1,405
Views
273
CrossRef citations to date
0
Altmetric
Review

Role of central dopamine in pain and analgesia

Pages 781-797 | Published online: 09 Jan 2014

References

  • Swanson LW, Kuypers HG. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J. Comp. Neurol.194, 555–570 (1980).
  • Gresch PJ, Sved AF, Zigmond MJ, Finlay JM. Local influence of endogenous norepinephrine on extracellular dopamine in rat medial prefrontal cortex. J. Neurochem.65(1), 111–116 (1995).
  • Männistö PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev.51(4), 593–628 (1999).
  • Yavich L, Forsberg MM, Karayiorgou M, Gogos JA, Männistö PT. Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. J. Neurosci.27(38), 10196–10209 (2007).
  • Sibley DR, Monsma FJ Jr, Shen Y. Molecular neurobiology of dopaminergic receptors. Int. Rev. Neurobiol.35, 391–415 (1993).
  • Savasta M, Dubois A, Scatton B. Autoradiographic localization of D1 dopamine receptors in the rat brain with [3H]SCH 23390. Brain Res.375(2), 291–301 (1986).
  • Wamsley JK, Alburges ME, McQuade RD, Hunt M. CNS distribution of D1 receptors: use of a new specific D1 receptor antagonist, [3H]SCH39166. Neurochem Int.20(Suppl.) S123–S128 (1992).
  • Khan ZU, Gutiérrez A, Martín R, Peñafiel A, Rivera A, de la Calle A. Dopamine D5 receptors of rat and human brain. Neuroscience100(4), 689–699 (2000).
  • Ciliax BJ, Nash N, Heilman C et al. Dopamine D5 receptor immunolocalization in rat and monkey brain. Synapse37(2), 125–145 (2000).
  • Gurevich EV, Joyce JN. Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology20(1), 60–80 (1999).
  • Suzuki M, Hurd YL, Sokoloff P, Schwartz JC, Sedvall G. D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res.779(1–2), 58–74 (1998).
  • Chudler EH, Dong WK. The role of the basal ganglia in nociception and pain. Pain60(1), 3–38 (1995).
  • Altier N, Stewart J. The role of dopamine in the nucleus accumbens in analgesia. Life Sci.65(22), 2269–2287 (1999).
  • Taylor BK, Joshi C, Uppal H. Stimulation of dopamine D2 receptors in the nucleus accumbens inhibits inflammatory pain. Brain Res.987(2), 135–143 (2003).
  • Magnusson JE, Fisher K. The involvement of dopamine in nociception: the role of D1 and D2 receptors in the dorsolateral striatum. Brain Res.855(2), 260–266 (2000).
  • Saadé NE, Atweh SF, Bahuth NB, Jabbur SJ. Augmentation of nociceptive reflexes and chronic deafferentation pain by chemical lesions of either dopaminergic terminals or midbrain dopaminergic neurons. Brain Res.751(1), 1–12 (1997).
  • Sarkis D, Souteyrand JP, Albe-Fessard D. Self-stimulation in the ventral tegmental area suppresses self-mutilation in rats with forelimb deafferentiation. Neurosci. Lett.44(2), 199–204 (1984).
  • Sotres-Bayón F, Torres-López E, López-Avila A, del Angel R, Pellicer F. Lesion and electrical stimulation of the ventral tegmental area modify persistent nociceptive behavior in the rat. Brain Res.898(2), 342–349 (2001).
  • Takeda R, Ikeda T, Tsuda F et al. Unilateral lesions of mesostriatal dopaminergic pathway alters the withdrawal response of the rat hindpaw to mechanical stimulation. Neurosci. Res.52(1), 31–36 (2005).
  • Peyron R, Laurent B, García-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol. Clin.30(5), 263–288 (2000).
  • Burkey AR, Carstens E, Jasmin L. Dopamine reuptake inhibition in the rostral agranular insular cortex produces antinociception. J. Neurosci.19(10), 4169–4179 (1999).
  • Ohara PT, Granato A, Moallem TM, Wang BR, Tillet Y, Jasmin L. Dopaminergic input to GABAergic neurons in the rostral agranular insular cortex of the rat. J. Neurocytol.32(2), 131–141.
  • Jasmin L, Burkey AR, Granato A, Ohara PT. Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J. Comp. Neurol.468(3), 425–440 (2004).
  • Coffeen U, López-Avila A, Ortega-Legaspi JM, Del Ángel R, López-Muñoz FJ, Pellicer F. Dopamine receptors in the anterior insular cortex modulate long-term nociception in the rat. Eur. J. Pain (2007) (In press).
  • Salter MW. D1 and NMDA receptors hook up: expanding on an emerging theme. Trends Neurosci.26(5), 235–237 (2003).
  • Johansen JP, Fields HL, Manning BH. The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc. Natl Acad. Sci. USA98(14), 8077–8082 (2001).
  • Lopez-Avila A, Coffeen U, Ortega-Legaspi JM, del Angel R, Pellicer F. Dopamine and NMDA systems modulate long-term nociception in the rat anterior cingulate cortex. Pain111(1–2), 136–143 (2004).
  • Stone TW. Responses of neurones in the cerebral cortex and caudate nucleus to amantadine, amphetamine and dopamine. Br. J. Pharmacol.56(1), 101–110 (1976).
  • Flores JA, El Banoua F, Galan-Rodriguez B, Fernandez-Espejo E. Opiate anti-nociception is attenuated following lesion of large dopamine neurons of the periaqueductal grey: critical role for D1 (not D2) dopamine receptors. Pain110(1–2), 205–214 (2003) (2004).
  • Aimone LD, Jones SL, Gebhart GF. Stimulation-produced descending inhibition from the periaqueductal gray and nucleus raphe magnus in the rat: mediation by spinal monoamines but not opioids. Pain31(1), 123–136 (1987).
  • Pastoriza LN, Morrow TJ, Casey KL. Medial frontal cortex lesions selectively attenuate the hot plate response: possible nocifensive apraxia in the rat. Pain64(1), 11–17 (1996).
  • Sandkuhler J. The organization and function of endogenous antinociceptive systems. Prog. Neurobiol.50, 49–81 (1996).
  • Holstege JC, Van Dijken H, Buijs RM, Goedknegt H, Gosens T, Bongers CM. Distribution of dopamine immunoreactivity in the rat, cat and monkey spinal cord. J. Comp. Neurol.376(4), 631–652 (1996).
  • Matsumoto M, Hidaka K, Akiho H, Tada S, Okada M, Yamaguchi T. Low stringency hybridization study of the dopamine D4 receptor revealed D4-like mRNA distribution of the orphan seven-transmembrane receptor, APJ, in human brain. Neurosci. Lett.219, 119–122 (1996).
  • Levant B, McCarson KE. D3 dopamine receptors in rat spinal cord: implications for sensory and motor function. Neurosci. Lett.303(1), 9–12 (2001).
  • Jensen TS, Yaksh TL. Effects of an intrathecal dopamine agonist, apomorphine, on thermal and chemical evoked noxious responses in rats. Brain Res.296, 285–293 (1984).
  • Barasi S, Duggal KN. The effect of local and systemic application of dopaminergic agents on tail flick latency in the rat. Eur. J. Pharmacol.117, 287–294 (1985).
  • Liu QS, Qiao JT, Dafny N. D2 dopamine receptor involvement in spinal dopamine-produced antinociception. Life Sci.51(19), 1485–1492 (1992).
  • Gao X, Zhang Y, Wu G. Effects of dopaminergic agents on carrageenan hyperalgesia after intrathecal administration to rats. Eur. J. Pharmacol.418(1–2), 73–77 (2001).
  • Tamae A, Nakatsuka T, Koga K et al. Direct inhibition of substantia gelatinosa neurones in the rat spinal cord by activation of dopamine D2-like receptors. J. Physiol.568(Pt 1), 243–253 (2005).
  • Shimizu T, Iwata S, Morioka H, Masuyama T, Fukuda T, Nomoto M. Antinociceptive mechanism of L-DOPA. Pain110(1–2), 246–249 (2004).
  • Shimizu T, Iwata S, Miyata A, Fukuda T, Nomoto M. Delayed L-DOPA-induced hyperalgesia. Pharmacol. Biochem. Behav.85(3), 643–647 (2006).
  • Yang HW, Zhou LJ, Hu NW, Xin WJ, Liu XG. Activation of spinal D1/D5 receptors induces late-phase LTP of C-fiber-evoked field potentials in rat spinal dorsal horn. J. Neurophysiol.94(2), 961–967 (2005).
  • Gurden H, Takita M, Jay TM. Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal cortex synapses in vivo. J. Neurosci.20(22), RC106 (2000).
  • Ansah OB, Leite-Almeida H, Wei H, Pertovaara A. Striatal dopamine D2 receptors attenuate neuropathic hypersensitivity in the rat. Exp. Neurol.205(2), 536–546 (2007).
  • Hagelberg N, Martikainen IK, Mansikka H et al. Dopamine D2 receptor binding in the human brain is associated with the response to painful stimulation and pain modulatory capacity. Pain99(1–2), 273–279 (2002).
  • Martikainen IK, Hagelberg N, Mansikka H et al. Association of striatal dopamine D2/D3 receptor binding potential with pain but not tactile sensitivity or placebo analgesia. Neurosci. Lett.376(3), 149–153 (2005).
  • Scott DJ, Heitzeg MM, Koeppe RA, Stohler CS, Zubieta JK. Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J. Neurosci.26(42), 10789–10795 (2006).
  • Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta JK. Individual differences in reward responding explain placebo-induced expectations and effects. Neuron55(2), 325–336 (2007).
  • Lidstone SC, Stoessl AJ. Understanding the placebo effect: contributions from neuroimaging. Mol. Imaging Biol.9(4), 176–185 (2007).
  • Ford B. Pain in Parkinson’s disease. Clin. Neurosci.5(2), 63–72 (1998).
  • Tinazzi M, Del Vesco C, Fincati E et al. Pain and motor complications in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry77(7), 822–825 (2006).
  • Lee MA, Walker RW, Hildreth TJ, Prentice WM. A survey of pain in idiopathic Parkinson’s disease. J. Pain Symptom Manage.32(5), 462–469 (2006).
  • Djaldetti R, Shifrin A, Rogowski Z, Sprecher E, Melamed E, Yarnitsky D. Quantitative measurement of pain sensation in patients with Parkinson disease. Neurology62(12), 2171–2175 (2004).
  • Slaoui T, Mas-Gerdelat A, Ory-Magne F, Rascol O, Brefel-Courbon C. Levodopa modifies pain thresholds in Parkinson’s disease patients. Rev. Neurol. (Paris)163(1), 66–71 (2007).
  • Brefel-Courbon C, Payoux P, Thalamas C et al. Effect of levodopa on pain threshold in Parkinson’s disease: a clinical and positron emission tomography study. Mov. Disord.20(12), 1557–1563 (2005).
  • Gerdelat-Mas A, Simonetta-Moreau M, Thalamas C et al. Levodopa raises objective pain threshold in Parkinson’s disease: a RIII reflex study. J. Neurol. Neurosurg. Psychiatry78(10), 1140–1142 (2007).
  • Schestatsky P, Kumru H, Valls-Solé J et al. Neurophysiologic study of central pain in patients with Parkinson disease. Neurology69(23), 2162–2169 (2007).
  • Jääskeläinen SK, Forssell H, Tenovuo O. Abnormalities of the blink reflex in burning mouth syndrome. Pain73(3), 455–460 (1997).
  • Jääskeläinen SK, Rinne JO, Forssell H et al. Role of the dopaminergic system in chronic pain – a fluorodopa-PET study. Pain90(3), 257–260 (2001).
  • Hagelberg N, Forssell H, Rinne JO et al. Striatal dopamine D1 and D2 receptors in burning mouth syndrome. Pain101(1–2), 149–154 (2003).
  • Hagelberg N, Forssell H, Aalto S et al. Altered dopamine D2 receptor binding in atypical facial pain. Pain106(1–2), 43–48 (2003).
  • Wood PB. Stress and dopamine: implications for the pathophysiology of chronic widespread pain. Med. Hypotheses62(3), 420–424 (2004).
  • Wood PB. A reconsideration of the relevance of systemic low-dose ketamine to the pathophysiology of fibromyalgia. J. Pain7(9), 611–614 (2006).
  • Wood PB, Patterson JC II, Sunderland JJ, Tainter KH, Glabus MF, Lilien DL. Reduced presynaptic dopamine activity in fibromyalgia syndrome demonstrated with positron emission tomography: a pilot study. J. Pain8(1), 51–58 (2007).
  • Wood PB, Schweinhardt P, Jaeger E et al. Fibromyalgia patients show an abnormal dopamine response to pain. Eur. J. Neurosci.25(12), 3576–3582 (2007).
  • Yunus MB, Aldag JC. Restless legs syndrome and leg cramps in fibromyalgia syndrome: a controlled study. Br. Med. J.312(7042), 1339 (1996).
  • Bennett RM, Jones J, Turk DC, Russell IJ, Matallana L. An internet survey of 2,596 people with fibromyalgia. BMC Musculoskelet. Disord.8, 27 (2007).
  • Cervenka S, Pålhagen SE, Comley RA et al. Support for dopaminergic hypoactivity in restless legs syndrome: a PET study on D2-receptor binding. Brain129(Pt 8), 2017–2028 (2006).
  • Stiasny-Kolster K, Magerl W, Oertel WH, Moller JC, Treede RD. Static mechanical hyperalgesia without dynamic tactile allodynia in patients with restless legs syndrome. Brain127(Pt 4), 773–782 (2004).
  • Pelissier T, Laurido C, Hernandez A, Constandil L, Eschalier A. Biphasic effect of apomorphine on rat nociception and effect of dopamine D2 receptor antagonists. Eur. J. Pharmacol.546(1–3), 40–47 (2006).
  • Rutledge LP, Ngong JM, Kuperberg JM, Samaan SS, Soliman KF, Kolta MG. Dopaminergic system modulation of nociceptive response in long-term diabetic rats. Pharmacol. Biochem. Behav.74(1), 1–9 (2002).
  • Dziedzicka-Wasylewska M, Ferrari F, Johnson RD et al. Mechanisms of action of pramipexole: effects of receptors. Rev. Contemp. Pharmacother.12(1), 1–31 (2001).
  • Kaye CM, Nicholls B. Clinical pharmacokinetics of ropinirole. Clin. Pharmacokinet.39(4), 243–254 (2000).
  • Holman AJ, Neiman RA, Ettlinger RE. Preliminary efficacy of the dopamine against, pramipexole for fibromyalgia: the first, open label, multicenter experience. J. Musculoskelet. Pain12(1), 69–74 (2004).
  • Holman AJ. Ropinirole, a dopamine agonist, for refractory fibromyalgia: preliminary observations. J. Clin. Rheum.9(4), 277–279 (2003).
  • Holman AJ, Myers RR. A randomized, double-blind, placebo-controlled trial of pramipexole, a dopamine agonist, in patients with fibromyalgia receiving concomitant medications. Arthritis Rheum.52(8), 2495–2505 (2005).
  • Holman AJ. Treatment of fibromyalgia with the dopamine agonist ropinirole: a 14-week double-blind pilot randomized controlled trial with 14-week blinded extension. Presented at: American College of Rheumatology Meeting. San Antonio, TX, USA, 16–21 October 2004 (Abstract 1870).
  • Comella CL. Restless legs syndrome: treatment with dopaminergic agents. Neurology58(4 Suppl. 1), S87–S92 (2002).
  • Shyu BC, Kiritsy-Roy JA, Morrow TJ, Casey KL. Neurophysiological, pharmacological and behavioral evidence for medial thalamic mediation of cocaine-induced dopaminergic analgesia. Brain Res.572(1–2), 216–223 (1992).
  • Lin Y, Morrow TJ, Kiritsy-Roy JA, Terry LC, Casey KL. Cocaine: evidence for supraspinal, dopamine-mediated, non-opiate analgesia. Brain Res.479(2), 306–312 (1989).
  • Check JH, Wilson C. Dramatic relief of chronic pelvic pain with treatment with sympathomimetic amines – case report. Clin. Exp. Obstet. Gynecol.34(1), 55–56 (2007).
  • Check JH, Amadi C, Kaplan H, Katsoff D. The treatment of idiopathic edema, a cause of chronic pelvic pain in women: effectively controlled chronic refractory urticaria – case reports. Clin. Exp. Obstet. Gynecol.33(3), 183–184 (2006).
  • Check JH, Katsoff B, Citerone T, Bonnes E. A novel highly effective treatment of interstitial cystitis causing chronic pelvic pain of bladder origin: case reports. Clin. Exp. Obstet. Gynecol.32(4), 247–249 (2005).
  • Strigo IA, Duncan GH, Bushnell MC et al. The effects of racemic ketamine on painful stimulation of skin and viscera in human subjects. Pain113(3), 255–264 (2005).
  • Willert RP, Woolf CJ, Hobson AR, Delaney C, Thompson DG, Aziz Q. The development and maintenance of human visceral pain hypersensitivity is dependent on the N-methyl-D-aspartate receptor. Gastroenterology126(3), 683–692 (2004).
  • Schulte H, Sollevi A, Segerdahl M. The synergistic effect of combined treatment with systemic ketamine and morphine on experimentally induced windup-like pain in humans. Anesth. Analg.98(6), 1574–1580 (2004).
  • Jørum E, Warncke T, Stubhaug A. Cold allodynia and hyperalgesia in neuropathic pain: the effect of N-methyl-D-aspartate (NMDA) receptor antagonist ketamine – a double-blind, cross-over comparison with alfentanil and placebo. Pain101(3), 229–235 (2003).
  • Correll GE, Maleki J, Gracely EJ, Muir JJ, Harbut RE. Subanesthetic ketamine infusion therapy: a retrospective analysis of a novel therapeutic approach to complex regional pain syndrome. Pain Med.5(3), 263–275 (2004).
  • Goldberg ME, Domsky R, Scaringe D et al. Multi-day low dose ketamine infusion for the treatment of complex regional pain syndrome. Pain Physician8(2), 175–179 (2005).
  • Henriksson KG, Sörensen J. The promise of N-methyl-D-aspartate receptor antagonists in fibromyalgia. Rheum. Dis. Clin. North Am.28(2), 343–351 (2002).
  • Carr DB, Goudas LC, Denman WT et al. Safety and efficacy of intranasal ketamine for the treatment of breakthrough pain in patients with chronic pain: a randomized, double-blind, placebo-controlled, crossover study. Pain108(1–2), 17–27 (2004).
  • Kleinböhl D, Görtelmeyer R, Bender HJ, Hölzl R. Amantadine sulfate reduces experimental sensitization and pain in chronic back pain patients. Anesth. Analg.102(3), 840–847 (2006).
  • Amin P, Sturrock ND. A pilot study of the beneficial effects of amantadine in the treatment of painful diabetic peripheral neuropathy. Diabet. Med.20(2), 114–118 (2003).
  • Sang CN, Booher S, Gilron I, Parada S, Max MB. Dextromethorphan and memantine in painful diabetic neuropathy and postherpetic neuralgia: efficacy and dose-response trials. Anesthesiology96(5), 1053–1061 (2002).
  • Sinis N, Birbaumer N, Gustin S et al. Memantine treatment of complex regional pain syndrome: a preliminary report of six cases. Clin. J. Pain23(3), 237–243 (2007).
  • Forman LJ. NMDA receptor antagonism produces antinociception which is partially mediated by brain opioids and dopamine. Life Sci.64(21), 1877–1887 (1999).
  • Hesselink MB, De Boer AG, Breimer DD, Danysz W. Adaptations of NMDA and dopamine D2, but not of muscarinic receptors following 14 days administration of uncompetitive NMDA receptor antagonists. J. Neural. Transm.106(5–6), 409–421 (1999).
  • Moresco RM, Volonte MA, Messa C et al. New perspectives on neurochemical effects of amantadine in the brain of parkinsonian patients: a PET - [11C]raclopride study. J. Neural. Transm.109(10), 1265–1274 (2002).
  • Deep P, Dagher A, Sadikot A, Gjedde A, Cumming P. Stimulation of dopa decarboxylase activity in striatum of healthy human brain secondary to NMDA receptor antagonism with a low dose of amantadine. Synapse34(4), 313–318 (1999).
  • Kapur S, Seeman P. NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D2 and serotonin 5-HT2receptors-implications for models of schizophrenia. Mol. Psychiatry7(8), 837–844 (2002).
  • Seeman P, Ko F, Tallerico T. Dopamine receptor contribution to the action of PCP, LSD and ketamine psychotomimetics. Mol. Psychiatry10(9), 877–883 (2005).
  • Sprenger T, Valet M, Woltmann R et al. Imaging pain modulation by subanesthetic S-(+)-ketamine. Anesth. Analg.103(3), 729–737 (2006).
  • Gracely RH, Petzke F, Wolf JM, Clauw DJ. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum.46(5), 1333–1343 (2002).
  • Cook DB, Lange G, Ciccone DS, Liu WC, Steffener J, Natelson BH. Functional imaging of pain in patients with primary fibromyalgia. J. Rheumatol.31(2), 364–378 (2004).
  • Seeman P, Caruso C, Lasaga M. Memantine agonist action at dopamine D2High receptors. Synapse62(2), 149–153 (2008).
  • Gilbert AK, Franklin KB. Characterization of the analgesic properties of nomifensine in rats. Pharmacol. Biochem. Behav.68(4), 783–787 (2001).
  • Pedersen LH, Nielsen AN, Blackburn-Munro G. Anti-nociception is selectively enhanced by parallel inhibition of multiple subtypes of monoamine transporters in rat models of persistent and neuropathic pain. Psychopharmacology (Berl.)182(4), 551–561 (2005).
  • Semenchuk MR, Sherman S, Davis B. Double-blind, randomized trial of bupropion SR for the treatment of neuropathic pain. Neurology57(9), 1583–1588 (2001).
  • Katz J, Pennella-Vaughan J, Hetzel RD, Kanazi GE, Dworkin RH: A randomized, placebo-controlled trial of bupropion sustained release in chronic low back pain. J. Pain6(10), 656–661 (2005).
  • Munro G. Dopamine D1 and D2 receptor agonism enhances antinociception mediated by the serotonin and noradrenaline reuptake inhibitor duloxetine in the rat formalin test. Eur. J. Pharmacol.575(1–3), 66–74 (2007).
  • Rosland JH, Hole K. The effect of nefopam and its enantiomers on the uptake of 5-hydroxytryptamine, noradrenaline and dopamine in crude rat brain synaptosomal preparations. J. Pharm. Pharmacol.42(6), 437–438 (1990).
  • Esposito E, Romandini S, Merlo-Pich E, Mennini T, Samanin R. Evidence of the involvement of dopamine in the analgesic effect of nefopam. Eur. J. Pharmacol.128(3), 157–164 (1986).
  • Girard P, Coppe MC, Verniers D, Pansart Y, Gillardin JM. Role of catecholamines and serotonin receptor subtypes in nefopam-induced antinociception. Pharmacol. Res.54(3), 195–202 (2006).
  • Basile AS, Janowsky A, Golembiowska K et al. Characterization of the antinociceptive actions of bicifadine in models of acute, persistent, and chronic pain. J. Pharmacol. Exp. Ther.321(3), 1208–1225 (2007).
  • Skolnick P, Popik P, Janowsky A, Beer B, Lippa AS. Antidepressant-like actions of DOV 21,947: a ‘triple’ reuptake inhibitor. Eur. J. Pharmacol.461(2–3), 99–104 (2003).
  • Shaw AM, Boules M, Zhang Y et al. Antidepressant-like effects of novel triple reuptake inhibitors, PRC025 and PRC050. Eur. J. Pharmacol.555(1), 30–36 (2007).
  • Kihara T, Ikeda M. Effects of duloxetine, a new serotonin and norepinephrine uptake inhibitor, on extracellular monoamine levels in rat frontal cortex. J. Pharmacol. Exp. Ther.272(1), 177–183 (1995).
  • Djaldetti R, Yust-Katz S, Kolianov V, Melamed E, Dabby R. The effect of duloxetine on primary pain symptoms in Parkinson disease. Clin. Neuropharmacol.30(4), 201–205 (2007).
  • Wernicke JF, Pritchett YL, D’Souza DN et al. A randomized controlled trial of duloxetine in diabetic peripheral neuropathic pain. Neurology67(8), 1411–1420 (2006).
  • Arnold LM, Rosen A, Pritchett YL et al. A randomized, double-blind, placebo-controlled trial of duloxetine in the treatment of women with fibromyalgia with or without major depressive disorder. Pain119(1–3), 5–15 (2005).
  • Jain KK. Modulators of nicotinic acetylcholine receptors as analgesics. Curr. Opin. Investig. Drugs5(1), 76–81 (2004).
  • Champtiaux N, Gotti C, Cordero-Erausquin M et al. Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J. Neurosci.23(21), 7820–7829 (2003).
  • Damaj MI, Martin BR. Is the dopaminergic system involved in the central effects of nicotine in mice? Psychopharmacology (Berl.)111(1), 106–108 (1993).
  • Smith JW, Mogg A, Tafi E et al. Ligands selective for α4β2 but not α3β4 or a7 nicotinic receptors generalise to the nicotine discriminative stimulus in the rat. Psychopharmacology (Berl.)190(2), 157–170 (2007).
  • Keating GM, Siddiqui MA. Varenicline: a review of its use as an aid to smoking cessation therapy. CNS Drugs20(11), 945–960 (2006).
  • Kehl LJ, Hamamoto DT, Wacnik PW et al. A cannabinoid agonist differentially attenuates deep tissue hyperalgesia in animal models of cancer and inflammatory muscle pain. Pain103(1–2), 175–186 (2003).
  • Wallace M, Schulteis G, Atkinson JH et al. Dose-dependent effects of smoked cannabis on capsaicin-induced pain and hyperalgesia in healthy volunteers. Anesthesiology107(5), 785–796 (2007).
  • Fadda P, Scherma M, Spano MS et al. Cannabinoid self-administration increases dopamine release in the nucleus accumbens. Neuroreport17(15), 1629–1632 (2006).
  • Carta G, Gessa GL, Nava F. Dopamine D2 receptor antagonists prevent Δ9-tetrahydrocannabinol-induced antinociception in rats. Eur. J. Pharmacol.384(2–3), 153–156 (1999).
  • Skrabek RQ, Galimova L, Ethansand Daryl K. Nabilone for the treatment of pain in fibromyalgia. J. Pain (2007) (Epub ahead of print).
  • Rog DJ, Nurmikko TJ, Friede T, Young CA. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology65(6), 812–819 (2005).
  • Attal N, Brasseur L, Guirimand D, Clermond-Gnamien S, Atlami S, Bouhassira D. Are oral cannabinoids safe and effective in refractory neuropathic pain? Eur. J. Pain8(2), 173–177 (2004).
  • Venderová K, Ruzicka E, Vorísek V, Visnovský P. Survey on cannabis use in Parkinson’s disease: subjective improvement of motor symptoms. Mov. Disord.19(9), 1102–1106 (2004).
  • Carroll CB, Bain PG, Teare L et al. Cannabis for dyskinesia in Parkinson disease: a randomized double-blind crossover study. Neurology63(7), 1245–1250 (2004).
  • Maitre M: The γ-hydroxybutyrate signalling system in brain: organization and functional implications. Prog. Neurobiol.51(3), 337–361 (1997).
  • Scharf MB, Hauck M, Stover R, McDannold M, Berkowitz D. Effect of γ-hydroxybutyrate on pain, fatigue, and the α sleep anomaly in patients with fibromyalgia. Preliminary report. J. Rheumatol.25(10), 1986–1990 (1998).
  • Scharf MB, Baumann M, Berkokwitz D. The effects of sodium oxybate on clinical symptoms and sleep patterns in patients with fibromyalgia. J. Rheumatol.30(5), 1070–1074 (2003).
  • Wood PB. A Randomized double-blind, placebo-controlled, parallel-group, multicenter trial comparing the effects of orally administered Xyrem (sodium oxybate) with placebo for the treatment of fibromyalgia. Pain Med.7(2), 181–182 (2006) (Abstract).
  • Walters JR, Roth RH. Effect of g-hydroxybutyrate on dopamine and dopamine metabolites in the rat striatum. Biochem. Pharmacol.21(15), 2111–2121 (1972).
  • Madden TE, Johnson SW. γ-hydroxybutyrate is a GABAB receptor agonist that increases a potassium conductance in rat ventral tegmental dopamine neurons. J. Pharmacol. Exp. Ther.287(1), 261–265 (1998).
  • St-Gelais F, Jomphe C, Trudeau LE. The role of neurotensin in central nervous system pathophysiology: what is the evidence? J. Psychiatry Neurosci.31(4), 229–245 (2006).
  • Clineschmidt BV, McGuffin JC, Bunting PB. Neurotensin: antinocisponsive action in rodents. Eur. J. Pharmacol.54, 129–139 (1979).
  • Tyler-McMahon BM, Stewart JA, Farinas F, McCormick DJ, Richelson E. Highly potent neurotensin analog that causes hypothermia and antinociception. Eur. J. Pharmacol.390(1–2), 107–111 (2000).
  • Fantegrossi WE, Ko MC, Woods JH, Richelson E. Antinociceptive, hypothermic, hypotensive, and reinforcing effects of a novel neurotensin receptor agonist, NT69L, in rhesus monkeys. Pharmacol. Biochem. Behav.80(2), 341–349 (2005).
  • Díaz-Cabiale Z, Fuxe K, Narváez JA et al. Neurotensin-induced modulation of dopamine D2 receptors and their function in rat striatum: counteraction by a NTR1-like receptor antagonist. Neuroreport13(6), 763–766 (2002).
  • Magnusson O, Fowler CJ, Köhler C, Ogren SO. Dopamine D2 receptors and dopamine metabolism. Relationship between biochemical and behavioural effects of substituted benzamide drugs. Neuropharmacology25(2), 187–197 (1986).
  • Weizman T, Pick CG, Backer MM, Rigai T, Bloch M, Schreiber S. The antinociceptive effect of amisulpride in mice is mediated through opioid mechanisms. Eur. J. Pharmacol.478(2–3), 155–159 (2003).
  • Jenner P, Marsden CD. Multiple DA receptors in brain and the pharmacological action of substituted benzamide drugs. Acta Psych. Scand.69, 109–110 (1984).
  • Maina G, Vitalucci A, Gandolfo S, Bogetto F. Comparative efficacy of SSRIs and amisulpride in burning mouth syndrome: a single-blind study. J. Clin. Psychiatry63(1), 38–43 (2002).
  • Demarosi F, Tarozzi M, Lodi G, Canegallo L, Rimondini L, Sardella A. The effect of levosulpiride in burning mouth syndrome. Minerva Stomatol.56(1–2), 21–26 (2007).
  • Kiser RS, Cohen HM, Freedenfeld RN, Jewell C, Fuchs PN. Olanzapine for the treatment of fibromyalgia symptoms. J. Pain Symptom Manage.22(2), 704–708 (2001).
  • Freedenfeld RN, Murray M, Fuchs PN, Kiser RS. Decreased pain and improved quality of life in fibromyalgia patients treated with olanzapine, an atypical neuroleptic. Pain Pract.6(2), 112–118 (2006).
  • Rico-Villademoros F, Hidalgo J, Dominguez I, García-Leiva JM, Calandre EP. Atypical antipsychotics in the treatment of fibromyalgia: a case series with olanzapine. Prog. Neuropsychopharmacol. Biol. Psychiatry29(1), 161–164 (2005).
  • Hidalgo J, Rico-Villademoros F, Calandre EP. An open-label study of quetiapine in the treatment of fibromyalgia. Prog. Neuropsychopharmacol. Biol. Psychiatry31(1), 71–77 (2007).
  • Calandre EP, Hidalgo J, Rico-Villademoros F. Use of ziprasidone in patients with fibromyalgia: a case series. Rheumatol. Int.27(5), 473–476 (2007).
  • Decina P, Mukherjee S, Caracci G, Harrison K. Painful sensory symptoms in neuroleptic-induced extrapyramidal syndromes. Am. J. Psychiatry149, 1075–1080 (1992).
  • Potvin S, Marchand S. Hypoalgesia in schizophrenia is independent of antipsychotic drugs: a systematic quantitative review of experimental studies. Pain (2007) (Epub ahead of print).
  • Laruelle M, Kegeles LS, Abi-Dargham A. Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann. NY Acad. Sci.1003, 138–158 (2003).
  • Talvik M, Nordström AL, Okubo Y et al. Dopamine D2 receptor binding in drug-naive patients with schizophrenia examined with raclopride-C11 and positron emission tomography. Psychiatry Res.148(2–3), 165–173 (2006).
  • Salamone JD, Correa M, Mingote S, Weber SM. Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J. Pharmacol. Exp. Ther.305(1), 1–8 (2003).
  • Grace AA. The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction95(Suppl. 2), S119–S128 (2000).
  • Mansikka H, Erbs E, Borrelli E, Pertovaara A. Influence of the dopamine D2 receptor knockout on pain-related behavior in the mouse. Brain Res.1052(1), 82–87 (2005).
  • Hofbauer RK, Rainville P, Duncan GH, Bushnell MC. Cortical representation of the sensory dimension of pain. J. Neurophysiol.86(1), 402–411 (2001).
  • Rainville P, Carrier B, Hofbauer RK, Bushnell MC, Duncan GH. Dissociation of sensory and affective dimensions of pain using hypnotic modulation. Pain82(2), 159–171 (1999).
  • Hnasko TS, Sotak BN, Palmiter RD. Morphine reward in dopamine-deficient mice. Nature438(7069), 854–857 (2005).
  • Lei LG, Sun S, Gao YJ, Zhao ZQ, Zhang YQ. NMDA receptors in the anterior cingulate cortex mediate pain-related aversion. Exp. Neurol.189(2), 413–421 (2004).
  • Tseng KY, O’Donnell P. Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J. Neurosci.24(22), 5131–5139 (2004).
  • Beazely MA, Tong A, Wei WL, Van Tol H, Sidhu B, MacDonald JF. D2-class dopamine receptor inhibition of NMDA currents in prefrontal cortical neurons is platelet-derived growth factor receptor-dependent. J. Neurochem.98(5), 1657–1663 (2006).
  • Kotecha SA, Oak JN, Jackson MF et al. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron35(6), 1111–1122 (2002).
  • Castro NG, de Mello MC, de Mello FG, Aracava Y. Direct inhibition of the N-methyl-D-aspartate receptor channel by dopamine and (+)-SKF38393. Br. J. Pharmacol.126(8), 1847–1855 (1999).
  • McKenna JE, Melzack R. Blocking NMDA receptors in the hippocampal dentate gyrus with AP5 produces analgesia in the formalin pain test. Exp. Neurol.172(1), 92–99 (2001).
  • Soleimannejad E, Naghdi N, Semnanian S, Fathollahi Y, Kazemnejad A. Antinociceptive effect of intra-hippocampal CA1 and dentate gyrus injection of MK801 and AP5 in the formalin test in adult male rats. Eur. J. Pharmacol.562(1–2), 39–46 (2007).
  • Sindrup SH, Graf A, Sfikas N. The NK1-receptor antagonist TKA731 in painful diabetic neuropathy: a randomised, controlled trial. Eur. J. Pain10(6), 567–571 (2006).
  • Tang L, Chen Y, Chen Z, Blumberg PM, Kozikowski AP, Wang ZJ. Antinociceptive pharmacology of N-(4-chlorobenzyl)-N´-(4-hydroxy-3-iodo-5-methoxybenzyl) thiourea, a high-affinity competitive antagonist of the transient receptor potential vanilloid 1 receptor. J. Pharmacol. Exp. Ther.321(2), 791–798 (2007).
  • Marinelli S, Pascucci T, Bernardi G, Puglisi-Allegra S, Mercuri NB. Activation of TRPV1 in the VTA excites dopaminergic neurons and increases chemical- and noxious-induced dopamine release in the nucleus accumbens. Neuropsychopharmacology30(5), 864–870 (2005).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.