17
Views
13
CrossRef citations to date
0
Altmetric
Review

Immunotherapy in multiple myeloma: current strategies and future prospects

Pages 391-398 | Published online: 09 Jan 2014

References

  • Barlogie B, Jagannath S, Desikan KR et al Total therapy with tandem transplants for newly diagnosed multiple myeloma. Blood 93(1), 55–65 (1999).
  • Desikan R, Barlogie B, Sawyer J et al. Results of high-dose therapy for 1000 patients with multiple myeloma: durable complete remissions and superior survival in the absence of chromosome 13 abnormalities. B/ooc/95(12), 4008–4010 (2000).
  • Tricot G, Vesole DH, Jagannath S, Hilton J, Munshi N, Barlogie B. Graft-versus-myeloma effect: proof of principle. Blood 87(3), 1196–1198 (1996).
  • •First evidence of graft-versus-myeloma effects.
  • Verdonck LF, Lokhorst HM, Dekker AW, Nieuwenhuis HK, Petersen EJ. Graft-versus-myeloma effect in two cases. Lancet 347, 800–801 (1996).
  • •First evidence of graft-versus-myeloma effects.
  • Yi Q. Immunoregulatory mechanisms and immunotherapy. In: Myeloma. Mehta J, Singhal S (Ed.). Martin Dunitz, London, UK, 81–96 (2002).
  • Alexanian R, Dimopoulos M. The treatment of multiple myeloma. N Engl. Med. 330, 484–489 (1994).
  • Bogen B, Weiss S. Processing and presentation of idiotypes to IVIHC-restricted T cells. Int. Rev Immunol 10, 337–355 (1993).
  • Duperray C, Klein B, Dune BG et al. Phenotypic analysis of human myeloma cell lines. B/ooc/73(2), 566–572 (1989).
  • Yi Q, Dabadghao S, Österborg A, Bergenbrant S, Holm G. Myeloma bone marrow plasma cells: evidence for their capacity as antigen-presenting cells. Blood 90(5), 1960–1967 (1997).
  • •Demonstration that myeloma cells could act as antigen-presenting cells.
  • Leo R, Boeker M, Peest D al. Multiparameter analyses of normal and malignant human plasma cells: CD38++, CD56±, CD54±, cIg* is the common phenotype of myeloma cells. Ann. Hematol 64, 132–139 (1992).
  • Barker HF, Hamilton MS, Ball J, Drew M, Franklin IM. Expression of adhesion molecules IFA-3 and N-CAM on normal and malignant human plasma cells. BE 1--Lemata 81, 331–335 (1992).
  • Westendorf JJ, Ahmann GJ, Armitage RJ et al CD40 expression in malignant plasma cells. Role in stimulation of autocrine IL-6 secretion by a human myeloma cell line. J. Immunol 152,117–128 (1994).
  • Pellat-Deceunynck C, Bataille R, Robillard N et al. Expression of CD28 and CD40 in human myeloma cells: a comparative study with normal plasma cells. Blood 84, 2597–2603 (1994).
  • Hata H, Matsuzaki H, Takeya M et al. Expression of Fas/Apo-1 (CD95) and apoptosis in tumor cells from patients with plasma cell disorders. B/ooc/86,1939–1945 (1995).
  • Sirisinha S, Eisen HN. Autoimmune-like antibodies to the ligand-binding sites of myeloma proteins. Proc. Natl Acad. Sc]. USA 68,3130–3135 (1971).
  • Stevenson FK, Gordon J. Immunization with idiotypic immunoglobulin protects against development of B-lymphocytic leukemia, but emerging tumor cells can evade antibody attack by modulation. J. Immunol 130,970–973 (1983).
  • Kaminski MS, Kitamura K, Maloney DG, Levy R. Idiotype vaccination against murine B-cell lymphoma: inhibition of tumor immunity by free idiotype protein. Immunol 138,1289–1296 (1987).
  • Campbell MJ, Esserman L, Byars NE, Allison AC, Levy R. Idiotype vaccination against murine B-cell lymphoma: humoral and cellular requirements for the full expression of antitumor immunity. Immunol 145,1029–1036 (1990).
  • Yi Q, Bergenbrant S, österborg A et al. T- cell stimulation induced by idiotypes on monoclonal immunoglobulins in patients with monoclonal gammopathies. Scand Immunol 38,529–534 (1993).
  • •First evidence that Id-specific T-cells could be detected in myeloma patients.
  • österborg Yi, A. Bergenbrant, Q. Holm, S. G, Lefvert Lefvert A, Mellstedt H. Idiotype-specific T cells in multiple myeloma Stage I: an evaluation by four different functional tests. Br. 1-Lematol. 89,110-116 (1995).
  • Wen YJ, Ling M, Lim SH. Immunogenicity and cross-reactivity with idiotypic IgA of VH CDR3 peptide in multiple myeloma. BE J. 1-Lematol. 100, 464–468 (1998).
  • Fagerberg J, Yi Q, Gigliotti D et al. T cell epitope mapping of the idiotypic monoclonal IgG heavy and light chains in multiple myeloma. Int. J. Cancer80(5), 671–680 (1999).
  • Yi Q, Eriksson I, He W Holm G, Mellstedt H, österborg A. Idiotype-specific T lymphocytes in monoclonal gammopathies. Evidence for the presence of CD4* and CD8* subsets. Brj Thematol 96,338–345 (1997).
  • Yi Q, österborg A, Bergenbrant S, Mellstedt H, Holm G, Lefvert AK. Idiotype-reactive T subsets and tumor load in monoclonal gammopathies. B/ooc/86(8), 3043–3049 (1995).
  • Wakhner M, Wick M. Elevation of CD8*CD1 1b+Leu-8- T cells is associated with the humoral immunodeficiency in myeloma patients. Clin. Exp. Immunol 109,310–316 (1997).
  • Wen YJ, Barlogie B, Yi Q. Idiotype-specific cytotoxic T lymphocytes in multiple myeloma: evidence for their capacity to lyse autologous primary tumor cells. Blood 97(6), 1750–1755 (2001).
  • •See [27] also. First evidence that Id-specific T-cells can lyse primary myeloma cells.
  • Li Y, Bendandi M, Deng Y et al Tumor- specific recognition of human myeloma cells by idiotype-induced CD8* T cells. B/ooc/96(8), 2828–2833 (2000).
  • Wen YJ, Min R, Tricot G, Barlogie B, Yi Q. Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma: promising effector cells for immunotherapy. B/ooc/99(9), 3280–3285 (2002).
  • Dhodapkar MV, Krasovsky J, Olson K. T cells from the tumor microenvironment of patients with progressive myeloma can generate strong, tumor-specific cytolytic responses to autologous, tumor-loaded dendritic cells. Proc. Natl Acad. Sc]. USA 99(20), 13009–13013 (2002).
  • Milazzo C, Reichardt VL, Miller MR, Grunebach F, Brossart P Induction of myeloma-specific cytotoxic T cells using dendritic cells transfected with tumor-derived RNA. Blood101(3), 977–982 (2003).
  • van Baren N, Brasseur F, Godelaine D et al. Genes encoding tumor-specific antigens are expressed in human myeloma cells. Blood 94,1156–1164 (1999).
  • Pellat-Deceunynck C, Mellerin MP, Labarriere N et al. The cancer germ-line genes MAGE-1, MAGE-3 and PRAME are commonly expressed by human myeloma cells. Eur. j Immunol 30,803–809 (2000).
  • Gupta SK, Shaughnessy J, Droojenbroeck JV et al. NY-ESO-1 RNA and protein expression in multiple myeloma is highest in aggressive myeloma and is correlated with chromosomal abnormalities. Blood 100(11), 401a (2002) (Abstract).
  • Gupta SK, Pei L, Droojenbroeck JV et al Intra- and intertumoral variation in the expression of cancer testis antigens, MAGE-3 and NY-ESO-1 in multiple myeloma. Blood 100 (11), 603a (2002) (Abstract).
  • Szmania SM, Bennett G, Batchu RB-et al. Dendritic cells pulsed with NY-ESO-1 and MAGE-3 peptide stimulate myeloma cytotoxic T lymphocytes. Blood100(11), 399a (2002) (Abstract).
  • Treon SP, Mollick JA, Urashima M et al. Muc-1 core protein is expressed on multiple myeloma cells and is induced by dexamethasone. B/ooc/93(4), 1287–1298 (1999).
  • Lim SH, Wang Z, Chiriva-Intemati M, Xue Y. Sperm protein 17 is a novel cancer-testis antigen in multiple myeloma. Blood 97(5), 1508–1510 (2001).
  • Ohtomo T, Sugamata Y, Ozaki Y et al. Molecular cloning and characterization of a surface antigen preferentially overexpressed on multiple myeloma cells. Biochem. Biophys. Res. Commun. 258(3), 583–591 (1999).
  • Noto H, Takahashi T, Makiguchi Y, Hayashi T, Hinoda Y, Imai K. Cytotoxic T lymphocytes derived from bone marrow mononuclear cells of multiple myeloma patients recognized an underglycosylated form of MUC1 mucin. Int. Immunol 9(5), 791–798 (1997).
  • Chiriva-Intemati M, Wang Z, Salati E, Bumm K, Barlogie B, Lim SH. Sperm protein 17 (Sp17) is a suitable target for immunotherapy of multiple myeloma. Blood100(3), 961–965 (2002).
  • Lim SH, Chiriva-Intemati M, Wang Z, Salati E. Sperm protein 17 (Sp17) as a tumor vaccine for multiple myeloma. Blood 100(11), 673a (2002) (Abstract).
  • Lacy HM, Sanderson RD. Sperm protein 17 is expressed on normal and malignant lymphocytes and promotes heparan sulfate-mediated cell—cell adhesion. Blood 98(7), 2160–2165 (2001).
  • Bergenbrant S, Yi Q, österborg A et al. Modulation of anti-idiotypic immune response by immunization with the autologous M-component protein in multiple myeloma patients. BE I1-Lematol. 92,840-846 (1996).
  • österborg Yi, A. Henriksson, Q. L et al Idiotype immunization combined with granulocyte-macrophage colony-stimulating factor in myeloma patients induced Type I, major histocompatibility complex-restricted, CD8- and CD4-specific T-cell responses. B/ooc/91 (7), 2459–2466 (1998).
  • Massaia M, Borrione P, Battaglio S et al Idiotype vaccination in human myeloma: generation of tumor-specific immune responses after high-dose chemotherapy. B/ooc/94(2), 673–683 (1999).
  • Kwak LW Taub DD, Duffey PL et al. Transfer of myeloma idiotype-specific immunity from an actively immunised marrow donor. Lancet 345,1016–1020 (1995).
  • Dabadghao S, Bergenbrant S, Anton D, He W Holm G, Yi Q. Anti-idiotypic T-cell activation in multiple myeloma induced by M-component fragments presented by dendritic cells. BE J. 1-Lematol. 100, 647–654 (1998).
  • Butch AW, Kelly IKA, Munshi NC. Dendritic cells derived from multiple myeloma patients efficiently internalize different classes of myeloma protein. Exp. Hematol 29(1), 85–92 (2001).
  • Hsu FJ, Benike C, Fagnoni F et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Merl 2,52-58 (1996). See also [50]. First demonstration that vaccination with tumor antigen-pulsed DCs could induce tumor regression in human malignancies.
  • Nestle FO, Alijagic S, Gilliet M et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Merl 4,328–332 (1998).
  • Wen YJ, Ling M, Bailey-Wood R, Lim SH. Idiotypic protein-pulsed adherent peripheral blood mononuclear cell-derived dendritic cells prime immune system in multiple myeloma. Gun. Cancer Res. 4(4), 957–962 (1998).
  • Lim SH, Bailey-Wood R. Idiotypic protein- pulsed dendritic cell vaccination in multiple myeloma. Int.j Cancer 83 (2), 215–222 (1999).
  • Reichardt VL, Okada CY, Liso A et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma: a feasibility study. B/ooc/93(7), 2411–2419 (1999).
  • Liso A, Stockerl-Goldstein KE, Auffermann- Gretzinger S et al Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol. Blood Marlow Transplant. 6(6), 621–627 (2000).
  • Cull G, Durrant L, Stainer C, Haynes A, Russell N. Generation of anti-idiotype immune responses following vaccination with idiotype-protein pulsed dendritic cells in myeloma. Br. I-Lematol 107,648–655 (1999).
  • Titzer S, Christensen 0, Manzke 0 et al. Vaccination of multiple myeloma patients with idiotype-pulsed dendritic cells: immunological and clinical aspects. BE J. 1-Lematol. 108(4), 805–816 (2000).
  • Lacy MQ, Geyer S, Wettstein P et al. Post autologous transplantation consolidation of multiple myeloma with idiotype-pulsed antigen presenting (dendrite) cells (APC8020) is associated with a trend to longer time to progression. Blood100 (11), 425a (2002) (Abstract).
  • Yi Q, Desikan R, Barlogie B, Munshi N. Optimising dendritic cell-based immunotherapy in multiple myeloma. BE 1-Lematol. 117(2), 297–305 (2002).
  • Szmania SM, Rosen NA, Gupta SK et al. Robust immune responses to vaccination with autologous myeloma tumor lysate loaded dendritic cells. Blood 100 (11), 400a (2002) (Abstract).
  • Gong J, Chen D, Kufe D. Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat. Merl 3,558–561 (1997).
  • Wang J, Saffold S, Cao X, Krauss J, Chen W Eliciting T cell immunity against poorly immunogenic tumors by immunization with dendritic cell-tumor fusion vaccines. J. Immunol 161,5516–5524 (1998).
  • Gong J, Chen D, Kashiwaba M et al. Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells. Pmc. Natl Acad. Li. USA 95,6279–6283 (1998).
  • Kugler A, Stuhler G, Walden P et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat. Med 6, 332–336 (2000).
  • Gong J, Koido S, Chen D et al. Immunization against murine multiple myeloma with fusions of dendritic and plasmacytoma cells is potentiated by interleukin 12. B/ooc/99(7), 2512–2517 (2002).
  • Grosman DD, Borges V, Vasir D et al Dendritic cell (DC)-tumor fusions generated with mature as compared to immature DC potently induce myeloma specific immunity. B/ooc/100(11), 399a (2002) (Abstract).
  • Zhu D, Rice J, Savelyeva N, Stevenson FK. DNA fusion vaccines against B-cell tumors. Tlynds Mal Merl 7(12), 566–572 (2001).
  • King CA, Spellerberg MB, Zhu D et al. DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat. Med. 4,1281–1286 (1998).
  • Wendtner CM, Nolte A, Mangold E et al. Gene transfer of costimulatory molecules B7-1 and B7-2 into human multiple myeloma cells by recombinant adeno-associated virus enhances the cytolytic T-cell response. Gene Ther. 4,726–735 (1997).
  • Russell SJ, Dunbar CE. Gene therapy approaches for multiple myeloma. Semin. Hematol 38(3), 268–275 (2001).
  • Thirdborough ST, Radcliffe JN, Friedmann PS, Stevenson FK. Vaccination with DNA encoding a single-chain TCR fusion protein induces anticlonotypic immunity and protects against T-cell lymphoma. Cancer Res. 62,1757–1760 (2002).
  • Timmerman JM, Caspar CB, Lambert SL, Syrengelas S, Levy R. Idiotype-encoding recombinant adenoviruses provide protective immunity against murine B-cell lymphoma. B/ooc/97,1370–1377 (2001).
  • Syrengelas S, Chen TT, Levy R DNA immunization induces protective immunity against B-cell lymphoma. Nat. Med. 2, 1038–1041 (1996).
  • Trudel S, Li Z, Dodgson C et al. Adenovector engineered interleukin-2 expressing autologous plasma cell vaccination after high-dose chemotherapy for multiple myeloma — a Phase I study. Leukemia 15(5), 846–854 (2001).
  • Hu HM, Urba WJ, Fox BA. Gene- modified tumor vaccine with therapeutic potential shifts tumor-specific T cell response from a Type 2 to a Type 1 cytokine profile. I Iminunol 161, 3033–3041 (1998).
  • Clark EA, Ledbetter JA. How B- and T- eens talk to each other. Nature 367, 425–428 (1994).
  • Hilbert DM, Shen MY, Rapp UR, Rudikoff S. T cells induce terminal differentiation of transformed B-cells to mature plasma cell tumors. Proc. Natl Acad. Li. USA 92,649–653 (1995).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.