420
Views
76
CrossRef citations to date
0
Altmetric
Review

Neuroimaging in obsessive–compulsive disorder

, , &
Pages 255-269 | Published online: 09 Jan 2014

References

  • American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV. American Psychiatric Association, Washington, DC, USA (1994).
  • Robins LN, Helzer JE, Weissman MM et al. Lifetime prevalence of specific psychiatric disorders in three sites. Arch. Gen. Psychiatry41(10), 949–958 (1984).
  • Leon AC, Portera L, Weissman MM. The social costs of anxiety disorders. Br. J. Psychiatry Suppl.27, 19–22 (1995).
  • Pauls DL, Alsobrook JP 2nd, Goodman W, Rasmussen S, Leckman JF. A family study of obsessive–compulsive disorder. Am. J. Psychiatry152(1), 76–84 (1995).
  • Murray CJ, Lopez AD. The incremental effect of age-weighting on YLLs, YLDs, and DALYs: a response. Bull. World Health Organ.74(4), 445–446 (1996).
  • Koran LM, Thienemann ML, Davenport R. Quality of life for patients with obsessive–compulsive disorder. Am. J. Psychiatry153(6), 783–788 (1996).
  • Rapoport JL, Wise SP. Obsessive–compulsive disorder: evidence for basal ganglia dysfunction. Psychopharmacol. Bull.24(3), 380–384 (1988).
  • Insel TR. Toward a neuroanatomy of obsessive–compulsive disorder. Arch. Gen. Psychiatry49(9), 739–744 (1992).
  • Scarone S, Colombo C, Livian S et al. Increased right caudate nucleus size in obsessive–compulsive disorder: detection with magnetic resonance imaging. Psychiatry Res.45(2), 115–121 (1992).
  • Robinson D, Wu H, Munne RA et al. Reduced caudate nucleus volume in obsessive–compulsive disorder. Arch. Gen. Psychiatry52(5), 393–398 (1995).
  • Szeszko PR, MacMillan S, McMeniman M et al. Brain structural abnormalities in psychotropic drug-naive pediatric patients with obsessive–compulsive disorder. Am. J. Psychiatry161(6), 1049–1056 (2004).
  • Aylward EH, Harris GJ, Hoehn-Saric R, Barta PE, Machlin SR, Pearlson GD. Normal caudate nucleus in obsessive–compulsive disorder assessed by quantitative neuroimaging. Arch. Gen. Psychiatry53(7), 577–584 (1996).
  • Szeszko PR, Robinson D, Alvir JM et al. Orbital frontal and amygdala volume reductions in obsessive–compulsive disorder. Arch. Gen. Psychiatry56(10), 913–919 (1999).
  • Choi JS, Kang DH, Kim JJ et al. Left anterior subregion of orbitofrontal cortex volume reduction and impaired organizational strategies in obsessive–compulsive disorder. J. Psychiatr. Res.38(2), 193–199 (2004).
  • Kang DH, Kim JJ, Choi JS et al. Volumetric investigation of the frontal–subcortical circuitry in patients with obsessive–compulsive disorder. J. Neuropsychiatry Clin. Neurosci.16(3), 342–349 (2004).
  • Kwon JS, Shin YW, Kim CW et al. Similarity and disparity of obsessive–compulsive disorder and schizophrenia in MR volumetric abnormalities of the hippocampus–amygdala complex. J. Neurol. Neurosurg. Psychiatry74(7), 962–964 (2003).
  • Choi JS, Kim HS, Yoo SY et al. Morphometric alterations of anterior superior temporal cortex in obsessive–compulsive disorder. Depress. Anxiety23(5), 290–296 (2006).
  • Kim JJ, Lee MC, Kim J et al. Grey matter abnormalities in obsessive–compulsive disorder: statistical parametric mapping of segmented magnetic resonance images. Br. J. Psychiatry179, 330–334 (2001).
  • Pujol J, Soriano-Mas C, Alonso P et al. Mapping structural brain alterations in obsessive–compulsive disorder. Arch. Gen. Psychiatry61(7), 720–730 (2004).
  • Valente AA, Jr, Miguel EC, Castro CC et al. Regional gray matter abnormalities in obsessive–compulsive disorder: a voxel-based morphometry study. Biol. Psychiatry58(6), 479–487 (2005).
  • Swedo SE. Sydenham’s chorea. A model for childhood autoimmune neuropsychiatric disorders. JAMA272(22), 1788–1791 (1994).
  • Asbahr FR, Negrao AB, Gentil V et al. Obsessive–compulsive and related symptoms in children and adolescents with rheumatic fever with and without chorea: a prospective 6-month study. Am. J. Psychiatry155(8), 1122–1124 (1998).
  • Swedo SE, Leonard HL, Garvey M et al. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: clinical description of the first 50 cases. Am. J. Psychiatry155(2), 264–271 (1998).
  • Giedd JN, Rapoport JL, Leonard HL, Richter D, Swedo SE. Case study: acute basal ganglia enlargement and obsessive–compulsive symptoms in an adolescent boy. J. Am. Acad. Child Adolesc. Psychiatry35(7), 913–915 (1996).
  • Giedd JN, Rapoport JL, Garvey MA, Perlmutter S, Swedo SE. MRI assessment of children with obsessive–compulsive disorder or tics associated with streptococcal infection. Am. J. Psychiatry157(2), 281–283 (2000).
  • Szeszko PR, Ardekani BA, Ashtari M et al. White matter abnormalities in obsessive–compulsive disorder: a diffusion tensor imaging study. Arch. Gen. Psychiatry62(7), 782–790 (2005).
  • Cannistraro PA, Makris N, Howard JD et al. A diffusion tensor imaging study of white matter in obsessive–compulsive disorder. Depress. Anxiety24(6), 440–446 (2007).
  • Nakamae T, Narumoto J, Shibata K et al. Alteration of fractional anisotropy and apparent diffusion coefficient in obsessive–compulsive disorder: a diffusion tensor imaging study. Prog. Neuropsychopharmacol. Biol. Psychiatry32(5), 1221–1226 (2008).
  • Menzies L, Williams GB, Chamberlain SR et al. White matter abnormalities in patients with obsessive–compulsive disorder and their first-degree relatives. Am. J. Psychiatry165(10), 1308–1315 (2008).
  • Van Essen DC. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature385, 313–318 (1997).
  • Hong SB, Shin YW, Kim SH et al. Hippocampal shape deformity analysis in obsessive–compulsive disorder. Eur. Arch. Psychiatry Clin. Neurosci.257(4), 185–190 (2007).
  • Choi JS, Kim SH, Yoo SY et al. Shape deformity of the corpus striatum in obsessive–compulsive disorder. Psychiatry Res.155(3), 257–264 (2007).
  • Kang DH, Kim SH, Kim CW et al. Thalamus surface shape deformity in obsessive–compulsive disorder and schizophrenia. Neuroreport19(6), 609–613 (2008).
  • Shin YW, Yoo SY, Lee JK et al. Cortical thinning in obsessive–compulsive disorder. Hum. Brain Mapp.28(11), 1128–1135 (2007).
  • Yoo SY, Jang JH, Shin YW et al. White matter abnormalities in drug-naive patients with obsessive–compulsive disorder: a diffusion tensor study before and after citalopram treatment. Acta Psychiatr. Scand.116(3), 211–219 (2007).
  • Gilbert AR, Moore GJ, Keshavan MS et al. Decrease in thalamic volumes of pediatric patients with obsessive–compulsive disorder who are taking paroxetine. Arch. Gen. Psychiatry57(5), 449–456 (2000).
  • Szeszko PR, MacMillan S, McMeniman M et al. Amygdala volume reductions in pediatric patients with obsessive–compulsive disorder treated with paroxetine: preliminary findings. Neuropsychopharmacology29(4), 826–832 (2004).
  • Rotge JY, Guehl D, Dilharreguy B et al. Meta-analysis of brain volume changes in obsessive–compulsive disorder. Biol. Psychiatry65(1), 75–83 (2009).
  • Machlin SR, Harris GJ, Pearlson GD, Hoehn-Saric R, Jeffery P, Camargo EE. Elevated medial–frontal cerebral blood flow in obsessive–compulsive patients: a SPECT study. Am. J. Psychiatry148(9), 1240–1242 (1991).
  • Rubin RT, Villanueva-Meyer J, Ananth J, Trajmar PG, Mena I. Regional xenon 133 cerebral blood flow and cerebral technetium 99m HMPAO uptake in unmedicated patients with obsessive–compulsive disorder and matched normal control subjects. Determination by high-resolution single-photon emission computed tomography. Arch. Gen. Psychiatry49(9), 695–702 (1992).
  • Lucey JV, Costa DC, Blanes T et al. Regional cerebral blood flow in obsessive–compulsive disordered patients at rest. Differential correlates with obsessive–compulsive and anxious-avoidant dimensions. Br. J. Psychiatry167(5), 629–634 (1995).
  • Busatto GF, Zamignani DR, Buchpiguel CA et al. A voxel-based investigation of regional cerebral blood flow abnormalities in obsessive–compulsive disorder using single photon emission computed tomography (SPECT). Psychiatry Res.99(1), 15–27 (2000).
  • Hoehn-Saric R, Pearlson GD, Harris GJ, Machlin SR, Camargo EE. Effects of fluoxetine on regional cerebral blood flow in obsessive–compulsive patients. Am. J. Psychiatry148(9), 1243–1245 (1991).
  • Hoehn-Saric R, Schlaepfer TE, Greenberg BD, McLeod DR, Pearlson GD, Wong SH. Cerebral blood flow in obsessive–compulsive patients with major depression: effect of treatment with sertraline or desipramine on treatment responders and non-responders. Psychiatry Res.108(2), 89–100 (2001).
  • Molina V, Montz R, Martin-Loeches M, Jimenez-Vicioso A, Carreras JL, Rubia FJ. Drug therapy and cerebral perfusion in obsessive–compulsive disorder. J. Nucl. Med.36(12), 2234–2238 (1995).
  • Zohar J, Insel TR, Berman KF, Foa EB, Hill JL, Weinberger DR. Anxiety and cerebral blood flow during behavioral challenge. Dissociation of central from peripheral and subjective measures. Arch. Gen. Psychiatry46(6), 505–510 (1989).
  • Hollander E, Prohovnik I, Stein DJ. Increased cerebral blood flow during m-CPP exacerbation of obsessive–compulsive disorder. J. Neuropsychiatry Clin. Neurosci.7(4), 485–490 (1995).
  • Baxter LR Jr, Phelps ME, Mazziotta JC, Guze BH, Schwartz JM, Selin CE. Local cerebral glucose metabolic rates in obsessive–compulsive disorder. A comparison with rates in unipolar depression and in normal controls. Arch. Gen. Psychiatry44(3), 211–218 (1987).
  • Baxter LR, Jr, Schwartz JM, Mazziotta JC et al. Cerebral glucose metabolic rates in nondepressed patients with obsessive–compulsive disorder. Am. J. Psychiatry145(12), 1560–1563 (1988).
  • Nordahl TE, Benkelfat C, Semple WE, Gross M, King AC, Cohen RM. Cerebral glucose metabolic rates in obsessive compulsive disorder. Neuropsychopharmacology2(1), 23–28 (1989).
  • Swedo SE, Schapiro MB, Grady CL et al. Cerebral glucose metabolism in childhood-onset obsessive–compulsive disorder. Arch. Gen. Psychiatry46(6), 518–523 (1989).
  • Saxena S, Brody AL, Ho ML et al. Cerebral metabolism in major depression and obsessive–compulsive disorder occurring separately and concurrently. Biol. Psychiatry50(3), 159–170 (2001).
  • Rauch SL, Jenike MA, Alpert NM et al. Regional cerebral blood flow measured during symptom provocation in obsessive–compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch. Gen. Psychiatry51(1), 62–70 (1994).
  • McGuire PK, Bench CJ, Frith CD, Marks IM, Frackowiak RS, Dolan RJ. Functional anatomy of obsessive–compulsive phenomena. Br. J. Psychiatry164(4), 459–468 (1994).
  • Cottraux J, Gerard D, Cinotti L et al. A controlled positron emission tomography study of obsessive and neutral auditory stimulation in obsessive–compulsive disorder with checking rituals. Psychiatry Res.60(2–3), 101–112 (1996).
  • Shin YW, Kwon JS, Kim JJ et al. Altered neural circuit for working memory before and after symptom provocation in patients with obsessive–compulsive disorder. Acta Psychiatr. Scand.113(5), 420–429 (2006).
  • Rotge JY, Guehl D, Dilharreguy B et al. Provocation of obsessive–compulsive symptoms: a quantitative voxel-based meta-analysis of functional neuroimaging studies. J. Psychiatry Neurosci.33(5), 405–412 (2008).
  • Benkelfat C, Nordahl TE, Semple WE, King AC, Murphy DL, Cohen RM. Local cerebral glucose metabolic rates in obsessive–compulsive disorder. Patients treated with clomipramine. Arch. Gen. Psychiatry47(9), 840–848 (1990).
  • Baxter LR Jr, Schwartz JM, Bergman KS et al. Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive–compulsive disorder. Arch. Gen. Psychiatry49(9), 681–689 (1992).
  • Swedo SE, Pietrini P, Leonard HL et al. Cerebral glucose metabolism in childhood-onset obsessive–compulsive disorder. Revisualization during pharmacotherapy. Arch. Gen. Psychiatry49(9), 690–694 (1992).
  • Perani D, Colombo C, Bressi S et al. [18F] FDG PET study in obsessive–compulsive disorder. A clinical/metabolic correlation study after treatment. Br. J. Psychiatry166(2), 244–250 (1995).
  • Hansen ES, Hasselbalch S, Law I, Bolwig TG. The caudate nucleus in obsessive–compulsive disorder. Reduced metabolism following treatment with paroxetine: a PET study. Int. J. Neuropsychopharmacol.5(1), 1–10 (2002).
  • Rauch SL, Dougherty DD, Malone D et al. A functional neuroimaging investigation of deep brain stimulation in patients with obsessive–compulsive disorder. J. Neurosurg.104(4), 558–565 (2006).
  • Brody AL, Saxena S, Schwartz JM et al. FDG-PET predictors of response to behavioral therapy and pharmacotherapy in obsessive compulsive disorder. Psychiatry Res.84(1), 1–6 (1998).
  • Saxena S, Brody AL, Maidment KM et al. Localized orbitofrontal and subcortical metabolic changes and predictors of response to paroxetine treatment in obsessive–compulsive disorder. Neuropsychopharmacology21(6), 683–693 (1999).
  • Rauch SL, Shin LM, Dougherty DD, Alpert NM, Fischman AJ, Jenike MA. Predictors of fluvoxamine response in contamination-related obsessive compulsive disorder: a PET symptom provocation study. Neuropsychopharmacology27(5), 782–791 (2002).
  • Rauch SL, Dougherty DD, Cosgrove GR et al. Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for obsessive compulsive disorder. Biol. Psychiatry50(9), 659–667 (2001).
  • Martinot JL, Allilaire JF, Mazoyer BM et al. Obsessive–compulsive disorder: a clinical, neuropsychological and positron emission tomography study. Acta Psychiatr. Scand.82(3), 233–242 (1990).
  • Kwon JS, Kim JJ, Lee DW et al. Neural correlates of clinical symptoms and cognitive dysfunctions in obsessive–compulsive disorder. Psychiatry Res.122(1), 37–47 (2003).
  • Kang DH, Kwon JS, Kim JJ et al. Brain glucose metabolic changes associated with neuropsychological improvements after 4 months of treatment in patients with obsessive–compulsive disorder. Acta. Psychiatr. Scand.107(4), 291–297 (2003).
  • Dager SR, Steen RG. Applications of magnetic resonance spectroscopy to the investigation of neuropsychiatric disorders. Neuropsychopharmacology6(4), 249–266 (1992).
  • Michaelis T, Merboldt KD, Bruhn H, Hanicke W, Frahm J. Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology187(1), 219–227 (1993).
  • Baslow MH. Evidence supporting a role for N-acetyl-l-aspartate as a molecular water pump in myelinated neurons in the central nervous system. An analytical review. Neurochem. Int.40(4), 295–300 (2002).
  • Barker PB. N-acetyl aspartate – a neuronal marker? Ann. Neurol.49(4), 423–424 (2001).
  • Zhu XH, Chen W. Observed BOLD effects on cerebral metabolite resonances in human visual cortex during visual stimulation: a functional 1H MRS study at 4 T. Magn. Reson. Med.46(5), 841–847 (2001).
  • O’Neill J, Eberling JL, Schuff N et al. Method to correlate 1H MRSI and 18FDG-PET. Magn. Reson. Med.43(2), 244–250 (2000).
  • Bartha R, Stein MB, Williamson PC et al. A short echo 1H spectroscopy and volumetric MRI study of the corpus striatum in patients with obsessive–compulsive disorder and comparison subjects. Am. J. Psychiatry155(11), 1584–1591 (1998).
  • Ebert D, Speck O, Konig A, Berger M, Hennig J, Hohagen F. 1H-magnetic resonance spectroscopy in obsessive–compulsive disorder: evidence for neuronal loss in the cingulate gyrus and the right striatum. Psychiatry Res.74(3), 173–176 (1997).
  • Jang JH, Kwon JS, Jang DP et al. A proton MRSI study of brain N-acetylaspartate level after 12 weeks of citalopram treatment in drug-naive patients with obsessive–compulsive disorder. Am. J. Psychiatry163(7), 1202–1207 (2006).
  • Yucel M, Harrison BJ, Wood SJ et al. Functional and biochemical alterations of the medial frontal cortex in obsessive–compulsive disorder. Arch. Gen. Psychiatry64(8), 946–955 (2007).
  • Fitzgerald KD, Moore GJ, Paulson LA, Stewart CM, Rosenberg DR. Proton spectroscopic imaging of the thalamus in treatment-naive pediatric obsessive–compulsive disorder. Biol. Psychiatry47(3), 174–182 (2000).
  • Moore GJ, MacMaster FP, Stewart C, Rosenberg DR. Case study: caudate glutamatergic changes with paroxetine therapy for pediatric obsessive–compulsive disorder. J. Am. Acad. Child Adolesc. Psychiatry37(6), 663–667 (1998).
  • Rosenberg DR, MacMaster FP, Keshavan MS, Fitzgerald KD, Stewart CM, Moore GJ. Decrease in caudate glutamatergic concentrations in pediatric obsessive–compulsive disorder patients taking paroxetine. J. Am. Acad. Child Adolesc. Psychiatry39(9), 1096–1103 (2000).
  • Russell A, Cortese B, Lorch E et al. Localized functional neurochemical marker abnormalities in dorsolateral prefrontal cortex in pediatric obsessive–compulsive disorder. J. Child Adolesc. Psychopharmacol.13(Suppl. 1), S31–S38 (2003).
  • van den Heuvel OA, Veltman DJ, Groenewegen HJ et al. Frontal–striatal dysfunction during planning in obsessive–compulsive disorder. Arch. Gen. Psychiatry62(3), 301–309 (2005).
  • Fitzgerald KD, Welsh RC, Gehring WJ et al. Error-related hyperactivity of the anterior cingulate cortex in obsessive–compulsive disorder. Biol. Psychiatry57(3), 287–294 (2005).
  • Roth RM, Saykin AJ, Flashman LA, Pixley HS, West JD, Mamourian AC. Event-related functional magnetic resonance imaging of response inhibition in obsessive–compulsive disorder. Biol. Psychiatry62(8), 901–909 (2007).
  • Maltby N, Tolin DF, Worhunsky P, O’Keefe TM, Kiehl KA. Dysfunctional action monitoring hyperactivates frontal-striatal circuits in obsessive–compulsive disorder: an event-related fMRI study. Neuroimage24(2), 495–503 (2005).
  • Ursu S, Stenger VA, Shear MK, Jones MR, Carter CS. Overactive action monitoring in obsessive–compulsive disorder: evidence from functional magnetic resonance imaging. Psychol. Sci.14(4), 347–353 (2003).
  • Remijnse PL, Nielen MM, van Balkom AJ et al. Reduced orbitofrontal–striatal activity on a reversal learning task in obsessive–compulsive disorder. Arch. Gen. Psychiatry63(11), 1225–1236 (2006).
  • Chamberlain SR, Menzies L, Hampshire A et al. Orbitofrontal dysfunction in patients with obsessive–compulsive disorder and their unaffected relatives. Science321(5887), 421–422 (2008).
  • Gu BM, Park JY, Kang DH et al. Neural correlates of cognitive inflexibility during task-switching in obsessive–compulsive disorder. Brain131(Pt 1), 155–164 (2008).
  • Bunge SA, Hazeltine E, Scanlon MD, Rosen AC, Gabrieli JD. Dissociable contributions of prefrontal and parietal cortices to response selection. Neuroimage17(3), 1562–1571 (2002).
  • Rushworth MF, Paus T, Sipila PK. Attention systems and the organization of the human parietal cortex. J. Neurosci.21(14), 5262–5271 (2001).
  • Badre D, Wagner AD. Computational and neurobiological mechanisms underlying cognitive flexibility. Proc. Natl Acad. Sci. USA103(18), 7186–7191 (2006).
  • Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET. Integrating evidence from neuroimaging and neuropsychological studies of obsessive–compulsive disorder: the orbitofronto–striatal model revisited. Neurosci. Biobehav. Rev.32(3), 525–549 (2008).
  • Mataix-Cols D, Wooderson S, Lawrence N, Brammer MJ, Speckens A, Phillips ML. Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive–compulsive disorder. Arch. Gen. Psychiatry61(6), 564–576 (2004).
  • Saxena S, Rauch SL. Functional neuroimaging and the neuroanatomy of obsessive–compulsive disorder. Psychiatr. Clin. North Am.23(3), 563–586 (2000).
  • Rauch S, Dougherty D, Shin L et al. Neural correlates of factor-analyzed OCD symptom dimensions: a PET study. CNS Spectr.3, 37–43 (1998).
  • Mataix-Cols D, Rosario-Campos MC, Leckman JF. A multidimensional model of obsessive–compulsive disorder. Am. J. Psychiatry162(2), 228–238 (2005).
  • Zohar AH. The epidemiology of obsessive–compulsive disorder in children and adolescents. Child Adolesc. Psychiatr. Clin. N. Am.8(3), 445–460 (1999).
  • Lochner C, Stein DJ. Heterogeneity of obsessive–compulsive disorder: a literature review. Harv. Rev. Psychiatry11(3), 113–132 (2003).
  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med.34(4), 537–541 (1995).
  • Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl Acad. Sci. USA101(13), 4637–4642 (2004).
  • Sorg C, Riedl V, Muhlau M et al. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc. Natl Acad. Sci. USA104(47), 18760–18765 (2007).
  • Wang K, Jiang T, Liang M et al. Discriminative analysis of early Alzheimer’s disease based on two intrinsically anti-correlated networks with resting-state fMRI. In: Medical Image Computing and Computer-Assisted Intervention. Larson R (Ed.). Springer, Berlin, Heidelberg, Germany 340–347 (2006).
  • Zhou Y, Liang M, Tian L et al. Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr. Res.97(1–3), 194–205 (2007).
  • Bluhm RL, Miller J, Lanius RA et al. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr. Bull.33(4), 1004–1012 (2007).
  • Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD. Aberrant ‘default mode’ functional connectivity in schizophrenia. Am. J. Psychiatry164(3), 450–457 (2007).
  • Anand A, Li Y, Wang Y et al. Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol. Psychiatry57(10), 1079–1088 (2005).
  • Greicius MD, Flores BH, Menon V et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry62(5), 429–437 (2007).
  • Jenike MA, Breiter HC, Baer L et al. Cerebral structural abnormalities in obsessive–compulsive disorder. A quantitative morphometric magnetic resonance imaging study. Arch. Gen. Psychiatry53(7), 625–632 (1996).
  • MacMaster FP, Russell A, Mirza Y et al. Pituitary volume in pediatric obsessive–compulsive disorder. Biol. Psychiatry59(3), 252–257 (2006).
  • Lee KJ, Shin YW, Wee H, Kim YY, Kwon JS. Gray matter volume reduction in obsessive–compulsive disorder with schizotypal personality trait. Prog. Neuropsychopharmacol. Biol. Psychiatry30(6), 1146–1149 (2006).
  • Stein DJ, Arya M, Pietrini P, Rapoport JL, Swedo SE. Neurocircuitry of disgust and anxiety in obsessive–compulsive disorder: a positron emission tomography study. Metab. Brain Dis.21(2–3), 267–277 (2006).
  • Saxena S, Brody AL, Ho ML et al. Differential cerebral metabolic changes with paroxetine treatment of obsessive–compulsive disorder vs major depression. Arch. Gen. Psychiatry59(3), 250–261 (2002).
  • Ohara K, Isoda H, Suzuki Y et al. Proton magnetic resonance spectroscopy of lenticular nuclei in obsessive–compulsive disorder. Psychiatry Res.92(2–3), 83–91 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.