118
Views
10
CrossRef citations to date
0
Altmetric
Perspective

DNA-based vaccines: the future of multiple sclerosis therapy?

, &
Pages 351-360 | Published online: 10 Jan 2014

References

  • Martin R, McFarland HF, McFarlin DE. Immunological aspects of demyelinating diseases. Annu. Rev. Immunol.10, 153–187 (1992).
  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N. Engl. J. Med.343(13), 938–952 (2000).
  • Pugliatti M, Sotgiu S, Rosati G. The worldwide prevalence of multiple sclerosis. Clin. Neurol. Neurosurg.104(3), 182–191 (2002).
  • Rosati G. The prevalence of multiple sclerosis in the world: an update. Neurol. Sci.22(2), 117–139 (2001).
  • Kurtzke JF, Beebe GW, Norman JE Jr. Epidemiology of multiple sclerosis in U.S. veterans: 1. Race, sex, and geographic distribution. Neurology29(9 Pt 1), 1228–1235 (1979).
  • Sadovnick AD, Baird PA. Sex ratio in offspring of patients with multiple sclerosis. N. Engl. J. Med.306(18), 1114–1115 (1982).
  • Schiffer RB, Weitkamp LR, Wineman NM, Guttormsen S. Multiple sclerosis and affective disorder. Family history, sex, and HLA-DR antigens. Arch. Neurol.45(12), 1345–1348 (1988).
  • Wallin MT, Page WF, Kurtzke JF. Multiple sclerosis in US veterans of the Vietnam era and later military service: race, sex, and geography. Ann. Neurol.55(1), 65–71 (2004).
  • Poser S, Raun NE, Poser W. Age at onset, initial symptomatology and the course of multiple sclerosis. Acta. Neurol. Scand.66(3), 355–362 (1982).
  • Kurtzke JF, Page WF, Murphy FM, Norman JE Jr. Epidemiology of multiple sclerosis in US veterans. 4. Age at onset. Neuroepidemiology11(4–6), 226–235 (1992).
  • Liguori M, Marrosu MG, Pugliatti M et al. Age at onset in multiple sclerosis. Neurol. Sci.21(4 Suppl. 2), S825–S829 (2000).
  • Steinman L. Multiple sclerosis: a two-stage disease. Nat. Immunol.2(9), 762–764 (2001).
  • Lublin FD, Reingold SC. Guidelines for clinical trials of new therapeutic agents in multiple sclerosis: relations between study investigators, advisors, and sponsors. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology48(3), 572–574 (1997).
  • Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology46(4), 907–911 (1996).
  • Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology33(11), 1444–1452 (1983).
  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med.338(5), 278–285 (1998).
  • Kieseier BC, Wiendl H, Hemmer B, Hartung HP. Treatment and treatment trials in multiple sclerosis. Curr. Opin. Neurol.20(3), 286–293 (2007).
  • Robertson JS, Griffiths E. Assuring the quality, safety, and efficacy of DNA vaccines. Methods Mol. Med.127, 363–374 (2006).
  • Donnelly JJ, Wahren B, Liu MA. DNA vaccines: progress and challenges. J. Immunol.175(2), 633–639 (2005).
  • Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application, and optimization. Annu. Rev. Immunol.18, 927–974 (2000).
  • Fu TM, Ulmer JB, Caulfield MJ et al. Priming of cytotoxic T lymphocytes by DNA vaccines: requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol. Med.3(6), 362–371 (1997).
  • Lisziewicz J, Calarota SA, Lori F. The potential of topical DNA vaccines adjuvanted by cytokines. Expert Opin. Biol. Ther.7(10), 1563–1574 (2007).
  • Spies B, Hochrein H, Vabulas M et al. Vaccination with plasmid DNA activates dendritic cells via Toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice. J. Immunol.171(11), 5908–5912 (2003).
  • Bar-Or A, Vollmer T, Antel J et al. Induction of antigen-specific tolerance in multiple sclerosis after immunization with a DNA encoding myelin basic protein in a randomized, placebo-controlled Phase I/II trial. Arch. Neurol.64(10), 1407–1415 (2007).
  • Iwasaki A, Torres CA, Ohashi PS, Robinson HL, Barber BH. The dominant role of bone marrow-derived cells in CTL induction following plasmid DNA immunization at different sites. J. Immunol.159(1), 11–14 (1997).
  • Akbari O, Panjwani N, Garcia S, Tascon R, Lowrie D, Stockinger B. DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J. Exp. Med.189(1), 169–178 (1999).
  • Casares S, Inaba K, Brumeanu TD, Steinman RM, Bona CA. Antigen presentation by dendritic cells after immunization with DNA encoding a major histocompatibility complex class II-restricted viral epitope. J. Exp. Med.186(9), 1481–1486 (1997).
  • Zamvil SS, Steinman L. The T lymphocyte in experimental allergic encephalomyelitis. Annu. Rev. Immunol.8, 579–621 (1990).
  • Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature346(6280), 183–187 (1990).
  • Martin R, Jaraquemada D, Flerlage M et al. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J. Immunol.145(2), 540–548 (1990).
  • Jingwu Z, Medaer R, Hashim GA, Chin Y, Berg-Loonen E, Raus JC. Myelin basic protein-specific T lymphocytes in multiple sclerosis and controls: precursor frequency, fine specificity, and cytotoxicity. Ann. Neurol.32(3), 330–338 (1992).
  • Joshi N, Usuku K, Hauser SL. The T-cell response to myelin basic protein in familial multiple sclerosis: diversity of fine specificity, restricting elements, and T-cell receptor usage. Ann. Neurol.34(3), 385–393 (1993).
  • Lovett-Racke AE, Trotter JL, Lauber J, Perrin PJ, June CH, Racke MK. Decreased dependence of myelin basic protein-reactive T cells on CD28- mediated costimulation in multiple sclerosis patients. A marker of activated/memory T cells. J. Clin. Invest.101(4), 725–730 (1998).
  • Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med.354(6), 610–621 (2006).
  • Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol.136(7), 2348–2357 (1986).
  • Panitch HS, Hirsch RL, Haley AS, Johnson KP. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet1(8538), 893–895 (1987).
  • Bielekova B, Goodwin B, Richert N et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a Phase II clinical trial with an altered peptide ligand. Nat. Med.6(10), 1167–1175 (2000).
  • Ferber IA, Brocke S, Taylor-Edwards C et al. Mice with a disrupted IFN-γ gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol.156(1), 5–7 (1996).
  • Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA. IFN-γ plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol.157(8), 3223–3227 (1996).
  • Genain CP, Abel K, Belmar N et al. Late complications of immune deviation therapy in a nonhuman primate. Science274(5295), 2054–2057 (1996).
  • Cannella B, Raine CS. Multiple sclerosis: cytokine receptors on oligodendrocytes predict innate regulation. Ann. Neurol.55(1), 46–57 (2004).
  • Harrington LE, Hatton RD, Mangan PR et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol.6(11), 1123–1132 (2005).
  • Lock C, Hermans G, Pedotti R et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med.8(5), 500–508 (2002).
  • Kebir H, Kreymborg K, Ifergan I et al. Human Th17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat. Med.13(10), 1173–1175 (2007).
  • Giuliani F, Goodyer CG, Antel JP, Yong VW. Vulnerability of human neurons to T cell-mediated cytotoxicity. J. Immunol.171(1), 368–379 (2003).
  • Babbe H, Roers A, Waisman A et al. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med.192(3), 393–404 (2000).
  • Jacobsen M, Cepok S, Quak E et al. Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain125(Pt 3), 538–550 (2002).
  • Skulina C, Schmidt S, Dornmair K et al. Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc. Natl Acad. Sci. USA101(8), 2428–2433 (2004).
  • Medana IM, Gallimore A, Oxenius A, Martinic MM, Wekerle H, Neumann H. MHC class I-restricted killing of neurons by virus-specific CD8+ T lymphocytes is effected through the Fas/FasL, but not the perforin pathway. Eur. J. Immunol.30(12), 3623–3633 (2000).
  • Medana I, Martinic MA, Wekerle H, Neumann H. Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes. Am. J. Pathol.159(3), 809–815 (2001).
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science299(5609), 1057–1061 (2003).
  • Sakaguchi S, Powrie F. Emerging challenges in regulatory T cell function and biology. Science317(5838), 627–629 (2007).
  • Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med.199(7), 971–979 (2004).
  • Haas J, Hug A, Viehover A et al. Reduced suppressive effect of CD4+CD25 high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur. J. Immunol.35(11), 3343–3352 (2005).
  • Kumar M, Putzki N, Limmroth V et al. CD4+CD25+FoxP3+ T lymphocytes fail to suppress myelin basic protein-induced proliferation in patients with multiple sclerosis. J. Neuroimmunol.180(1–2), 178–184 (2006).
  • Huan J, Culbertson N, Spencer L et al. Decreased FOXP3 levels in multiple sclerosis patients. J. Neurosci. Res.81(1), 45–52 (2005).
  • Feger U, Luther C, Poeschel S, Melms A, Tolosa E, Wiendl H. Increased frequency of CD4+ CD25+ regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients. Clin. Exp. Immunol.147(3), 412–418 (2007).
  • Venken K, Hellings N, Hensen K et al. Secondary progressive in contrast to relapsing–remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and FOXP3 expression. J. Neurosci. Res.83(8), 1432–1446 (2006).
  • Owens GP, Bennett JL, Gilden DH, Burgoon MP. The B cell response in multiple sclerosis. Neurol. Res.28(3), 236–244 (2006).
  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol.47(6), 707–717 (2000).
  • Cepok S, Rosche B, Grummel V et al. Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain128(Pt 7), 1667–1676 (2005).
  • Kabat EA, Freedman DA. A study of the crystalline albumin, gamma globulin and total protein in the cerebrospinal fluid of 100 cases of multiple sclerosis and in other diseases. Am. J. Med. Sci.219(1), 55–64 (1950).
  • Villar LM, Masjuan J, Gonzalez-Porque P et al. Intrathecal IgM synthesis in neurologic diseases: relationship with disability in MS. Neurology58(5), 824–826 (2002).
  • Villar LM, Masjuan J, Gonzalez-Porque P et al. Intrathecal IgM synthesis predicts the onset of new relapses and a worse disease course in MS. Neurology59(4), 555–559 (2002).
  • Villar LM, Masjuan J, Gonzalez-Porque P et al. Intrathecal IgM synthesis is a prognostic factor in multiple sclerosis. Ann. Neurol.53(2), 222–226 (2003).
  • Corcione A, Casazza S, Ferretti E et al. Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc. Natl Acad. Sci. USA101(30), 11064–11069 (2004).
  • Ebers GC, Kukay K, Bulman DE et al. A full genome search in multiple sclerosis. Nat. Genet.13(4), 472–476 (1996).
  • Haines JL, Ter Minassian M, Bazyk A et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group. Nat. Genet.13(4), 469–471 (1996).
  • Sawcer S, Jones HB, Feakes R et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat. Genet.13(4), 464–468 (1996).
  • Kuokkanen S, Sundvall M, Terwilliger JD et al. A putative vulnerability locus to multiple sclerosis maps to 5p14-p12 in a region syntenic to the murine locus Eae2. Nat. Genet.13(4), 477–480 (1996).
  • Barcellos LF, Oksenberg JR, Begovich AB et al. HLA-DR2 Dose effect on susceptibility to multiple sclerosis and influence on disease course. Am. J. Hum. Genet.72(3), 710–716 (2003).
  • Villoslada P, Barcellos LF, Rio J et al. The HLA locus and multiple sclerosis in Spain. Role in disease susceptibility, clinical course and response to interferon-β. J. Neuroimmunol.130(1–2), 194–201 (2002).
  • Celius EG, Harbo HF, Egeland T, Vartdal F, Vandvik B, Spurkiand A. Sex and age at diagnosis are correlated with the HLA-DR2, DQ6 haplotype in multiple sclerosis. J. Neurol. Sci.178(2), 132–135 (2000).
  • Masterman T, Ligers A, Olsson T, Andersson M, Olerup O, Hillert J. HLA-DR15 is associated with lower age at onset in multiple sclerosis. Ann. Neurol.48(2), 211–219 (2000).
  • Weatherby SJ, Thomson W, Pepper L et al. HLA-DRB1 and disease outcome in multiple sclerosis. J. Neurol.248(4), 304–310 (2001).
  • Hensiek AE, Sawcer SJ, Feakes R et al. HLA-DR 15 is associated with female sex and younger age at diagnosis in multiple sclerosis. J. Neurol. Neurosurg. Psychiatr.72(2), 184–187 (2002).
  • Racke MK, Ratts RB, Arredondo L, Perrin PJ, Lovett-Racke A. The role of costimulation in autoimmune demyelination. J. Neuroimmunol.107(2), 205–215 (2000).
  • Freeman GJ, Long AJ, Iwai Y et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med.192(7), 1027–1034 (2000).
  • Selenko-Gebauer N, Majdic O, Szekeres A et al. B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. J. Immunol.170(7), 3637–3644 (2003).
  • Schreiner B, Mitsdoerffer M, Kieseier BC et al. Interferon-β enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis. J. Neuroimmunol.155(1–2), 172–182 (2004).
  • Prineas JW. Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science203(4385), 1123–1125 (1979).
  • Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol.14(2), 164–174 (2004).
  • Magliozzi R, Howell O, Vora A et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain130(Pt 4), 1089–1104 (2007).
  • Lanzavecchia A, Sallusto F. From synapses to immunological memory: the role of sustained T cell stimulation. Curr. Opin. Immunol.12(1), 92–98 (2000).
  • Stuve O, Cree BC, von Budingen HC et al. Approved and future pharmacotherapies for multiple sclerosis. Neurologist8, 290–301 (2002).
  • Mrass P, Weninger W. Immune cell migration as a means to control immune privilege: lessons from the CNS and tumors. Immunol. Rev.213, 195–212 (2006).
  • Youssef S, Wildbaum G, Maor G et al. Long-lasting protective immunity to experimental autoimmune encephalomyelitis following vaccination with naked DNA encoding C-C chemokines. J. Immunol.161(8), 3870–3879 (1998).
  • Youssef S, Wildbaum G, Karin N. Prevention of experimental autoimmune encephalomyelitis by MIP-1a and MCP-1 naked DNA vaccines. J. Autoimmun.13(1), 21–29 (1999).
  • Garren H, Ruiz PJ, Watkins TA et al. Combination of gene delivery and DNA vaccination to protect from and reverse Th1 autoimmune disease via deviation to the Th2 pathway. Immunity15(1), 15–22 (2001).
  • Wildbaum G, Westermann J, Maor G, Karin N. A targeted DNA vaccine encoding fas ligand defines its dual role in the regulation of experimental autoimmune encephalomyelitis. J. Clin. Invest.106(5), 671–679 (2000).
  • Wildbaum G, Karin N. Augmentation of natural immunity to a pro-inflammatory cytokine (TNF-α) by targeted DNA vaccine confers long-lasting resistance to experimental autoimmune encephalomyelitis. Gene Ther.6(6), 1128–1138 (1999).
  • Mueller AM, Pedre X, Kleiter I, Hornberg M, Steinbrecher A, Giegerich G. Targeting fibroblast growth factor-inducible-14 signaling protects from chronic relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol.159(1–2), 55–65 (2005).
  • Miyakoshi A, Yoon WK, Jee Y, Matsumoto Y. Characterization of the antigen specificity and TCR repertoire, and TCR-based DNA vaccine therapy in myelin basic protein-induced autoimmune encephalomyelitis in DA rats. J. Immunol.170(12), 6371–6378 (2003).
  • Kumar V, Maglione J, Thatte J, Pederson B, Sercarz E, Ward ES. Induction of a type 1 regulatory CD4 T cell response following V β 8.2 DNA vaccination results in immune deviation and protection from experimental autoimmune encephalomyelitis. Int. Immunol.13(6), 835–841 (2001).
  • Lobell A, Weissert R, Eltayeb S, Svanholm C, Olsson T, Wigzell H. Presence of CpG DNA and the local cytokine milieu determine the efficacy of suppressive DNA vaccination in experimental autoimmune encephalomyelitis. J. Immunol.163(9), 4754–4762 (1999).
  • Lobell A, Weissert R, Storch MK et al. Vaccination with DNA encoding an immunodominant myelin basic protein peptide targeted to Fc of immunoglobulin G suppresses experimental autoimmune encephalomyelitis. J. Exp. Med.187(9), 1543–1548 (1998).
  • Wefer J, Harris RA, Lobell A. Protective DNA vaccination against experimental autoimmune encephalomyelitis is associated with induction of IFNβ. J. Neuroimmunol.149(1–2), 66–76 (2004).
  • Selmaj K, Kowal C, Walczak A, Nowicka J, Raine CS. Naked DNA vaccination differentially modulates autoimmune responses in experimental autoimmune encephalomyelitis. J. Neuroimmunol.111(1–2), 34–44 (2000).
  • Sakudo A, Lee DC, Nishimura T et al. Octapeptide repeat region and N-terminal half of hydrophobic region of prion protein (PrP) mediate PrP-dependent activation of superoxide dismutase. Biochem. Biophys. Res. Commun.326(3), 600–606 (2005).
  • McDonald WI, Compston A, Edan G et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol.50(1), 121–127 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.