, Gossmann A et al. Imaging in neurooncology. NeuroRx.2(2), 333–347 (2005).
  • Colosimo C, Ruscalleda J, Korves M et al. Detection of intracranial metastases: a multicenter, intrapatient comparison of gadobenate dimeglumine-enhanced MRI with routinely used contrast agents at equal dosage. Invest. Radiol.36(2), 72–81 (2001).
  • Essig M, Weber MA, von Tengg-Kobligk H et al. Contrast-enhanced magnetic resonance imaging of central nervous system tumors: agents, mechanisms, and applications. Top. Magn. Reson. Imaging17(2), 89–106 (2006).
  • Schlemmer HP, Bachert P, Herfarth KK et al. Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy. AJNR Am. J. Neuroradiol.22(7), 1316–1324 (2001).
  • Cha S, Knopp EA, Johnson G et al. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology223(1), 11–29 (2002).
  • Covarrubias DJ, Rosen BR, Lev MH. Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist9(5), 528–537 (2004).
  • Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J. Appl. Physiol.6(12), 731–744 (1954).
  • Cha S. Perfusion MR imaging of brain tumors. Top. Magn. Reson. Imaging15(5), 279–289 (2004).
  • Weber MA, Zoubaa S, Schlieter M et al. Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology66(12), 1899–1906 (2006).
  • Hartmann M, Heiland S, Harting I et al. Distinguishing of primary cerebral lymphoma from high-grade glioma with perfusion-weighted magnetic resonance imaging. Neurosci. Lett.338(2), 119–122 (2003).
  • Law M, Yang S, Wang H et al. Glioma grading: sensitivity, specificity and predictive values of perfusion MRI imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am. J. Neuroradiol.24(10), 1989–1998 (2003).
  • Uematsu H, Maeda M. Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability. Eur. Radiol.16(1), 180–186 (2006).
  • Ginsberg LE, Fuller GN, Hashmi M et al. The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults: histopathological evaluation of a series. Surg. Neurol.49(4), 436–440 (1998).
  • Kondziolka D, Lunsford LD, Martinez AJ. Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low-grade) astrocytoma. J. Neurosurg.79(4), 533–536 (1993).
  • Law M. MR spectroscopy of brain tumors. Top. Magn. Reson. Imaging15(5), 291–313 (2004).
  • Minn H. PET and SPECT in low-grade glioma. Eur. J. Radiol.56(2), 171–178 (2005).
  • Law M, Oh S, Babb JS et al. Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging-prediction of patient clinical response. Radiology238(2), 658–667 (2006).
  • Weber MA, Vogt-Schaden M, Bossert O et al. MR perfusion and spectroscopic imaging in WHO grade II astrocytomas. Radiologe47(9), 812–818 (2007).
  • Fuss M, Wenz F, Essig M et al. Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy. Int. J. Radiat. Oncol. Biol. Phys.51(2), 478–482 (2001).
  • Mullins ME, Barest GD, Schaefer PW et al. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am. J. Neuroradiol.26(8), 1967–1972 (2005).
  • Sugahara T, Korogi Y, Tomiguchi S et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am. J. Neuroradiol.21(5), 901–909 (2000).
  • Wick W, Steinbach JP, Küker WM et al. One week on/one week off: a novel active regimen of temozolomide for recurrent glioblastoma. Neurology62(11), 2113–2115 (2004).
  • Barrett T, Brechbiel M, Bernardo M et al. MRI of tumor angiogenesis. J. Magn. Reson. Imaging26(2), 235–249 (2007).
  • Cha S, Knopp EA, Johnson G et al. Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. AJNR Am. J. Neuroradiol.21(5), 881–890 (2000).
  • Essig M, Waschkies M, Wenz F et al.Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial results. Radiology228(1), 193–199 (2003).
  • Brix G, Semmler W, Port R et al. Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J. Comput. Assist. Tomogr.15(4), 621–628 (1991).
  • Tofts PS, Kermode AG. Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn. Reson. Med.17(2), 357–367 (1991).
  • Choyke PL, Dwyer AJ, Knopp MV. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J. Magn. Reson. Imaging17(5), 509–520 (2003).
  • Giesel FL, Bischoff H, von Tengg-Kobligk H et al. Dynamic contrast-enhanced MRI of malignant pleural mesothelioma: a feasibility study of noninvasive assessment, therapeutic follow-up, and possible predictor of improved outcome. Chest129(6), 1570–1576 (2006).
  • Knopp MV, Weiss E, Sinn HP et al. Pathophysiologic basis of contrast enhancement in breast tumors. J. Magn. Reson. Imaging10(3), 260–266 (1999).
  • Padhani AR. Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J. Magn. Reson. Imaging16(4), 407–422 (2002).
  • Wilkinson ID, Jellineck DA, Levy D et al. Dexamethasone and enhancing solitary cerebral mass lesions: alterations in perfusion and blood–tumor barrier kinetics shown by magnetic resonance imaging. Neurosurgery58(4), 640–646 (2006).
  • Østergaard L, Hochberg FH, Rabinov JD et al. Early changes measured by magnetic resonance imaging in cerebral blood flow, blood volume, and blood–brain barrier permeability following dexamethasone treatment in patients with brain tumors. J. Neurosurg.90(2), 300–305 (1999).
  • Hylton N. Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J. Clin. Oncol.24(20), 3293–3298 (2006).
  • Knopp MV, Giesel FL, Marcos H et al. Dynamic contrast-enhanced magnetic resonance imaging in oncology. Top. Magn. Reson. Imaging12(4), 301–308 (2001).
  • Hawighorst H, Engenhart R, Knopp MV et al.Intracranial meningiomas: time- and dose-dependent effects of irradiation on tumor microcirculation monitored by dynamic MR imaging. Magn. Reson. Imaging15(4), 423–432 (1997).
  • Hawighorst H, Knopp MV, Debus J et al. Pharmacokinetic MRI for assessment of malignant glioma response to stereotactic radiotherapy: initial results. J. Magn. Reson. Imaging8(4), 783–788 (1998).
  • Gossmann A, Helbich TH, Kuriyama N et al. Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J. Magn. Reson. Imaging15(3), 233–240 (2002).
  • Warmuth C, Günther M, Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology228(2), 523–532 (2003).
  • Weber MA, Günther M, Lichy MP et al. Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue. Invest. Radiol.38(11), 712–718 (2003).
  • Weber MA, Thilmann C, Lichy MP et al.Assessment of irradiated brain metastases by means of arterial spin-labeling and dynamic susceptibility-weighted contrast-enhanced perfusion MRI: initial results. Invest. Radiol.39(5), 277–287 (2004).
  • Barbier EL, Lamalle L, Decorps M. Methodology of brain perfusion imaging. J. Magn. Reson. Imaging13(4), 496–520 (2001).
  • Wolf RL, Detre JA. Clinical neuroimaging using arterial spin-labeled perfusion magnetic resonance imaging. Neurotherapeutics4(3), 346–359 (2007).
  • Delorme S, Weber MA. Applications of MRS in the evaluation of focal malignant brain lesions. Cancer Imaging6(1), 95–99 (2006).
  • Lichy MP, Henze M, Plathow C, Bachert P, Kauczor HU, Schlemmer HP. Metabolic imaging to follow stereotactic radiation of gliomas - the role of 1H MR spectroscopy in comparison to FDG-PET and IMT-SPECT. Rofo176(8), 1114–1121 (2004).
  • Lichy MP, Bachert P, Hamprecht F et al. Application of 1H MR spectroscopic imaging in radiation oncology: choline as a marker for determining the relative probability of tumor progression after radiation of glial brain tumors. Rofo178(6), 627–633 (2006).
  • Lichy MP, Plathow C, Schulz-Ertner D, Kauczor HU, Schlemmer HP. Follow-up gliomas after radiotherapy: 1H MR spectroscopic imaging for increasing diagnostic accuracy. Neuroradiology47(11), 826–834 (2005).
  • Murphy PS, Viviers L, Abson C et al. Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy. Br. J. Cancer90(4), 781–786 (2004).
  • Lichy MP, Bachert P, Henze M, Lichy CM, Debus J, Schlemmer HP. Monitoring individual response to brain-tumor chemotherapy: proton MR spectroscopy in a patient with recurrent glioma after stereotactic radiotherapy. Neuroradiology46(2), 126–129 (2004).
  • Knopp MV, Runge VM, Essig M et al. Primary and secondary brain tumors at MR imaging: bicentric intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine. Radiology230(1), 55–64 (2004).
  • Cavagna FM, Dapra M, Maggioni F et al. Gd-BOPTA/Dimeg: experimental disease imaging. Magn. Reson. Med.22(2), 329–333 (1991).
  • Grazioli L, Morana G, Kirchin MA et al. Accurate differentiation of focal nodular hyperplasia from hepatic adenoma at gadobenate dimeglumine-enhanced MR imaging: prospective study. Radiology236(1), 166–177 (2005).
  • Giesel FL, Tengg-Kobligk H, Wilkinson ID et al. Influence of human serum albumin on longitudinal and transverse relaxation rates (r1 and r2) of magnetic resonance contrast agents. Invest. Radiol.41(3), 222–228 (2006).
  • Goyen M, Debatin JF. Gadobenate dimeglumine (MultiHance) for magnetic resonance angiography: review of the literature. Eur. Radiol.13(Suppl. 3), N19–N27 (2003).
  • Knopp MV, Schoenberg SO, Rehm C et al. Assessment of gadobenate dimeglumine for magnetic resonance angiography: Phase I studies. Invest. Radiol.37(12), 706–715 (2002).
  • de Haën C, Cabrini M, Akhnana L, Ratti D, Calabi L, Gozzini L. Gadobenate dimeglumine 0.5M solution for injection (MultiHance): pharmaceutical formulation and physicochemical properties of a new magnetic resonance imaging contrast medium. J. Comput. Assist. Tomogr.23(Suppl. 1), S161–S168 (1999).
  • Essig M, Voth M, Weber MA, Giesel FL. First experience with the protein binding intravascular contrast agent gadofosveset (Vasovist®) for imaging of enhancing human cerebral tumors. In: Radiological Society of North America Scientific Assembly and Annual Meeting Program. Oak Brook, IL, USA 638 (2007).
  • Yuh WT, Tali ET, Nguyen HD et al. The effect of contrast dose, imaging time, and lesion size in the MR detection of intracerebral metastasis. AJNR Am. J. Neuroradiol.16(2), 373–380 (1995).
  • Erickson BJ, Campeau NG, Schreiner SA et al. Triple-dose contrast/magnetization transfer suppressed imaging of ‘nonenhancing’ brain gliomas. J. Neurooncol.60(1), 25–29 (2002).
  • Kurtkoti J, Snow T, Hiremagalur B. Gadolinium and nephrogenic systemic fibrosis: association or causation. Nephrology (Carlton)13(3), 235–241 (2008).
  • Krautmacher C, Willinek WA, Tschampa HJ et al. Brain tumors: full- and half-dose contrast-enhanced MR imaging at 3.0 T compared with 1.5 T – initial experience. Radiology237(3), 1014–1019 (2005).
  • Stejskal EO, Tanner JE. Spin diffusion measurements: spin-echoes in the presence of time-dependent field gradient. J. Chem. Phys.42, 288–292 (1965).
  • Neumann-Haefelin T, Moseley ME, Albers GW. New magnetic resonance imaging methods for cerebrovascular disease: emerging clinical applications. Ann. Neurol.47(5), 559–570 (2000).
  • Chenevert TL, Sundgren PC, Ross BD. Diffusion imaging: insight to cell status and cytoarchitecture. Neuroimaging Clin. N. Am.16(4), 619–32, viii–ix (2006).
  • Moffat BA, Chenevert TL, Meyer CR et al. The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome. Neoplasia8(4), 259–267 (2006).
  • Guo AC, Cummings TJ, Dash RC, Provenzale JM. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology224(1), 177–183 (2002).
  • Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am. J. Neuroradiol.25(2), 201–209 (2004).
  • Mardor Y, Pfeffer R, Spiegelmann R et al.Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J. Clin. Oncol.21(6), 1094–1100 (2003).
  • Provenzale JM, Mukundan S, Barboriak DP. Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology239(3), 632–649 (2006).
  • Sinha S, Bastin ME, Wardlaw JM, Armitage PA, Whittle IR. Effects of dexamethasone on peritumoural oedematous brain: a DT-MRI study. J. Neurol. Neurosurg. Psychiatry75(11), 1632–1635 (2004).
  • Beaulieu C, Allen PS. Determinants of anisotropic water diffusion in nerves. Magn. Res. Med.31(4), 394–400 (1994).
  • Basser PJ, Pierpaoli C. Microstructural and physiological features of tissue elucidated by quantitative-diffusion-tensor-MRI. J. Magn. Reson. B.111(3), 209–219 (1996).
  • Price SJ, Burnet NG, Donovan T et al. Diffusion tensor imaging of brain tumours at 3T: a potential tool for assessing white matter tract invasion? Clin. Radiol.58(6), 455–462 (2003).
  • Provenzale JM, McGraw P, Mhatre P, Guo AC, Delong D. Peritumoral brain regions in gliomas and meningiomas: investigation with isotropic diffusion-weighted MR imaging and diffusion-tensor MR imaging. Radiology232(2), 451–460 (2004).
  • Tropine A, Vucurevic G, Delani P et al. Contribution of diffusion tensor imaging to delineation of gliomas and glioblastomas. J. Magn. Reson. Imaging20(6), 905–912 (2004).
  • Stieltjes B, Kaufmann WE, van Zijl PC et al. Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage14(3), 723–735 (2001).
  • Schlüter M, Stieltjes B, Hahn HK, Rexilius J, Konrad-Verse O, Peitgen HO. Detection of tumor infiltration in axonal fiber bundles using diffusion tensor imaging. Int. J. Medical Robotics and Computer Assisted Surgery 2005 1(3), 80–86 (2005).
  • Stieltjes B, Schlüter M, Didinger B et al. Diffusion tensor imaging in primary brain tumors: reproducible quantitative analysis of corpus callosum infiltration and contralateral involvement using a probabilistic mixture model. Neuroimage31(2), 531–542 (2006).
  • Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J. Neurosurg.66(6), 865–874 (1987).
  • Kahn D, Follett KA, Bushnell DL et al. Diagnosis of recurrent brain tumor: value of 201Tl SPECT vs 18F-fluorodeoxyglucose PET. AJR Am. J. Roentgenol.163(6), 1459–1465 (1994).
  • Henze M, Mohammed A, Schlemmer HP et al. PET and SPECT for detection of tumor progression in irradiated low-grade astrocytoma: a receiver-operating-characteristic analysis. J. Nucl. Med.45(4), 579–586 (2004).
  • Tsuyuguchi N, Sunada I, Iwai Y et al.Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J. Neurosurg.98(5), 1056–1064 (2003).
  • Catana C, Procissi D, Wu Y et al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc. Natl. Acad. Sci. USA105(10), 3705–3710 (2008).
  • Al-Okaili RN, Krejza J, Woo JH et al. Intraaxial brain masses: MR imaging-based diagnostic strategy-initial experience. Radiology243(2), 539–550 (2007).
  • Neff T, Kiessling F, Brix G et al. An optimized workflow for the integration of biological information into radiotherapy planning: experiences with T1w DCE-MRI. Phys. Med. Biol.50(17), 4209–4223 (2005).
  • Menze BH, Lichy MP, Bachert P, Kelm BM, Schlemmer HP, Hamprecht FA. Optimal classification of long echo time in vivo magnetic resonance spectra in the detection of recurrent brain tumors. NMR Biomed.19(5), 599–609 (2006).
  • Menze BH, Kelm BM, Weber MA, Bachert P, Hamprecht FA. Mimicking the human expert: pattern recognition for an automated assessment of data quality in MR spectroscopic images. Magn. Reson. Med.59(6), 1457–1466 (2008).
  • Görlitz L, Menze BH, Weber MA, Kelm BM, Hamprecht FA. Semi-supervised tumor detection in magnetic resonance spectroscopic images using discriminative random fields. Lect. Notes Comput. Sci.4713, 224–233 (2007).
  • Kiselev VG, Strecker R, Ziyeh S, Speck O, Hennig J. Vessel size imaging in humans. Magn. Reson. Med.53(3), 553–563 (2005).
  • Jones CK, Schlosser MJ, van Zijl PC, Pomper MG, Golay X, Zhou J. Amide proton transfer imaging of human brain tumors at 3T. Magn. Reson. Med.56(3), 585–592 (2006).
  • Nielles-Vallespin S, Weber MA, Bock M et al. 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle. Magn. Reson. Med.57(1), 74–81 (2007).
  • Ouwerkerk R, Morgan RH. 23Na MRI: from research to clinical use. J. Am. Coll. Radiol.4(10), 739–741 (2007).
  • Jacobs AH, Dittmar C, Winkeler A, Garlip G, Heiss WD. Molecular imaging of gliomas. Mol. Imaging1(4), 309–335 (2002).
  • Jacobs AH, Rueger MA, Winkeler A et al. Imaging-guided gene therapy of experimental gliomas. Cancer Res.67(4), 1706–1715 (2007).
  • Jacobs AH, Voges J, Kracht LW et al. Imaging in gene therapy of patients with glioma. J. Neurooncol.65(3), 291–305 (2003).
  • Henze M, Schuhmacher J, Hipp P et al. PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J. Nucl. Med.42(7), 1053–1056 (2001).
  • Henze M, Mohammed A, Schlemmer H et al. Detection of tumour progression in the follow-up of irradiated low-grade astrocytomas: comparison of 3-[123I]iodo-α-methyl-L-tyrosine and 99mTc-MIBI SPET. Eur. J. Nucl. Med.29(11), 1455–1461 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.