645
Views
53
CrossRef citations to date
0
Altmetric
Special Focus: Vaccine Adjuvants - Review

Combination of adjuvants: the future of vaccine design

, , , , &
Pages 733-746 | Published online: 09 Jan 2014

References

  • Leroux-Roels G. Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine 28(Suppl. 3), C25–C36 (2010).
  • Aurisicchio L, Ciliberto G. Patented cancer vaccines: the promising leads. Expert Opin. Ther. Pat. 20(5), 647–660 (2010).
  • Qu L, Lemon SM. Hepatitis A and hepatitis C viruses: divergent infection outcomes marked by similarities in induction and evasion of interferon responses. Semin. Liver Dis. 30(4), 319–332 (2010).
  • Marsili G, Remoli AL, Sgarbanti M, Perrotti E, Fragale A, Battistini A. HIV-1, interferon and the interferon regulatory factor system: an interplay between induction, antiviral responses and viral evasion. Cytokine Growth Factor Rev. 23(4–5), 255–270 (2012).
  • Singh Y, Kaul V, Mehra A et al. Mycobacterium tuberculosis controls microRNA-99b (miR-99b) expression in infected murine dendritic cells to modulate host immunity. J. Biol. Chem. 288(7), 5056–5061 (2013).
  • Blomgran R, Desvignes L, Briken V, Ernst JD. Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe 11(1), 81–90 (2012).
  • Woodworth JS, Shin D, Volman M, Nunes-Alves C, Fortune SM, Behar SM. Mycobacterium tuberculosis directs immunofocusing of CD8+ T cell responses despite vaccination. J. Immunol. 186(3), 1627–1637 (2011).
  • Harzstark AL, Small EJ. Immunotherapy for prostate cancer using antigen-loaded antigen-presenting cells: APC8015 (Provenge). Expert Opin. Biol. Ther. 7(8), 1275–1280 (2007).
  • Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 9(4), 287–293 (2009).
  • Podda A. The adjuvanted influenza vaccines with novel adjuvants: experience with the MF59-adjuvanted vaccine. Vaccine 19(17–19), 2673–2680 (2001).
  • Carter NJ, Plosker GL. Prepandemic influenza vaccine H5N1 (split virion, inactivated, adjuvanted) [Prepandrix]: a review of its use as an active immunization against influenza A subtype H5N1 virus. BioDrugs 22(5), 279–292 (2008).
  • Geeraedts F, Huckriede A. Influenza vaccines: what do we want and how can we get it? Adv. Exp. Med. Biol. 780, 161–174 (2011).
  • O’Hagan DT, Ott GS, Nest GV, Rappuoli R, Giudice GD. The history of MF59® adjuvant: a phoenix that arose from the ashes. Expert Rev. Vaccines 12(1), 13–30 (2013).
  • Garçon N, Vaughn DW, Didierlaurent AM. Development and evaluation of AS03, an Adjuvant System containing a-tocopherol and squalene in an oil-in-water emulsion. Expert Rev. Vaccines 11(3), 349–366 (2012).
  • Bovier PA. Epaxal: a virosomal vaccine to prevent hepatitis A infection. Expert Rev. Vaccines 7(8), 1141–1150 (2008).
  • Kundi M. New hepatitis B vaccine formulated with an improved adjuvant system. Expert Rev. Vaccines 6(2), 133–140 (2007).
  • Szarewski A. Cervarix®: a bivalent vaccine against HPV types 16 and 18, with cross-protection against other high-risk HPV types. Expert Rev. Vaccines 11(6), 645–657 (2012).
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 33(4), 492–503 (2010).
  • Kasturi SP, Skountzou I, Albrecht RA et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470(7335), 543–547 (2011).
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11(5), 373–384 (2010).
  • Harandi AM, Medaglini D, Shattock RJ; Working Group convened by EUROPRISE. Vaccine adjuvants: a priority for vaccine research. Vaccine 28(12), 2363–2366 (2010).
  • Palm NW, Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol. Rev. 227(1), 221–233 (2009).
  • Kabelitz D, Medzhitov R. Innate immunity–cross-talk with adaptive immunity through pattern recognition receptors and cytokines. Curr. Opin. Immunol. 19(1), 1–3 (2007).
  • Steinhagen F, Kinjo T, Bode C, Klinman DM. TLR-based immune adjuvants. Vaccine 29(17), 3341–3355 (2011).
  • Querec T, Bennouna S, Alkan S et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med. 203(2), 413–424 (2006).
  • Mutwiri G, Gerdts V, van Drunen Littel-van den Hurk S et al. Combination adjuvants: the next generation of adjuvants? Expert Rev. Vaccines 10(1), 95–107 (2011).
  • Heldwein KA, Liang MD, Andresen TK et al. TLR2 and TLR4 serve distinct roles in the host immune response against Mycobacterium bovis BCG. J. Leukoc. Biol. 74(2), 277–286 (2003).
  • Kawai K, Miyazaki J, Joraku A, Nishiyama H, Akaza H. Bacillus Calmette-Guerin (BCG) immunotherapy for bladder cancer: current understanding and perspectives on engineered BCG vaccine. Cancer Sci. 104(1), 22–27 (2013).
  • Hancock RE, Nijnik A, Philpott DJ. Modulating immunity as a therapy for bacterial infections. Nat. Rev. Microbiol. 10(4), 243–254 (2012).
  • Zaheer SA, Mukherjee R, Ramkumar B et al. Combined multidrug and Mycobacterium w vaccine therapy in patients with multibacillary leprosy. J. Infect. Dis. 167(2), 401–410 (1993).
  • Martinon F, Tschopp J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol. 26(8), 447–454 (2005).
  • Geddes K, Magalhães JG, Girardin SE. Unleashing the therapeutic potential of NOD-like receptors. Nat. Rev. Drug Discov. 8(6), 465–479 (2009).
  • Agnandji ST, Lell B, Fernandes JF et al. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N. Engl. J. Med 367(24), 2284–2295 (2012).
  • Goldinger SM, Dummer R, Baumgaertner P et al. Nano-particle vaccination combined with TLR-7 and -9 ligands triggers memory and effector CD8? T-cell responses in melanoma patients. Eur. J. Immunol. 42(11), 3049–3061 (2012).
  • Remarque EJ, Roestenberg M, Younis S et al. Humoral immune responses to a single allele PfAMA1 vaccine in healthy malaria-naive adults. PLoS ONE 7(6), e38898 (2012).
  • Leroux-Roels I, Forgus S, De Boever F et al.; M72 Study Group. Improved CD4? T cell responses to Mycobacterium tuberculosis in PPD-negative adults by M72/AS01 as compared to the M72/AS02 and Mtb72F/AS02 tuberculosis candidate vaccine formulations: a randomized trial. Vaccine 31(17), 2196–2206 (2013).
  • Van Braeckel E, Bourguignon P, Koutsoukos M et al. An adjuvanted polyprotein HIV-1 vaccine induces polyfunctional cross-reactive CD4+ T cell responses in seronegative volunteers. Clin. Infect. Dis. 52(4), 522–531 (2011).
  • Sokal EM, Hoppenbrouwers K, Vandermeulen C et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein–Barr virus vaccine in healthy young adults. J. Infect. Dis. 196(12), 1749–1753 (2007).
  • Fourcade J, Kudela P, Andrade Filho PA et al. Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients. J. Immunother. 31(8), 781–791 (2008).
  • Karbach J, Gnjatic S, Bender A et al. Tumor-reactive CD8+ T-cell responses after vaccination with NY-ESO-1 peptide, CpG 7909 and Montanide ISA-51: association with survival. Int. J. Cancer 126(4), 909–918 (2010).
  • Sabbatini P, Tsuji T, Ferran L et al. Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin. Cancer Res. 18(23), 6497–6508 (2012).
  • Galluzzi L, Vacchelli E, Eggermont A et al. Trial Watch: Experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 1(5), 699–716 (2012).
  • Luo Y, Knudson MJ. Mycobacterium bovis bacillus Calmette–Guérin-induced macrophage cytotoxicity against bladder cancer cells. Clin. Dev. Immunol. 2010, 357591 (2010).
  • Stewart JH 4th, Levine EA. Role of bacillus Calmette–Guérin in the treatment of advanced melanoma. Expert Rev. Anticancer Ther. 11(11), 1671–1676 (2011).
  • Wille-Reece U, Flynn BJ, Loré K et al. Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime-boost immunization in nonhuman primates. J. Exp. Med. 203(5), 1249–1258 (2006).
  • Mosolits S, Nilsson B, Mellstedt H. Towards therapeutic vaccines for colorectal carcinoma: a review of clinical trials. Expert Rev. Vaccines 4(3), 329–350 (2005).
  • Hennessy EJ, Parker AE, O’Neill LA. Targeting Toll-like receptors: emerging therapeutics? Nat. Rev. Drug Discov. 9(4), 293–307 (2010).
  • Vacchelli E, Galluzzi L, Eggermont A et al. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncoimmunology 1(6), 894–907 (2012).
  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6), 973–983 (1996).
  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640), 394–397 (1997).
  • Kenny EF, O’Neill LA. Signalling adaptors used by Toll-like receptors: an update. Cytokine 43(3), 342–349 (2008).
  • Zhu Q, Egelston C, Vivekanandhan A et al. Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: implications for vaccines. Proc. Natl Acad. Sci. USA 105(42), 16260–16265 (2008).
  • O’Neill LA. When signaling pathways collide: positive and negative regulation of toll-like receptor signal transduction. Immunity 29(1), 12–20 (2008).
  • Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 6(8), 769–776 (2005).
  • Roelofs MF, Joosten LA, Abdollahi-Roodsaz S et al. The expression of toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum. 52(8), 2313–2322 (2005).
  • Ghosh TK, Mickelson DJ, Fink J et al. Toll-like receptor (TLR) 2-9 agonists-induced cytokines and chemokines: I. Comparison with T cell receptor-induced responses. Cell. Immunol. 243(1), 48–57 (2006).
  • Hong X, Tong S. Cortical functional connectivity under different auditory attentional efforts. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 6196–6199 (2012).
  • Lim SN, Kuhn S, Hyde E, Ronchese F. Combined TLR stimulation with Pam3Cys and Poly I: C enhances Flt3-ligand dendritic cell activation for tumor immunotherapy. J. Immunother. 35(9), 670–679 (2012).
  • Grossmann C, Tenbusch M, Nchinda G et al. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands. BMC Immunol. 10, 43 (2009).
  • Zhu Q, Egelston C, Gagnon S et al. Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice. J. Clin. Invest. 120(2), 607–616 (2010).
  • Whitmore MM, DeVeer MJ, Edling A et al. Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced antitumor activity. Cancer Res. 64(16), 5850–5860 (2004).
  • Wiley SR, Raman VS, Desbien A et al. Targeting TLRs expands the antibody repertoire in response to a malaria vaccine. Sci. Transl. Med. 3(93), 93ra69 (2011).
  • Garin A, Meyer-Hermann M, Contie M et al. Toll-like receptor 4 signaling by follicular dendritic cells is pivotal for germinal center onset and affinity maturation. Immunity 33(1), 84–95 (2010).
  • Ichinohe T, Ainai A, Ami Y et al. Intranasal administration of adjuvant-combined vaccine protects monkeys from challenge with the highly pathogenic influenza A H5N1 virus. J. Med. Virol. 82(10), 1754–1761 (2010).
  • Ainai A, Ichinohe T, Tamura S et al. Zymosan enhances the mucosal adjuvant activity of poly(I:C) in a nasal influenza vaccine. J. Med. Virol. 82(3), 476–484 (2010).
  • Duthie MS, Windish HP, Fox CB, Reed SG. Use of defined TLR ligands as adjuvants within human vaccines. Immunol. Rev. 239(1), 178–196 (2011).
  • Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453(7198), 1122–1126 (2008).
  • Harris J, Sharp FA, Lavelle EC. The role of inflammasomes in the immunostimulatory effects of particulate vaccine adjuvants. Eur. J. Immunol. 40(3), 634–638 (2010).
  • Fritz JH, Le Bourhis L, Sellge G et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26(4), 445–459 (2007).
  • Traub S, von Aulock S, Hartung T, Hermann C. MDP and other muropeptides – direct and synergistic effects on the immune system. J. Endotoxin Res. 12(2), 69–85 (2006).
  • Schwarz H, Posselt G, Wurm P, Ulbing M, Duschl A, Horejs-Hoeck J. TLR8 and NOD signaling synergistically induce the production of IL-1β and IL-23 in monocyte-derived DCs and enhance the expression of the feedback inhibitor SOCS2. Immunobiology 218(4), 533–542 (2013).
  • Tada H, Aiba S, Shibata K, Ohteki T, Takada H. Synergistic effect of Nod1 and Nod2 agonists with toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells. Infect. Immun. 73(12), 7967–7976 (2005).
  • Uehara A, Yang S, Fujimoto Y et al. Muramyldipeptide and diaminopimelic acid-containing desmuramylpeptides in combination with chemically synthesized Toll-like receptor agonists synergistically induced production of interleukin-8 in a NOD2- and NOD1-dependent manner, respectively, in human monocytic cells in culture. Cell. Microbiol. 7(1), 53–61 (2005).
  • Schiller JT, Castellsagué X, Villa LL, Hildesheim A. An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine 26(Suppl. 10), K53–K61 (2008).
  • Giannini SL, Hanon E, Moris P et al. Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine 24(33–34), 5937–5949 (2006).
  • Paavonen J, Jenkins D, Bosch FX et al.; HPV PATRICIA study group. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a Phase III double-blind, randomised controlled trial. Lancet 369(9580), 2161–2170 (2007).
  • Joura EA, Leodolter S, Hernandez-Avila M et al. Efficacy of a quadrivalent prophylactic human papillomavirus (types 6, 11, 16, and 18) L1 virus-like-particle vaccine against high-grade vulval and vaginal lesions: a combined analysis of three randomised clinical trials. Lancet 369(9574), 1693–1702 (2007).
  • Villa LL, Costa RL, Petta CA et al. High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years of follow-up. Br. J. Cancer 95(11), 1459–1466 (2006).
  • Han JE, Wui SR, Park SA et al. Comparison of the immune responses to the CIA06-adjuvanted human papillomavirus L1 VLP vaccine with those against the licensed HPV vaccine Cervarix™ in mice. Vaccine 30(28), 4127–4134 (2012).
  • Freeman EE, Weiss HA, Glynn JR, Cross PL, Whitworth JA, Hayes RJ. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS 20(1), 73–83 (2006).
  • Morello CS, Kraynyak KA, Levinson MS, Chen Z, Lee KF, Spector DH. Inactivated HSV-2 in MPL/alum adjuvant provides nearly complete protection against genital infection and shedding following long term challenge and rechallenge. Vaccine 30(46), 6541–6550 (2012).
  • Gershon AA, Arvin AM, Levin MJ, Seward JF, Schmid DS. Varicella vaccine in the United States: a decade of prevention and the way forward. J. Infect. Dis. 197(Suppl. 2), S39–S40 (2008).
  • Dendouga N, Fochesato M, Lockman L, Mossman S, Giannini SL. Cell-mediated immune responses to a varicella-zoster virus glycoprotein E vaccine using both a TLR agonist and QS21 in mice. Vaccine 30(20), 3126–3135 (2012).
  • Wui SR, Kim HK, Han JE et al. A combination of the TLR4 agonist CIA05 and alum promotes the immune responses to Bacillus anthracis protective antigen in mice. Int. Immunopharmacol. 11(9), 1195–1204 (2011).
  • Grabenstein JD. Anthrax vaccine: a review. Immunol. Allergy Clin. North Am. 23(4), 713–730 (2003).
  • Bossi P, Tegnell A, Baka A et al.; Task Force on Biological and Chemical Agent Threats, Public Health Directorate, European Commission, Luxembourg. Bichat guidelines for the clinical management of anthrax and bioterrorism-related anthrax. Euro Surveill. 9(12), E3–E4 (2004).
  • Gu M, Hine PM, James Jackson W, Giri L, Nabors GS. Increased potency of BioThrax anthrax vaccine with the addition of the C-class CpG oligonucleotide adjuvant CPG 10109. Vaccine 25(3), 526–534 (2007).
  • Tross D, Klinman DM. Effect of CpG oligonucleotides on vaccine-induced B cell memory. J. Immunol. 181(8), 5785–5790 (2008).
  • Rynkiewicz D, Rathkopf M, Sim I et al. Marked enhancement of the immune response to BioThrax® (Anthrax Vaccine Adsorbed) by the TLR9 agonist CPG 7909 in healthy volunteers. Vaccine 29(37), 6313–6320 (2011).
  • Yang M, Yan Y, Fang M et al. MF59 formulated with CpG ODN as a potent adjuvant of recombinant HSP65-MUC1 for inducing anti-MUC1+ tumor immunity in mice. Int. Immunopharmacol. 13(4), 408–416 (2012).
  • Gong M, Zhou J, Yang C et al. Insect cell-expressed hemagglutinin with CpG oligodeoxynucleotides plus alum as an adjuvant is a potential pandemic influenza vaccine candidate. Vaccine 30(52), 7498–7505 (2012).
  • Ghandi MK, Khanna R. Human cytomegalovirus: clinical aspects, immune regulation and emerging treatments. Lancet Infect. Dis. 4(12), 725–738 (2004).
  • Crough T, Khanna R. Immunobiology of human cytomegalovirus: from bench to bedside. Clin. Microb. Rev. 22(1), 76–98 (2009).
  • Dasari V, Smith C, Zhong J, Scott G, Rawlinson W, Khanna R. Recombinant glycoprotein B vaccine formulation with Toll-like receptor 9 agonist and immune-stimulating complex induces specific immunity against multiple strains of cytomegalovirus. J. Gen. Virol. 92(Pt 5), 1021–1031 (2011).
  • Naarding MA, Falkowska E, Xiao H, Dragic T. Hepatitis C virus soluble E2 in combination with QuilA and CpG ODN induces neutralizing antibodies in mice. Vaccine 29(16), 2910–2917 (2011).
  • Zhan N, Xiu BS, Wang GH et al. Enhancement of humoral immunity in mice by coupling pUCpGs10 and aluminium to the HCV recombinant immunogen. Virol. J. 8, 507 (2011).
  • Lee CJ, Lee LH, Frasch CE. Protective immunity of pneumococcal glycoconjugates. Crit. Rev. Microbiol. 29(4), 333–349 (2003).
  • Denoël P, Philipp MT, Doyle L, Martin D, Carletti G, Poolman JT. A protein-based pneumococcal vaccine protects rhesus macaques from pneumonia after experimental infection with Streptococcus pneumoniae. Vaccine 29(33), 5495–5501 (2011).
  • Philipp MT, Purcell JE, Martin DS et al. Experimental infection of rhesus macaques with Streptococcus pneumoniae: a possible model for vaccine assessment. J. Med. Primatol. 35(3), 113–122 (2006).
  • Safari D, Dekker HA, Rijkers G, Snippe H. Codelivery of adjuvants at the primary immunization site is essential for evoking a robust immune response to neoglycoconjugates. Vaccine 29(4), 849–854 (2011).
  • Drane D, Boyle J, Maraskovsky E. ISCOMATRIXTM adjuvant for prophylactic and therapeutic vaccines. Expert Review of Vaccines 6(5), 761–772 (2005).
  • Duewell P, Kisser U, Heckelsmiller K et al. ISCOMATRIX adjuvant combines immune activation with antigen delivery to dendritic cells in vivo leading to effective cross-priming of CD8+ T cells. J. Immunol. 187(1), 55–63 (2011).
  • Wilson NS, Yang B, Morelli AB et al. ISCOMATRIX vaccines mediate CD8+ T-cell cross-priming by a MyD88-dependent signaling pathway. Immunol. Cell Biol. 90(5), 540–552 (2012).
  • Mckenzie A, Gittleson C. ISCOMATRIX® vaccines: safety in human clinical studies. Human Vaccines 6(3), 237–246 (2010).
  • Jacobs C, Duewell P, Heckelsmiller K et al. An ISCOM vaccine combined with a TLR9 agonist breaks immune evasion mediated by regulatory T cells in an orthotopic model of pancreatic carcinoma. Int. J. Cancer 128(4), 897–907 (2011).
  • Middleton D, Rockman S, Pearse M et al. Evaluation of vaccines for H5N1 influenza virus in ferrets reveals the potential for protective single-shot immunization. J. Virol. 83(15), 7770–7778 (2009).
  • Simmons DP, Canaday DH, Liu Y et al. Mycobacterium tuberculosis and TLR2 agonists inhibit induction of type I IFN and class I MHC antigen cross processing by TLR9. J. Immunol. 185(4), 2405–2415 (2010).
  • Watanabe T, Kitani A, Murray PJ, Strober W. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat. Immunol. 5(8), 800–808 (2004).
  • Rehli M. Of mice and men: species variations of Toll-like receptor expression. Trends Immunol. 23(8), 375–378 (2002).
  • Belderbos ME, van Bleek GM, Levy O et al. Skewed pattern of Toll-like receptor 4-mediated cytokine production in human neonatal blood: low LPS-induced IL-12p70 and high IL-10 persist throughout the first month of life. Clin. Immunol. 133(2), 228–237 (2009).
  • Nguyen M, Leuridan E, Zhang T et al. Acquisition of adult-like TLR4 and TLR9 responses during the first year of life. PLoS ONE 5(4), e10407 (2010).
  • van Duin D, Mohanty S, Thomas V et al. Age-associated defect in human TLR-1/2 function. J. Immunol. 178(2), 970–975 (2007).
  • Shaw AC, Panda A, Joshi SR, Qian F, Allore HG, Montgomery RR. Dysregulation of human Toll-like receptor function in aging. Ageing Res. Rev. 10(3), 346–353 (2011).
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12(4), 252–264 (2012).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.