16
Views
4
CrossRef citations to date
0
Altmetric
Review

Cellular vaccine therapy for cancer

, &
Pages 303-316 | Published online: 09 Jan 2014

References

  • Coley W The treatment of malignant turnouts by repeated inoculations of erysipelas: with a report of ten original cases. AinJ Med Sc]. 105,487–511 (1983).
  • Aguilar LK, Rooney CM, Heslop HE. Lymphoproliferative disorders involving Epstein-Barr virus after hemopoietic stem cell transplantation. CLI17: Opin. Oncol 11(2), 96–101 (1999).
  • Atkins MB, Lotze MT, Dutcher JP et al High-dose recombinant interleukin-2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993.j Gun. 017C0i 17(7), 2105–2116 (1999).
  • Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J: Gun. Oncol 13(3), 688–696 (1995).
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 392(6673), 245–252 (1998).
  • Caux C, Massacrier C, Vanbervliet B et al. Activation of human dendritic cells through CD40 cross-linking. I Exp. Med 180(4), 1263–1272 (1994).
  • Buelens C, Verhasselt V, De Groote D, Thielemans K, Goldman M, Willems F. Human dendritic cell responses to lipopolysaccharide and CD40 ligation are differentially regulated by interleukin-10. Eur. Immunol 27(8), 1848–1852 (1997).
  • Hartmann G, Weiner GJ, Krieg AM. CpG DNA: a potent signal for growth, activation and maturation of human dendritic cells. Doc. Nat/Acad. Li USA 96(16), 9305–9310 (1999).
  • Matzinger P Tolerance, danger and the extended family. Ann. Rev Immunol 12, 991–1045 (1994).
  • Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T-cell stimulatory capacity: T-T help via APC activation. J: Exp. Med. 184(2), 747–752 (1996).
  • Wong BR, Josien R, Lee SY et al TRANCE (tumor necrosis factor (TNF)-related activation-induced cytokine), a new TNF family member predominantly expressed in T-cells, is a dendritic cell-specific survival factor. Exp. Med 186(12), 2075–2080 (1997).
  • Ehrlich P Ueber den jetzigen Stand der Karzinomforschung. Nederl Tijdschr v Geneesk5, 273–290 (1909).
  • Burnet E Immunological aspects of malignant disease. Lancet 1,1171–1174 (1967).
  • Ferrone S, Marincola FM. Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today 16(10), 487–494 (1995).
  • Cannon M, Cesarman E. Kaposi's sarcoma- associated herpes virus and acquired immunodeficiency syndrome-related malignancy. Semin. 0=1 27(4), 409–419 (2000).
  • Penn I. Depressed immunity and the development of cancer. Cancer Detect. Prey. 18(4), 241–252 (1994).
  • Stutman 0. Immunodepression and malignancy. Adv. Cancer Res. 22,261-422 (1975).
  • Shankaran V, Ikeda H, Bruce AT et al. IFN-gamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832), 1107–1111 (2001).
  • Kaplan DH, Shankaran V, Dighe AS et al. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad. Sc]. USA 95(13), 7556–7561 (1998).
  • Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. Exp. Med. 192 (5), 755–760 (2000).
  • van den Broek ME, Kagi D, Ossendorp F et al Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med 184(5), 1781–1790 (1996).
  • Shiku H, Takahashi T, Oettgen HE Cell surface antigens of human malignant melanoma. II. Serological typing with immune adherence assays and definition of two new surface antigens. I Exp. Merl 144(4), 873–881 (1976).
  • van der Bruggen P, Traversari C, Chomez P et al A gene encoding an antigen recognized by cytolytic T-lymphocytes on a human melanoma. Science 254(5038), 1643–1647 (1991).
  • Topalian SL, Rivoltini L, Mancini M, Ng J, Hartzman RJ, Rosenberg SA. Melanoma-specific CD4+ T-lymphocytes recognize human melanoma antigens processed and presented by Epstein-Barr virus-transformed B-cells. Int. J. Cancer 58 (1), 69–79 (1994).
  • Gaugler B, Van den Eynde B, van der Bruggen P et al Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T-lymphocytes. Exp. Med. 179(3), 921–930 (1994).
  • Liu Z, Savoldo B, Huls H et al Epstein- Barr virus (EBV) -specific cytotoxic T-lymphocytes for the prevention and treatment of EBV-associated post-transplant lymphomas. Recent Results Cancer Res. 159,123–133 (2002).
  • Renkvist N, Castelli C, Robbins PF, Parmiani G. A listing of human tumor antigens recognized by T-cells. Cancer Immunol Immunother. 50(1), 3–15 (2001).
  • Lee PP, Yee C, Savage PA et al Characterization of circulating T-cells specific for tumor-associated antigens in melanoma patients. Nat. Med 5(6), 677–685 (1999).
  • Staveley-O Carroll K, Sotomayor E, Montgomery J et al. Induction of antigen-specific T-cell anergy. An early event in the course of tumor progression. Proc. Natl Acad. Sci. USA 95(3), 1178–1183 (1998).
  • Antonia SJ, Extermann M, Flavell RA. Immunologic nonresponsiveness to tumors. Grit. Rev Oncol 9(1), 35–41 (1998).
  • Pardoll DM. Cancer vaccines. Nat. Med. 4(Suppl. 5), 525–531 (1998).
  • Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol 74,181–273 (2000).
  • Stoler DL, Chen N, Basik M et al The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc. Natl Acad Sci. USA 96(26), 15121–15126 (1999).
  • Hanna MG Jr, Peters LC. Specific immunotherapy of established visceral micrometastases by BCG-tumor cell vaccine alone or as an adjunct to surgery. Cancer 42(6), 2613–2625 (1978).
  • Shu SY, Rosenberg SA. Adoptive immunotherapy of newly induced murine sarcomas. Cancer Res. 45(4), 1657–1662 (1985).
  • Hoover HC Jr, Brandhorst JS, Peters LC et al Adjuvant active specific immunotherapy for human colorectal cancer: 6.5-year median follow-up of a Phase III prospectively randomized trial. Clin. Oncol 11(3), 390–399 (1993).
  • Vermorken JB, Claessen AM, van Tinteren H et al Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet 353(9150), 345–350 (1999).
  • Harris JE, Ryan L, Hoover HC Jr et al Adjuvant active specific immunotherapy for stage II and III colon cancer with an autologous tumor cell vaccine: Eastern Co-operative Oncology Group Study E5283.1 Clin. Oncol 18(1), 148–157 (2000).
  • Hanna MG Jr, Hoover HC Jr, Vermorken JB, Harris JE, Pinedo HM. Adjuvant active specific immunotherapy of stage II and stage III colon cancer with an autologous tumor cell vaccine: first randomized Phase III trials show promise. Vaccine 19(17-19), 2576–2582 (2001).
  • Dranoff G, Jaffee E, Lazenby A et al Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific and long-lasting antitumor immunity. Pmc. Natl Acad Sci. USA 90(8), 3539–3543 (1993).
  • Townsend SE, Allison JR Tumor rejection after direct costimulation of CD8+ T-cells by B7-transfected melanoma cells. Science 259(5093), 368–370 (1993).
  • Dunussi-Joannopoulos K, Krenger W Weinstein HJ, Ferrara FerraraJ, Croop JM. CD8+ T-cells activated during the course of murine acute myelogenous leukemia elicit therapeutic responses to late B7 vaccines after cytoreductive treatment. Bkoc/89 (8), 2915–2924 (1997).
  • Antonia SJ, Seigne J, Diaz J et al Phase I trial of a B7-1 (CD80) gene modified autologous tumor cell vaccine in combination with systemic interleukin-2 in patients with metastatic renal cell carcinoma. J. Ural 167(5), 1995-2000 (2002).
  • Simons JW, Jaffee EM, Weber CE et al Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res. 57(8), 1537–1546 (1997).
  • Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392(6671), 86–89 (1998).
  • Bender A, Bui LK, Feldman MA, Larsson M, Bhardwaj N. Inactivated influenza virus, when presented on dendritic cells, elicits human CD8+ cytolytic T-cell responses. I EAp. Merl 182 (6), 1663–1671 (1995).
  • Yrlid U, Wick MJ. Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells. J. Exp. Merl 191(4), 613–624 (2000).
  • Parlato S, Santini SM, Lapenta C et al Expression of CCR-7, MIP-3beta and Th-1 chemokines in Type I IFN induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities. B/ooc/98(10), 3022–3029 (2001).
  • Fong L, Engleman EG. Dendritic cells in cancer immunotherapy. Ann. Rev Immunol 18,245–273 (2000).
  • Klein C, Bueler H, Mulligan RC. Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J. EAp. Merl 191(10), 1699–1708 (2000).
  • Meng WS, Butterfield LH, Ribas A et al alpha-Fetoprotein-specific tumor immunity induced by plasmid prime-adenovirus boost genetic vaccination. Cancer Res. 61(24), 8782–8786 (2001).
  • Wang J, Saffold S, Cao X, Krauss J, Chen W Eliciting T-cell immunity against poorly immunogenic tumors by immunization with dendritic cell-tumor fusion vaccines. J. Immunol. 161(10), 5516–5524 (1998).
  • Gong J, Chen D, Kashiwaba M et al. Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells. Proc. Natl Acad. Sc]. USA 95(11), 6279–6283 (1998).
  • Kugler A, Stuhler G, Walden P et al Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat. Med. 6(3), 332–336 (2000).
  • Arthur JF, Butterfield LH, Roth MD et al A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther. 4(1), 17–25 (1997).
  • Brossart P, Goldrath AW, Butz EA, Martin S, Bevan MJ. Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL. I Immunol. 158(7), 3270–3276 (1997).
  • Kaplan JM, Yu Q, Piraino ST et al Induction of antitumor immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens. J. Immunol. 163(2), 699–707 (1999).
  • Timmerman JM, Caspar CB, Lambert SL, Syrengelas AD, Levy R. Idiotype-encoding recombinant adenovirus provide protective immunity against murine B-cell lymphomas. B/ooc/97(5), 1370–1377 (2001).
  • Lindemann C, Schilz AJ, Emons B et al Downregulation of retroviral transgene expression during differentiation of progenitor-derived dendritic cells. Exp. Hematol. 30(2), 150–157 (2002).
  • Nair SK, Morse M, Boczkowski D et al Induction of tumor-specific cytotoxic T-lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann. Sorg: 235(4), 540–549 (2002).
  • Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocytes in vitro using human dendritic cells transfected with RNA. Nat. Biotechnol. 16(4), 364–369 (1998).
  • Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in 14tto and in viva J. Exp. Med 184(2), 465–472 (1996).
  • Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD, Gilboa E. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J. Exp. Med. 186(7), 1177–1182 (1997).
  • Heiser A, Coleman D, Dannull J etal. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. Clin. Invest. 109(3), 409–417 (2002).
  • Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T-cell function in humans after injection of immature dendritic cells. J. Exp. Med. 193(2), 233–238 (2001).
  • Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J. Itodiunol Methods 196(2), 121–135 (1996).
  • Romani N, Reider D, Heuer M et al Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J. hnmunol Mthock196(2), 137–151 (1996).
  • Pulendran B, Banchereau J, Maraskovsky E, Maliszewski C. Modulating the immune response with dendritic cells and their growth factors. Trends Immunol. 22(1), 41–47 (2001).
  • Serody JS, Collins EJ, Tisch RM, Kuhns JJ, Frelinger JA. T-cell activity after dendritic cell vaccination is dependent on both the type of antigen and the mode of delivery. J. Immunol. 164(9), 4961–4967 (2000).
  • Klein E, Sjogren H. Humoral and cellular factors in homograft and isograft immunity. Cancer Res. 20,452 (1960).
  • Rosenberg SA, Yang JC, White DE, Steinberg SM. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann. Sorg. 228(3), 307–319 (1998).
  • Vlasveld LT, Rankin EM. Recombinant interleukin-2 in cancer: basic and clinical aspects. Cancer 7i-eat. Rev 20(3), 275–311 (1994).
  • Rosenberg SA, Lotze MT, Yang JC et al. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. I Natl Cancer Inst. 85(8), 622–632 (1993).
  • Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233 (4770), 1318–1321 (1986).
  • Rosenberg SA, Yannelli JR, Yang JC et al Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin-2. I Natl Cancer Inst. 86(15), 1159–1166 (1994).
  • Chang AE, Li Q, Jiang G, Sayre DM, Braun TM, Redman BG. A Phase II trial of antiCD3 activated, vaccine-primed lymphocytes in stage IV renal cell cancer. ASCO Proc. 2002:abstract 10.
  • Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody -binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sc]. USA 90(2), 720–724 (1993).
  • Hwu P, Yang JC, Cowherd R et al In vivo antitumor activity of T-cells redirected with chimeric antibody/T-cell receptor genes. Cancer Res. 55(15), 3369–3373 (1995).
  • Hombach A, Wieczarkowiecz A, Marquardt T et al Tumor-specific T-cell activation by recombinant immunoreceptors: CD3 zeta signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/ CD3 zeta signaling receptor molecule. J. Immunol. 167(11), 6123–6131 (2001).
  • Alvarez-Vallina L, Hawkins RE. Antigen- specific targeting of CD28-mediatedT-cell co-stimulation using chimeric single-chain antibody variable fragment-CD28 receptors. Eur I hnmunol. 26(10), 2304–2309 (1996).
  • Niederman TM, Ghogawala Z, Carter BS, Tompkins HS, Russell MM, Mulligan RC. Antitumor activity of cytotoxic T-lymphocytes engineered to target vascular endothelial growth factor receptors. Bor. Natl Acad. Sc]. USA 99(10), 7009–7014 (2002).
  • Treisman J, Hwu P, Minamoto S et al. Interleukin-2-transduced lymphocytes grow in an autocrine fashion and remain responsive to antigen. fliooc185(1), 139–145 (1995).
  • Eaton D, Gilham DE, O'Neill A, Hawkins RE. Retroviral transduction of human peripheral blood lymphocytes with Bc1-X(L) promotes in vitro lymphocyte survival in pro-apoptotic conditions. Gene Ther. 9(8), 527–535 (2002).
  • Schiavo R, Cormoli P, Pedrazzoli P et al Epstein-Barr (EBV)-specific cytoxic T-lymphocytes (CTLs) for therapy of nasopharyngeal carcinoma (NPC). ASCO Pmc. abstract 103 (2002).
  • Rooney CM, Smith CA, Ng CY et al. Use of gene-modified virus-specific T -lymphocytes to control Epstein- Barr -virus-related lymphoproliferation. Lancet 345(8941), 9–13 (1995).
  • Goulmy E, Schipper R, Pool J et al. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft versus host disease after bone marrow transplantation. N Engl. I Med 334(5), 281–285 (1996).
  • Childs R, Chernoff A, Contentin N et al Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl. I Med 343(11), 750–758 (2000).
  • Bregni M, Dodero A, Peccatori J et al Nonmyeloablative conditioning followed by hematopoietic cell allografting and donor lymphocyte infusions for patients with metastatic renal and breast cancer. B/ooc/99(11), 4234–4236 (2002).
  • Bonini C, Ferrari G, Verzeletti S et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276 (5319), 1719–124 (1997).
  • Fontaine P, Roy-Proulx G, Knafo L, Baron C, Roy DC, Perreault C. Adoptive transferof minor histocompatibility antigen-specific T-lymphocytes eradicates leukemia cells without causing graft versus host disease. Nat. Med. 7(7), 789–794 (2001).
  • Bonnet D, Warren EH, Greenberg PD, Dick JE, Riddell SR. CD8(+) minor histocompatibility antigen-specific cytotoxic T-lymphocyte clones eliminate human acute myeloid leukemia stem cells. Pmc. Natl Acad. Sci. USA 96(15), 8639–8644 (1999).
  • Mutis T, Verdijk R, Schrama E, Esendam B, Brand A, Goulmy E. Feasibility of immunotherapy of relapsed leukemia with ex vivo- generated cytotoxic T-lymphocytes specific for hematopoietic system- restricted minor histocompatibility antigens. Blood 93(7), 2336–2341 (1999).
  • Mutis T, Blokland E, Kester M, Schrama E, Goulmy E. Generation of minor histocompatibility antigen HA-1 specific cytotoxic T-cells restricted by non-self HLA molecules: a potential strategy to treat relapsed leukaemia after HLA-mismatched stem cell transplantation. Blood100(2), 547–552 (2002).
  • Clave E, Molldrem J, Hensel N, Raptis A, Barrett AJ. Donor-recipient polymorphism of the proteinase 3 gene: a potential target for T-cell alloresponses to myeloid leukemia. J. Immunother.22 (1), 1–6 (1999).
  • Molldrem JJ, Lee PP, Wang C et al Evidence that specific T-lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat. Med 6(9),1018–1023 (2000).
  • Molldrem JJ, Lee PP, Wang C, Champlin RE, Davis MM. A PR1-human leukocyte antigen-A2 tetramer can be used to isolate low- frequency cytotoxic T-lymphocytes from healthy donors that selectively lyse chronic myelogenous leukemia. Cancer Res. 59(11), 2675–2681 (1999).
  • Molldrem JJ, Clave E, Jiang YZ et al Cytotoxic T-lymphocytes specific for a nonpolymorphic proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming units. Blood 90(7), 2529–2534 (1997).
  • Gao L, Bellantuono I, Elsasser A et al. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T-lymphocytes specific for WT1. Blood 95(7), 2198–203 (2000).
  • Ohminami H, Yasukawa M, Fujita S. HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T- lymphocyte clone specific for WT1 peptide. Blood 95(1), 286–293 (2000).
  • Gaiger A, Reese V, Disis ML, Cheever MA. Immunity to WT1 in the animal model and in patients with acute myeloid leukemia. B/ooc/ 96 (4), 1480–1489 (2000).
  • Ludewig B, Ochsenbein AF, Odermatt B, Paulin D, Hengartner H, Zinkernagel RM. Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. I Exp. Med 191 (5), 795–804 (2000).
  • Rosenberg SA, White DE. Vitiligo in patients with melanoma: normal tissue antigens can be targets for cancer immunotherapy. I Immunother. Emphasis Tumor Immunol 19(1), 81–84 (1996).
  • Mayordomo JI, Loftus DJ, Sakamoto H et al Therapy of murine tumors with p53 wild type and mutant sequence peptide-based vaccines. IExp. Med. 183(4), 1357–1365 (1996).
  • Vierboom MP, Nijman HW, Offringa R et al. Tumor eradication by wild type p53-specific cytotoxic T-lymphocytes. I Exp. Med 186(5), 695–704 (1997).
  • Morgan DJ, Kreuwel HT Fleck S, Levitsky LevitskyH, Pardoll DM, Sherman LA. Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. hrrnunol 160(2), 643–51 (1998).
  • Keilholz U, Weber J, Finke JH et al Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the society for biological therapy. Immunother. 25(2), 97–138 (2002).
  • Polychemotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists' Collaborative Group. Lancet 352(9132), 930–942 (1998).
  • Van't Veer LJ, De Jong D. The microarray way to tailored cancer treatment. Nat. Med. 8(1), 13–4 (2002).
  • Pfreundschuh M. Exploitation of the B-cell repertoire for the identification of human tumor antigens. Cancer Chemother. Pharmacol 46 (Suppl), S3-7 (2000).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.